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Modeling Top-down Visual Attention in

Complex Interactive Environments
Ali Borji, Member, IEEE, Dicky N. Sihite, and Laurent Itti, Member, IEEE,

Abstract—Several visual attention models have been proposed
for describing eye movements over simple stimuli and tasks such
as free viewing or visual search. Yet to date, there exists no
computational framework that can reliably mimic human gaze
behavior in more complex environments and tasks such as urban
driving. Additionally, benchmark datasets, scoring techniques,
and top-down model architectures are not yet well understood.
In this study, we describe new task-dependent approaches for
modeling top-down overt visual attention based on graphical
models for probabilistic inference and reasoning. We describe
a Dynamic Bayesian Network (DBN) that infers probability
distributions over attended objects and spatial locations directly
from observed data. Probabilistic inference in our model is
performed over object-related functions which are fed from
manual annotations of objects in video scenes or by state-of-
the-art object detection/recognition algorithms. Evaluating over
∼3 hours (appx. 315, 000 eye fixations and 12, 600 saccades) of
observers playing 3 video games (time-scheduling, driving, and
flight combat), we show that our approach is significantly more
predictive of eye fixations compared to: (1) simpler classifier-
based models also developed here that map a signature of a
scene (multi-modal information from gist, bottom-up saliency,
physical actions, and events) to eye positions, (2) 14 state-of-the-
art bottom-up saliency models, and (3) brute-force algorithms
such as mean eye position. Our results show that the proposed
model is more effective in employing and reasoning over spatio-
temporal visual data compared with the state-of-the-art.

Index Terms—Visual attention, Bottom-up saliency, , top-down
attention, Gaze prediction, eye movement prediction, Interactive
environments, Task-driven attention, Complex natural scenes

I. INTRODUCTION

SELECTIVE processing of scenes known as visual at-
tention is a remarkable capability of human vision al-

lowing subsequent complex processes (e.g. object recogni-
tion) feasible. Knowledge of the task is a crucial factor in
this selection mechanism. A considerable amount of exper-
imental and computational research have been conducted in
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the past decades to understand and model visual attention
mechanisms, yet progress has been most rapid in modeling
bottom-up attention and simple tasks such as visual search
and free viewing. Furthermore, the field of visual attention
lacks principled computational top-down frameworks which
are applicable to different task types. Aside from being an
interesting yet challenging scientific problem, from an en-
gineering perspective, there are numerous applications for
attention modeling in computer vision and robotics, including
video compression [36][51] and summarization [40], object
recognition and detection [59][34][22], robot navigation and
localization [39][41], interactive computer graphics (virtual
reality or video games) [37], flight and driving simulators (e.g.,
driver assistant systems), and visual prosthetic devices [38].

It is widely agreed that visual attention operates in both
bottom-up and top-down modes, where in the bottom-up
mode, attention is driven by image-based conspicuities, while
in the top-down mode, task, knowledge, memory, expectations,
emotions, etc. guide gaze toward relevant/informative scene
regions. Furthermore, visual attention can be either object-
based, space-based or feature-based [2][3]. Thus, attention is a
multi-faceted phenomenon engaging all of these mechanisms.
A frequently referenced model for saccade prediction is the
saliency map model of Itti et al. [20] built on top of the
computational architecture of Koch and Ullman [71] and the
feature integration theory (FIT) [4]. This bottom-up approach
is based on contrasts of intrinsic image features such as
color, orientation, intensity, flicker, motion, and others. Later
implementations have added new feature channels to this
model, including text and faces [62], symmetry [75], gist and
horizontal lines [76] (See [89] for an interesting application
of scene gist), optical flow [77], and these models have been
able of accounting for an increasing fraction of human eye
fixations. In addition, several other bottom-up models with sig-
nificantly different inspirations – either biologically-inspired
or purely computational – have been proposed, including:
Bayesian models (e.g., surprise [54], SUN [56], discriminant
saliency [46]), Information-theoretic models (e.g., Bruce and
Tsotsos [43], Hou and Zhang [52], rarity model [53]), Spec-
tral analysis models (e.g., PQFT [51], adaptive whitening
saliency [49]), bottom-up Graphical models (e.g., GBVS [58],
E-saliency [78], Pang et al. [15]), Classification-based ap-
proaches (e.g., Judd et al. [12], Kienzle et al. [80]). Please
refer to [70] for a comprehensive review of the bottom-up
saliency models. Although bottom-up models have been very
successful in explaining fixations in free-viewing, they explain



IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS 2

only a small portion of fixations in everyday tasks such as
driving [79][8][5] .

A. Related Research on Top-down Attention Modeling

The second component of visual attention comes from
top-down demands such as knowledge of the task, emo-
tions, expectations, and predictions which are embedded in
a temporally extended task. Modeling top-down attention is
conceptually hard to frame since: 1) different tasks require
different algorithms, and 2) there are often several factors
(e.g., actions, objects, etc.) that need to be taken into account
specially in the context of a long temporally extended task.
Research on top-down attention dates back to the classic study
by Yarbus [7] which showed that gaze patterns are dependent
on the asked question when viewing a photo. It has also
been shown that the vast majority of fixations are directed
to task-relevant locations, and fixations are coupled in a tight
temporal relationship with other task-related behaviors such
as reaching and grasping [16]. Furthermore, eye movements
often provide a clear window to the mind of an observer in
a way that it is sometimes possible to infer how a subject
solves a particular task from the pattern of her eye movements
for tasks such as “block copying“ [17] , “tea making“ [8],
and “driving“ [18]. In [19], Peters and Itti learned a mapping
from global context of a scene (a.k.a scene gist) to eye
fixations using the data of subjects playing contemporary video
games. The same authors [21], using this model evaluated
the relative importance of bottom-up and top-down factors
at the time of an event (e.g., hitting a target in shooting
games or accident in driving games). Based on this, they
built templates for different events and used them for event
detection (thus combining stimulus and behavior information
for event detection). Navalpakkam and Itti [22] proposed
guidelines for top-down attention modeling in conjunction
with the saliency model in situations where the algorithm
for the task is at hand. Sprague and Ballard [23] proposed
a method based on reinforcement learning for learning visio-
motor behaviors and used their model to account for saccades
in a sidewalk navigation task [24]. Hidden Markov Models
(HMM) have been successfully applied to fixation prediction
in reading (e.g., E-Z reader model [63]). In [81], Butko
and Movellan have proposed a POMDP approach for visual
search. Erez et al. [64] proposed a similar approach for a
synthetic eye-hand coordination task. Rimey and Brown [65]
modeled top-down attention with a Bayesian network for an
object manipulation task. Cagli et al. [66] proposed a Bayesian
approach for sensory-motor coordination in drawing tasks.
Inspired by the visual routines theory (Ullman [67]), Yi and
Ballard [68] programmed a DBN for recognizing the steps in
a sandwich making task.

B. Integrated Bottom-up and Top-down Models

A central open question in modeling visual attention is “how
the bottom-up salient and top-down task-driven stimuli are
integrated in the course of a task?”. Few attempts have been
made to answer this question and existing models mainly
apply to simple tasks such as visual search (e.g. [22]). An

example application for integrated attentive systems is video
surveillance where the aim is to detect goal-relevant targets
like suspects while being aware of unexpected visual events
such as gun shots or sudden explosions. Another example is
robot navigation where top-down attention helps detection of
landmarks and road signs while bottom-up attention detects
unexpected obstacles and accidents. Some experimental stud-
ies have considered interaction of bottom-up and top-down
attention. For instance, in modeling eye fixations of observers
when looking for a pedestrian in a scene, Ehinger et al. [31]
showed that a model of search guidance combining three
sources: low level saliency, target features, and scene context,
outperforms models based on any of these sources taken
separately. Navalpakkam and Itti [22] proposed “optimal cue
selection strategy“ by tunning the gains of the basic saliency
model [20] through maximizing the signal to noise ratio of the
target object versus distractors (background) by considering
target and distractors feature distributions. Peters and Itti [19]
used “multiplication” of bottom-up saliency and their top-
down fixation prediction. However, it is not clear how this sim-
ple mechanism will generalize to complex tasks. Overall, while
several models have addressed understanding and modeling
visual attention mechanisms separately, to date there exists
no principled approach that combines these components in
the context of a complex, interactive, and temporally-extended
task such as those we are considering in this work.

C. Influence of Multi-modal Data on Attention

The interaction between attention and physical actions
makes up one of the most important facets of our everyday
life. Many studies support the idea that attention affects
actions (e.g. [25]). It has also been proposed that changes
due to actions lead to corresponding changes in attention
and perception [25][26]. For instance, in [28] authors show
that preparation of a grasping movement affects detection
and discrimination of visual stimuli. A good example of
interaction between action and attention is driving which needs
sophisticated coordination between motor actions and eye
movements. Our work here borrows from the ideas of sensory-
motor integration: The process by which the sensory and
motor systems communicate and coordinate with each other
(e.g. hand-eye coordination). The above statement is closely
related to the premotor theory of spatial attention which argues
that the major function of attentional selection is not only a
reduction in the incoming information, but rather to select an
appropriate action on the basis of a specific stimulus [27].
There are also interactions among other modalities such as
auditory or emotion on attention. Here, we investigate the
influence of physical actions on eye positions albeit our
approach is scalable for using all other sources of information.

D. Our Contributions

Our primary goal is to present a general framework for
interpreting human eye movement behavior that explicitly
represents demands of many different tasks, perceptual uncer-
tainty, and time. This approach allows us to model visuomotor
sequences over long time scales, which have been typically
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ignored in vision sciences. For that we employ graphical
models which have been widely used in different domains
including biology, time series modeling, and video processing
(See for instance [85] and [86]). We have been inspired by
the application of HMMs for analysis and segmentation of
videos into semantic shot sequences (See [88] and [87]). These
approaches are very helpful when sequential actions are linked,
when documents are highly structured or organized such a
tennis match which is composed of sets, games and points.

We introduce two types of models: Space-based and Object-
based. Space-based models are discriminative models that
estimate probability of the next attended object or spatial
location over time directly from raw image and action features
such as gist, bottom-up saliency, physical actions, and events.
An advantage of space-based models over object-based models
is that they are easily applicable to a wide range of interactive
visual environments. Thus, we intend to take advantage of
the sequential nature of everyday tasks for modeling visual
attention and eye movement prediction. Although the whole
framework is general (i.e., the equations do not change from
one task to another) but it needs to be trained for each specific
task. By being able to explain human attentional behavior,
we hope that our framework could be used for engineering
applications.

Since objects are essential building blocks in scenes, it is
reasonable to assume that humans have instantaneous access to
task-driven object-level variables, as opposed to only gist-like
(scene-global) representations [82][76]. Our proposed object-
based approach is a Bayesian framework developed to reason
over objects. We compare this approach to several space-
based models that learn a mapping from scene signatures
to gaze position. In this study, we use an object recognition
oracle from manually tagged video data to carefully investi-
gate the prediction power of our approach. For some of the
tasks and visual environments tested here (older 2D video
games), simple object recognition algorithms are capable of
providing highly reliable object labels, but for more complex
environments (modern 3D games) the best available algorithms
still fall short of what a human annotator can recognize.
Therefore, we also did an uncertainty (over objects) analysis
when variables are fed from outputs of two highly successful
object detection approaches (Boosting classifier [84]) and
Deformable Part Model (DPM) by Felzenszwalb et al. [60].

II. PSYCHOPHYSICS AND DATA GATHERING

To test our models, we have collected a large amount of
multi-modal data from subjects playing video games. We share
our data and accompany software to encourage follow-up
research on modeling top-down attention1.

A. Stimuli and Subjects

We chose video games since they resemble real-world
interactive tasks in terms of having near-natural renderings,
noise, and statistics. It is also easier to control data recording
over video games versus real-world scenarios (for example in

1Our data is publicly available at: http://ilab.usc.edu/∼borji/Resources.html
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Fig. 1. Eye tracking and action recording setup. Subjects play video games
using wheel, joystick, or keyboard with their actions being logged by a
computer. Game stimuli are shown to the subjects and eye movements are
recorded. Each data item has a time stamp which allows aligning frames,
actions, and fixation data after recording.

driving). Participants (variable number for each game, 18-25
years old) played PC video games under a protocol approved
by the University of Southern California’s Institutional Review
Board (IRB). Subjects were compensated for their partici-
pation by cash or course credits. In the training session for
each game, subjects were introduced to the goal of the game,
rules, how to handle buttons, etc. All subjects were novice
computer gamers and had no prior experience with our games,
but some had limited experience with other games. Subjects
had different adventures in games, thus, it is unlikely that the
exact same image is rendered in multiple runs. After training,
in a test session subjects played the game (but a different
scenario) for several minutes.

B. Experimental Setup

Fig. 1 shows our eye and action recording setup. At the
beginning of the test session, the eye tracker (PC1, Windows
95) was calibrated using 9-point calibration. Subjects were
seated at a viewing distance of 130 cm (subtending a field of
view of 43◦× 25◦). A chinrest (or headrest in driving games)
was used to stabilize their heads. Stimuli were presented at 30
Hz on a 42” computer monitor at a resolution of 640 × 480
pixels and refresh rate of 60 Hz. Frames were captured at
30 Hz using a computer (PC2, Linux Mandriva OS) under
SCHED_FIFO scheduling (to ensure microsecond accuracy)
which sent a copy of each frame to the LCD monitor and saved
one copy to the hard disk for subsequent processing. Finally,
subjects’ right eye positions were recorded at 240 Hz (ISCAN
Inc. RK-464 eye tracker, PC1). Subjects played games on PC3
with Windows XP where all their joystick/steering/buttons
actions were logged at 62 Hz.

In driving games, subjects drove using the Logitech Driving
Force GT steering wheel, automatic transmission, brake and
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gas pedals, 11-inch rubber-overmold rim, 900 degrees rotation
(only 360 degrees; 180 left, 180 right; were used), force
feedback, connected via USB to the PC3. In HDB and TG
games, subjects used mouse and joystick for game playing,
respectively. Multi-modal data including frames, audio (not
processed here), physical actions, and eye positions were
recorded.

C. Physical Actions and Eye Movement Data

Actions and fixations are tightly linked thus sometimes by
knowing a performed action it is possible to tell where should
be looked next. We recorded motor actions while humans
were involved in game playing. We assumed that these actions
correspond to some high-level events in the game (e.g., mouse
click for shooting). We logged actions for driving games (e.g.,
wheel position, pedals (brake and gas), left and right signals,
mirrors, left and right side views, and gear change), from
which we only generated a 2D feature vector from wheel and
pedal positions between 0 and 255. For other games, 2D mouse
position and joystick buttons were used (further explained in
Sec. III-A).

Fig. 2 shows a summary of our collected data over video
games classified in three categories. Fig. 3 shows sample
frames from each of the games. Part of our data has been
previously collected by Peters and Itti [19][21].

III. OUR TOP-DOWN VISUAL ATTENTION MODELS

In contrast to the majority of previous models dealing with
spatial attention, we aim to predict both the next object (what)
and the next spatial location (where) that should be attended.
Usually prediction of saccades (jumps in eye movements to
bring the relevant object to the fovea)2 has been considered
by bottom-up models in free-viewing tasks. Here, we consider
prediction of fixations for all frames (one fixation per frame)
and saccades endpoints for those frames in which a saccade
has happened.

In its most general form, gaze prediction is to estimate
P (Rt+1|St+1) where Rt+1 is the next attended object Yt+1 or
next attended spatial location Xt+1, and St+1 is the subject’s
mental state. However, since it is not possible to directly
access the hidden (latent) variable St+1, we estimate P (Rt+1)
directly from observable variables. Two modes for gaze pre-
diction are possible: 1) Memory-dependent, and 2) Memory-
less. The only difference is that in the memory-less mode,
information of previous actions and gazes is not available.
The memory-less mode has been mostly considered in spatio-
temporal saliency modeling, where the input is a video and
the task is to predict likely attended locations. However, in
the context of sensori-motor interaction and online interactive
tasks like those used here, memory-dependent prediction is a
valid assumption with several applications when the goal is to
predict gaze one step ahead.

In the rest, we explain the features that we use as indica-
tors/predictors of eye fixations along with spatial and object

2Saccades were defined by a velocity threshold of 20◦/s and amplitude
threshold of 2◦.

based models using these features. We focus on three games
for developing models and at the results section we analyze
generalization power of our models over other games/tasks
(See Fig. 4.a). Stimuli consist of: 1) a time-scheduling game
known as Hot Dog Bush (HDB) in which subjects had to
serve customers food and drinks; 2) a driving game called 3D
Driving School (3DDS) in which subjects were supposed to
drive a car in an urban environment, following all traffic rules;
and 3) a flight combat game known as Top-Gun (TG) where
players had to control a simulated fighter plane with the goal
of destroying specific enemy targets.

A. Features

As opposed to previous saliency models (e.g., [80][19][12])
that have only considered scene features for fixation predic-
tion, we use features from both vision (features extracted from
frames and visual events annotated for some games) and action
modalities. Employed features include:

Gist. Gist is a light-weight yet highly discriminant repre-
sentation of the whole scene and does not contain details about
individual objects. We used the gist descriptor of [29] which
relies on 34 feature pyramids from the bottom-up saliency
model [20]: 6 intensity channels, 12 color channels (first 6
red/green and next 6 blue/yellow color opponency), and 16
orientations. For each feature map, there are 21 values that
encompass average values of various spatial pyramids: value
0 is the average of the entire feature map, values 1 to 4
are the average values of each 2 × 2 quadrant of the feature
map and values 5 to 20 are the average values of the 4 × 4
grids of the feature map leading to overall of 34× 21 = 714
dimensions. In [19], the motion map has also been added for
gist description. There are also other gist models which could
be used here3. For a comparison of some gist models please
see [83].

Bottom-up saliency map (BU). For the bottom-up compo-
nent of our gaze-prediction model, we used the freely available
implementation of the Itti-Koch saliency model [20]4. This
model includes 12 feature channels sensitive to color contrast
(red/green and blue/yellow), temporal luminance flicker, lu-
minance contrast, four orientations (0◦, 45◦, 90◦, 135◦), and 4
oriented motion energies (up, down, left, right). Then center
and surround scales are obtained from dyadic pyramids with
9 scales, from scale 0 (the original image) to scale 8 (the
image reduced by a factor of 28 = 256 in both the horizontal
and vertical dimensions). Six center-surround difference maps
are then computed as point-wise differences across pyramid
scales, for combinations of three center scales (c = 2,3,4)
and two center-surround scale differences (σ = 3,4). Each
feature map is additionally endowed with internal dynamics
that provide a strong spatial within-feature and within-scale
competition for activity, followed by within-feature, across-
scale competition. In this way, initially noisy feature maps can
be reduced to sparse representations of only outlier locations
which stand out from their surroundings. All feature maps

3For example the Gist descriptor by Oliva and Torralba:
http://people.csail.mit.edu/torralba/code/spatialenvelope/

4http://ilab.usc.edu/toolkit/
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Super Mario Kart (SMK) + + - J - - G 3rd
This is a racing game with various Nintendo character. Using a kart as vehicle, player is expected to finish as 
fast as possible by any means, including using items  such as fireballs, bananas, etc to hinder other racers 
from finishing. In this stimuli, player races with 7 computer players. Player uses third-person view in this 
stimuli.

Pc Man World (PMW) + + - J - - G 3rd
A third-person adventure game involving Pacman, an iconic game character with yellow-coloured round body. 
Player controls him to follow a certain path to reach a destination by avoiding/killing enemies, avoiding 
obstacles, and solving puzzles.

Mario Sunshine (MS) + + - J - - G 3rd
This is a third-person adventure game involving Mario. Player controls his movement to retrieve an sun-like 
object called shine, a reward for completing a level. Each level requires player to either defeat a boss, killing 
several enemies, or finishing a puzzle to get the shine reward.

Hulk + + - J - - G 3rd Hulk, a famous movie character, is a third-person adventure action game. Player controls him to run around 
bashing soldiers that tries to kill him.

Wave Race (WR) + + - J - - G 3rd
This is a jet-ski-themed racing. Player races on water to the finish line beating other racers and following path 
specified by water buoys. Player will be penalized by slowing the vehicle down for few seconds if he/she not 
following the correct path. In this stimuli, player race alone (time-attack mode) and in third-person view.

James Bond Agent 
Under Fire (JBAUF) + + - J - + G 1st

JBAUF is a first-person shooting starring James Bond. By controlling him, player must go to a specific point to 
finish a level. Along the path, player must kill enemies and use gadgets to solve puzzles. Bond is equipped with 
guns, multi-function cell phone, lazers, grappling hook, etc.

Top Gun (TG) + + - J - + G 1st
TG is a flight-combat simulator. Player controls a jet-fighter plane that can lock target and shoot missles, use 
afterburners to speed up, and do air manuvers. The main objective to complete the game is to completely 
destroy all targets on air and ground. Player uses first-person view in this stimuli.

Super Mario Bros (MB) + + + M + + P 2D
SMB is a classic 2D-side-scrolling action game. Player controls Mario to a flagpole to finish the level. Mario can 
grow bigger if consume a mushroom and shoot fireballs if consume a flower. There are various enemies that 
can be killed by stomping on them or shooting fireballs. In this stimuli, player is expected not to take any 
means of shortcut such as running on ceiling (top of the level), teleport pipes, or warp points.

Burger Shop (BS) + + + M - - P 2D
BS is a 2D time-management game. Player serves customers under limited amount of time. They order specific 
foods, ie: burgers,fries, that can be assembled from a conveyor belt in the middle of the screen. The game 
ends when all customers are served.

Hot Dog Bush (HDB) + + + M + - P 2D
HDB is a 2D time-management game. Player serves customers hotdogs under limited amount of time. They 
will always order hotdogs either with or without ketchup. Later in the game, they will also order drinks. Player 
serves hotdogs by assembling the ingredients similar to BS with exception of the sausages, which need to be 
cooked properly.

Need for Speed 
Underground (NFSU) + + - J + - G 1st/Bp

NFSU is a street-racing game with fancy and powerful cars to drive. This version of NFS series takes player into 
the night race in a city with various fancy city lightings such as buildings, street lights, etc. Player must cross 
the finish line before other racers to win a level. In this stimuli, player faces with other 3 computer players. 
Player uses first-person/bumper view in this stimuli.

3D Driving school 
(3DDS) + + + W + + P 1st/Db

3DDS is a driving simulator with simulated traffic conditions. Player must follow route defined by the game and 
european traffic rules (drive on right-side). An instructor will tell the player where to go by a text in a semi-
translucent box above the screen and/or a small arrow on the corner top-left of the screen. Player uses 
automatic transmission to drive around the entire course, therefore player will focus only on the driving in a 
certain route and following the rules of this simulator. This stimuli has only dashboard view, an inside view 
from the driver-side towards the road.

18 Wheels of Steel 
(18WOS) + + + W - + P 1st/Db

18WoS is a semi/truck simulator with simulated traffic. In this game, player controls a big rig to a specific 
destination to retrieve money reward for delivering a trailer. Player must drive carefully as the truck cannot 
accelerate/brake suddenly due to its mass. In this stimuli, player is told to always make a left turn since there 
is no explicit instruction on the screen telling where to go. Player also uses first-person/bumper view.

Test Drive Unlimited 
(TDU) + + + W - - P 1st/Bp

TDU is a street-racing game with simulated traffic. Player controls a powerful exotic car and do various task 
such as racing with other cars, deliver goods/cars to a certain location, drive girls to a destination under 
specific time, etc. In this stimuli, player controls a ferrari and supposed to drive it to a certain location with a 
gps or arrow in the middle of the screen as navigation. Player is expected to maintain the car under certain 
speed to avoid destroying/crashing the car.

Driver Test (DT) + + + W - - P 1st/Bp
DT is a driving simulator similar to 3DDS. Player must follow certain routes and traffic rules. This simulator has 
more realistic rendering than 3DDS, however the instructions in this one is more difficult to follow. It only 
appear when the player is close to an intersection, making less time to react. This simulator also have a 
roundabout scenario, which is non-existant from 3DDS stimuli. This stimuli also uses dashboard view.

Need for Speed Most 
Wanted (NFSMW) + + + W - - P 1st/Bp

NFSU is a street-racing game with fancy and powerful cars to drive. This version of NFS series takes player into 
the countryside race.  Player must cross the finish line before other racers to win a level. In this stimuli, player 
faces with only 1 computer player and no traffic. Player uses first-person/bumper view in this stimuli.

Play: J = joystick, M = mouse, W = Wheel and pedal ;  Meduim: G = Nintendo gamecube, P = PC ; 
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r
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g

Viewpoint: 3rd = 3rd person view, 1st = 1st person view, 1st/Bp = 1st with bumper view, 1st/Db = first-person with dashboard view
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Fig. 2. Summary statistics of our video games classified in three categories: 1) Hardcore games demanding superb focus and have near natural visual
renderings, 2) Casual games mostly consisting 2D video games with simple policies, and 3) Driving games including in-city and free-way driving routes. We
intend to share our data for follow-up research on modeling top-down visual attention. Some games are simple 2D cartoon games.
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finally contribute to a unique saliency map representing the
conspicuity of each location in the visual field.

Physical actions (A). In the 3DDS game, this is a 22D
feature vector derived from wheel and buttons while subjects
were driving. The main elements of this vector include:
{wheel position, pedals (brake and gas), left and right signals,
mirrors (rear, left), left and right side views for panning the
current forward view to the left or right window (mainly its
purpose is to do traffic check), and gear change}. Signals,
mirrors and views are thus binary variables. Other action
vector components are: {wipers, light indicators, horn, GPS,
start-engine, radio volume and channel, show-menu, look-back
view, and view change}. Subjects were encouraged not to use

these latter buttons. In the HDB game, actions were {mouse
position (x, y), left, middle, and right mouse clicks} by which
subjects handled orders. Currently, we don’t have physical
actions for the TG game.

Labeled events (L). Each frame of the 3DDS game was
manually labeled as belonging to one of several events:
{left turn, right turn, going straight, red light, adjusting left,
adjusting right, stop sign, traffic check, and error frames due
to unexpected (mistake) events that terminate the game such
as hitting other cars or passing the red light}. Hence this is
only a scalar feature.

Object features (F). This is a N dimensional vector of
properties of objects (F 1:N ) (e.g., here N=15 is the number
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of objects and hence the cardinality of this vector) as will be
further explained in section III-C.

B. Space-based Classifier Models

We first explain our models that learn a mapping from
features to attended objects, eye fixations (or saccades) for
each task. We developed several classifiers as well as brute-
force control algorithms with the same input representations.
The advantage of our space-based and classifier-based models
is that they are easily applicable to every visual task and there
is no need for object tagging. According to the Bayes theorem,
these classifiers estimate:

P (R|M) =
P (M |R)P (R)

P (M)
(1)

with R being either X or Y ; and M being either the feature-
based representation E, or the object-based representation F ,
or a combination of both. Since calculating P (M |R) and
P (M) is impractical due to high dimensionality of M , we
follow a discriminative approach to estimate the posterior
P (R|M). Classifiers calculate either P (X|E) (i.e., gaze di-
rectly from features; similarly predicting the attended object
from E, P (Y |E)) or using the marginal likelihood:

P (X|M) ∝ P (X|Y )× P (Y |M) (2)

(i.e., a classifier first predicts attended object from features and
then a second classifier maps the predicted attended object
to the gaze position). The following linear and non-linear
classifiers were developed:

Mean eye position (MEP). This family of predictors ignores
feature vectors and simply uses the prior distribution over all
fixations, saccades, or attended objects over entire training set.
It is formally defined as:

MEP =
1

T

T∑
j=1

Rj (3)

where R is the spatial location (saccade or fixation) or attended
object and T is the number of frames over the course of the
game in the training phase for which a location or object was
attended. Note that while this model is easy to compute given
human data, it is far from a trivial model, as it embodies human
visual-cognitive processes which gave rise to the gaze.

Random predictor (R). At each time point, the next
attended object is drawn from a uniform distribution (without
replacement for the duration of the current video frame) with
probability 1/N where N is the number of remaining objects
in the scene. For fixation prediction, this is a random map.

Gaussian (G). It has been shown that subjects tend to look
at the center of the screen (center-bias or photographer-bias
issue [44]), therefore a central Gaussian blob can score better
than almost all saliency models when datasets are centrally
biased. We thus also compare our results with this heuristic
model, which is simply a Gaussian blob (σ = 3 pixels) at the
image center.

Linear Regression (REG). This model does not take into
account the temporal progress of a task and simply maps Gist

TABLE I
ALGORITHM 1: KNN ALGORITHM FOR GAZE PREDICTION

1: Qw×l = U ×M ′
; (dot product similarity)

2: Zw×300 = 0 (initialization to zero)

3: for j = 1 · · ·K ; (K numbers of neighbors)

4: Lj = argmaxj Q (index of maximum column)

5: Z = Z +X(Lj) ; updating the frequency of gaze at a location

6: Q(Lj) = - inf ; to inhibit selection of maximum values

in the next iteration
7: end

8: Z = Z ∗ LG ; convolution with (LG1×300; a linearized Gaussian)

to make the final map

of the scene to the eye position. Mathematically, the goal is
to optimize the following objective function:

arg min
W

||M ×W −X||2 (4)

Subject to : W ≥ 0.

where M indicates the matrix of feature vectors (only Gist
feature is used in [19]) and X is the matrix of eye positions
(one fixation per frame or saccades for those frames that a
saccade occurred). The least-squares solution of the above
objective function is: W = M+ × X , where M+ is the
pseudo-inverse of matrix M through SVD decomposition. In
our experiments, we only take the largest singular value of
the SVD since this avoids numerical instability and results
in higher accuracy. Given vector E = (u, v) as the eye
position over a 20 × 15 map (i.e., w = 20, h = 15) with
u ∈ [1, 20] and v ∈ [1, 15], the gaze density map can then
be represented by vector X = [x1, x2, . . . , x300] with xi = 1
for i = u + (v − 1) × 20 and xi = 0 otherwise. Finally, for
each test frame, we compute feature vector F and generate
the predicted map P = F ×W which is then reshaped to a
20 × 15 saliency map. The maximum of this map is used to
direct spatial attention.

kNN. Here, attention map for a test frame is constructed
from the distribution of fixations of its most similar frames in
the training set. Since kNN is usually slow, we developed a fast
matrix implementation of kNN as shown in Table 1. Matrix
Q denotes dot product similarity of all test frames U (for a
subject) to all training frames M (other subjects). Number of
neighbors (K) was 40, 5, and 5 for HDB, 3DDS, and TG,
respectively. Parameter K was set to give high accuracy in a
trial and error basis. Note that by performing matrix operations
in this fashion, computational complexity of our kNN is less
than when iterating through all test frames.

SVM. To ensure that SVM training did not overwhelm
available computational resources, we first reduced the high-
dimensional feature vectors (E) using PCA by preserving
95% of variance. Then a polynomial kernel multi-class SVM
classifier was trained with p (|Y | = 15 objects or |X| = 300
eye positions) output classes. We used Libsvm [73], a publicly
available Matlab version of SVM.
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C. Object-based Bayesian Models

In order to be able to accurately predict which object or spa-
tial location should be attended, a detailed understanding of a
scene at the level of objects and their interactions is necessary
(as opposed to models based on only global scene context).
This object-based representation should be updated over time
and the effect of physical actions on them should also be taken
into account. We therefore argue that for learning a task, it is
enough to learn which objects should be manipulated by which
objects over time. By learning the task when can then learn
task-driven visual attention. For that, we need an object-level
representation of the scene which could be provided either by
object annotations (segmenting objects by bounding boxes)
of humans or automatic detection of objects using object
detection approaches. We then compare performance of these
models with space-based models mentioned in Sec. III-B.

Due to the noise in eye tracking, subjectivity in performing
a task, and high-level gaze programming strategies, saccades
do not always land on specific objects. One way to solve this
problem is to ask humans to review the data, decide which
object has been attended, and then take their average decisions.
Instead, we followed a simpler and more objective approach
by defining a function that assigns a probability to objects in
the scene being attended, based on their inverse distance to
the saccade/fixation position X , i.e., z(oj) = 1/eαd(X,C(oj))

where C(oj) is the center of the object oj and d is the
Euclidean distance. Parameter α controls the spatial decay

with which an object is considered as attended for a given gaze
location (here α = 0.1). This way, closer objects to the gaze
position will receive higher probabilities. These values are then
normalized to generate a pdf: P (oj) = z(oj)/

∑N
i=1 z(o

i)
where N is the total number of objects. Fig. 4.b shows a
sample time line of attended objects probabilities over HDB
for ∼ 1, 000 frames along with a sample tagged frame. The
object under the mouse position when clicking was considered
as a selected object.

We followed a leave-one-out approach, training models
from data of n − 1 subjects and evaluating them over the
remaining n-th one. The final score is the average over
all n cross-validation runs. Object-based attention model is
developed over HDB and classifier-based models are for all
games.

DBN is a generalized extension of Bayesian networks
(BN) to the temporal dimension representing stationary and
Markovian processes. For simplicity, we drop the index of
subject in what follows. Let Ot = [o1t , o

2
t , · · · , oNt ] be the

vector of available objects in frame at time t. Usually some
properties (features) of objects within the scene are important.
Assuming that function f(o) denotes such property, an object-
level representation of this frame hence will be Ft = {f i(ojt )}
where i is a particular property function and j is a particular
object. In its simplest case, f could be just the number of
instances of an object in the scene. More complex functions
would take into account spatial relationships among objects
or task-specific object features (e.g., is ketchup empty or
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not). Let Y1:T = [Y1, Y2, · · ·YT ] be the sequence of attended
objects, X1:T = [X1, X2, · · ·XT ] be the sequence of attended
spatial locations, and C1:T = [C1, C2, · · ·CT ] be the selected
objects by physical actions (e.g., by clicking, grabbing). Here,
we treat selection as another object variable affecting the
attended object. It is also possible to read out the next selected
object (action in general) from DBN by slightly modifying the
network structure, but here we are only interested in predicting
the next attended object. Knowing the attended object, gaze
location could be directly inferred from that.

We studied three types of general DBNs shown in Fig. 4.c:
1) An HMM with a hidden variable (brain state Ht) con-

nected directly to the attended object and from there to
gaze position.

2) A DBN where the attended object is affected by the
previously attended object (i.e., P (Yt+1|Yt)), hence pre-
diction is only based on the sequence of attended objects.

3) A DBN assuming that the attended object is influenced
by properties of current objects in the scene as well as
the previously attended object (i.e., P (Yt+1|Yt, F 1:N

t+1 ).
Given the following conditional independence assumptions:

1) Xt ⊥⊥ F it |Yt, 2) F it ⊥⊥ F jt (due to general structure
assumption), 3) F it+1 ⊥⊥ F it (happens when there is no
uncertainty in case of having tagged data. It is not the case
in general), and 4) Xt+1 ⊥⊥ Xt |Yt+1, then the full joint
probability of the HMM and third DBN, to be learned, reduces
to:

P (H1:T , X1:T , Y1:T ) = P (X1:T , Y1:T |H1:T )P (H1:T )

= P (X1:T |Y1:T )P (Y1:T |H1:T )P (H1:T )

= P (H1)P (Y1|H1)P (X1|Y1)×
T∏
t=2

P (Ht|Ht−1)×

T∏
t=2

P (Yt|Ht, Yt−1)×
T∏
t=2

P (Xt|Yt)

(5)

P (X1:T , Y1:T , F
1:N
1:T ) = P (X1:T , Y1:T |F 1:N

1:T )P (F 1:N
1:T )

= P (X1:T |Y1:T )P (Y1:T |F 1:N
1:T )P (F 1:N

1:T )

=

N∏
j=1

P (F j1 )P (Y1|F j1 )P (X1|Y1)

×
T∏
t=2

N∏
j=1

P (Yt|F jt )P (Yt|Yt−1)×
T∏
t=2

P (Xt|Yt)

(6)

where F 1:N
1:T = [F 1:N

1 , F 1:N
2 , · · ·F 1:N

T ] is the vector of func-
tions representing object properties over time.

Inference and learning. Learning in a DBN is to find two
sets of parameters (m; θ) where m represents the structure of
the DBN (e.g., the number of hidden and observable variables,
the number of states for each hidden variable, and the topology
of the network) and θ includes the state transition matrix A
(P (Sit |Pa(Sit))), the observation matrix B (P (Oit|Pa(Oit))),
and a matrix π modeling the initial state distribution (P (Si1))
where Pa(Sit) are the parents of Sit (similarly Pa(Oit) for ob-
servations). Learning is hence to adjust the model parameters
V = (m; θ) to maximize P (O|V ).

Since designing a different network for each task needs task-
specific expert knowledge, to make the problem tractable, here
we assume fixed structures (Fig. 4.c) that could generalize
over many tasks. Therefore, the joint pdf in Eq.5 reduces
to predicting next attended object thanks to independence
assumptions. As an example we derive the formulation for
the third case in Fig. 4.c:

P (Yt+1|F 1:N
1:t+1, Y1:t, X1:t) % given all past info.

= P (Yt+1|F 1:N
1:t+1, Y1:t) % Yt+1 ⊥⊥ X1:t

= P (Yt+1|F 1:N
t+1 , Yt) % Yt+1 ⊥⊥ Y1:t−1

=
(
ΠN
j=1P (Yt+1|F jt+1)

)
× P (Yt+1|Yt)

% F it+1 ⊥⊥ F
j
t+1, ∀ i 6= j

(7)

P (Y ) is initialized uniformly over the objects (time 0 and
is equal to P (oj), j = 1 : 15) and is updated over time.
The HMM model (case 2) has one hidden variable and thus
can be trained by exploiting the EM algorithm. To avoid
over-fitting parameters in conditional probability tables while
training, train data was randomly split into k partitions, where
DBN was trained over k− 1 partitions and validated over the
k-th partition. The model with best validation performance
was applied to the test data. We used the Bayes Net Toolkit
(BNT) [72] for learning parameters of DBN.

Since variables in our DBN take discrete values, while we
have a pdf over the attended object Yt, we follow a stochastic
sampling approach similar to the roulette-wheel algorithm.
For a number of iterations, we loop through the training
frames (t = 1 · · ·T ) and generate more training sequences.
Let at be the feature vector for the frame at time t, a tuple
< at, yt, xt > is added to the sequence (< yt, xt > pair in
the second DBN) where yt is the index of an object sampled
from J(Yt), the cumulative distribution of Yt, and xt is the
eye fixation at that time (Xt). This way, objects with higher
probability of being attended in a frame will generate more
training samples. The same strategy is followed for classifier-
based models (section 3.2) for a fair comparison with DBNs.
Since DBN have access to the previous time information, a
sample < [at yt−1], yt, xt > is added to classifiers, where
yt−1 and yt are sampled from J(Yt−1) and J(Yt), respectively
(no yt−1 in memory-less mode).

Naive Bayes (NB). In the memory-less case when there
is no time dependency between attended objects, our DBN
reduces to a static Bayes model incorporating only objects
at time t + 1. Assuming F it+1 ⊥⊥ F jt+1 |Yt+1, this classifier
models P (Yt+1|F 1:N

t+1 ) (probability of attended object given
the current scene information). Therefore:

P (Yt+1|F 1:N
t+1 ) =

1

Z

N∏
i=1

P (F it+1|Yt+1) (8)

where Z is a normalization constant. With no object informa-
tion, this classifier reduces to priors P (Y ) and P (X) which
are equal to MEP. As in our DBN framework, here we also
used validation strategy to avoid overfitting while training.
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Fig. 5. Gaze prediction accuracies. a) probability of correctly attended object (first row) and MNSS scores for prediction of saccades and fixation positions
(second row) for all models. White legends on bars show the mapping from feature types to gaze position X . For instance, REG (Ft → Yt → Xt) maps
object features to the attended object and then maps this prediction to the attended location using regression. Property functions f(.) in HDB indicate whether
an object exists in the scene or not (binary). b) and c) MNSS scores of our classifiers over 3DDS and TG games, d) and e) NSS scores (corresponding to
γ = 0 in MNSS) of bottom-up models for saccade prediction over 3 games. Almost all of bottom-up models perform lower than MEP and Gaussian, while
our models perform higher. Some models are worse than random (NSS < 0) since saccades are top-down driven instead of bottom-up.

IV. EXPERIMENTAL RESULTS

Evaluation Metrics. Two scores were used to evaluate the
accuracy of proposed models explained below:

1) Normalized Scan-path Saliency (NSS) [42]. NSS is the
response value at the human eye position (xh, yh), in a
model’s predicted gaze map (s) that has been normalized
to have zero mean and unit standard deviation:

NSS =
1

σs
(s(xh, yh)− µs) (9)

NSS = 1 indicates that the subject’s eye position fall in
a region where predicted density is one standard devia-
tion above average while NSS = 0 means that a model
performs at chance. Due to high subject agreement
(peaks in MEP; Fig. 13), Gaussian (when peak is in the
center) and MEP models generate many true positives
which lead to high scores for them. Since the chance
of making false positives is thus small, there is less
opportunity for models to show their superiority over
MEP or Gaussian. To stretch the differences between
sophisticated and brute-force models, each time, we

discarded those fixations that were in top γ%, γ ∈
{0, 10, ..90} of the MEP map. This gives an idea of
how well models predicted “non-trivial” fixations, i.e.,
away from the central peak of MEP data. To summarize
these scores, we defined Mean NSS (MNSS):

MNSS =
1

10

90∑
γ=0

NSS(γ) (10)

Along with MNSS, we also report the results using the
original NSS score.

2) Receiver Operating Characteristic (ROC) [43]. ROC is a
method used for evaluation of a binary classifier system
with a variable threshold (Usually between two methods
like saliency vs. random). Using this metric, the model’s
(or so-called “estimated”) saliency map (ESM) is treated
as a binary classifier on every pixel in the image; pixels
with larger saliency values than a threshold are classified
as fixated while the rest of the pixels are classified as
non-fixated. Human fixations are used as ground truth.
By varying the threshold, the ROC curve is drawn as
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the false positive rate vs. true positive rate, and the area
under this curve indicates how well the saliency map
predicts actual human eye fixations. Perfect prediction
correspond to a score of 1. This metric has the desired
characteristic of transformation invariance, in that area
under the ROC curve does not change when applying
any monotonically increasing function to the saliency
measure.

To evaluate object-based models, for a frame, a hit
is counted when the ground-truth attended object (=
arg maxj P (Y

′
)) is in top maximums (accumulative i.e.,

1 : 2, 1 : 3, · · · , 1 : 15) of the predicted object (=
arg maxj=1···15 P (Y )). Hits are then averaged over all gazes
for each j.

Gaze prediction. Fig. 5 shows prediction accuracies of
models in all conditions (memory-dependent/memory-less, ob-
ject/fixation/saccade, HDB/3DDS/TG). Bayesian models per-
formed the best in predicting the attended object followed
by SVM. All models performed significantly higher than
random, MEP and Gaussian and a simple classifier from gist
to eye position [19] using MNSS (same is true over NSS
score (Figs. 5.d and 5.e), KL, and ROC scores; Fig. 6).
Performances are higher in memory-dependent cases as we
expected which shows that information from previous step
is helpful. DBN model in the memory-dependent mode and
Naive Bayes (NB) in the memory-less mode, scored the best
MNSS over fixations and saccades (followed by HMM in
memory-dependent and REG in memory-less modes). Results
show that inferring attended object first and using it to predict
gaze position is more effective than directly mapping features
to gaze position (DBN and NB). HMM model scored high
on memory-dependent/fixation case but not as good in the
memory-less case. A similar HMM with added connection
between object Ft and hidden variables Ht raised the MNSS to
1.5 in memory-dependent/saccade case. Best performance was
achieved with 5 states for hidden variables in HMM. To test
to what degree gaze follows mouse in HDB, we implemented
two other algorithms: 1) by placing a Gaussian blob at mouse
position, and 2) learning a regression classifier from mouse
actions to eye position. These models scored high but still
lower than Bayesian models.

Over 3DDS and TG (Figs. 5.b and 5.c), with combination of
all features, kNN achieved the best MNSS followed by SVM
and Regression. Also, classifiers with event and action features
performed higher than MEP and Gaussian.

Fig. 6 shows the ROC curves as well as the NSS scores for
3DDS and TG games in memory-less case and HDB game in
memory-dependent case for both fixation and saccade location
prediction. As it shows over 3DDS, SVM and kNN (using all
features) score the highest using both AUC (area under ROC)
and NSS sore for fixation prediction. Over saccades, kNN
scores the highest. Over both saccades and fixations, kNN
and SVM score higher than MEP. The same trend happens
over the TG game with the exception that over saccades SVM
scores higher than kNN.

For HDB game in memory-dependent case, there is large
gap between prediction of our models and the MEP model
using both AUC and NSS scores. The DBN approaches score
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Fig. 6. ROC curve and NSS scores for fixation and saccade prediction, a)
3DDS, b) TG games in memory-less case and c) HDB game in memory-
dependent case. In all cases, consistent with Fig. 5, our models score higher
than MEP model. DBN models score the highest among classifiers and control
models.
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higher than all models for both fixation and saccade prediction.
Model comparison. We ran 14 state-of-the-art bottom-

up saliency models5 to compare saccade/fixation prediction
accuracy over three games (cf. Figs. 5.d and 5.e). These
models were the only ones that are readily applicable to our
data compared to top-down models which thus far have been
specific each to a particular task. Our models scored the best
results compared with all bottom-up models. These results
highlight the poor prediction power of bottom-up saliency
models when humans are actively engaged in a task (notice
the big difference between bottom-up, MEP, Gaussian, and
our models). Fig. 7 shows the prediction accuracy of Itti’s
bottom-up model [20] and a central Gaussian blob over all
of our video games. As it shows a simple central Gaussian
blob outperforms this model over all games using AUC score.
Please note that these models do not use the motion channel
which explains why some of them perform lower than chance.
In [69], authors provide a comparative study of the state of
the art bottom-up saliency models.

0.5
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0.7

0.8

0.9

1

3D DT 18 TD NW NU MK WR BS HD MA PW MS HU JB TG
0.5

0.6

0.7

0.8

0.9

1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Bottom-up (AUC)

Gaussian (AUC)

Bottom-up (NSS)

Fig. 7. Prediction accuracy (NSS and AUC scores) of bottom-up saliency
model [20] and a central Gaussian blob for fixation prediction over over 16
video games.

5Compared bottom-up saliency models over our data include: iNVT [20],
AIM [43], Hou et al. [55], Local and Global Rarity [53], PQFT [51],
AWS [49], GBVS [58], Bian et al. [50], SDDR [48], Judd et al. [12], Torralba
et al. [82], Walther et al. [59], and SUN [56].

Uncertainty Analysis. To analyze the degree to which our
model is dependent on the uncertainty of the variables, we
trained two object detection models: 1) Boosting model6 and
2) the deformable part model (DPM)7 [60] to automatically
fill the variables instead of annotated data. These models were
trained over a small set of cross validation data different from
test frames. Fig. 8 shows a sample frame from the HDB game
along with hotdog pool object template using DPM. Precision-
recall curves of each of the 15 objects for both models are
shown in Fig. 9. As opposed to Boosting model, DPM was
very successful for detecting objects. Detection performance
was very high for each object due to limited variation in object
appearance. Therefore we used DPM for subsequent analysis.

We tested models again with variables filled with these
data (instead of annotations). Accuracy of attended object
prediction are shown in Fig. 10. As we expected, there is a
graceful degradation in prediction of the attended object (in
comparison with Fig. 5) but still performance of our DBN was
higher than other models indicating partial robustness of our
model (similar trend with MNSS score).

a) b)

Sample frame root �lter parts costs

Fig. 8. A sample frame from Hot Dog Bush game (a) along with root and
parts responses of the DPM model (b).

Analysis of Generalization Across Tasks. Here, we an-
alyze the capability of the space-based classifier models for
fixation prediction over other games. We trained a model
from data of one game/task and applied it to another task.
Fig. 11 shows the results. As is shows testing a model trained
from a game on a different game results in a prediction
accuracy still better than chance (AUC > 0.5) and (NSS >
0). This is partially because our models generate maps with
high activation at the center thus applying this map to a new
game has higher chance to predict fixations. Interestingly,
this analysis showed higher prediction accuracy for similar
games than dissimilar ones. For instance, training on one of
the driving games (3D, DT, 18Wos, TD, ...) has better test
accuracy over other driving games (See sub-clusters in Fig. 11,
MEP and kNN models).

Analysis of Number of Subjects in Learning. Here, we
investigate that how much adding new subjects can actually
help learning. We started training on n subjects and tested
over the remaining P −n subjects (P is the whole number of
subjects for a game). Fig. 12 shows the results for increasing
n. As number of subjects are increased, fixation prediction
accuracy also increases for our models over each of four
games. This indicates that having more data can lead to better

6http://people.csail.mit.edu/torralba/shortCourseRLOC/boosting/boosting
7http://www.cs.brown.edu/∼pff/latent/
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Fig. 9. Precision-recall curves of object detection using DPM [60] and boosting models (blue and red curves, respectively) for each object and frame of the
HDB game. While booting model fails to detect many objects, DPM model works very well over almost all objects of the HDB game. For results of fixation
and attended object prediction please refer to Fig. 10.

kNNREG MEP

Te
st

 o
n

N
S

S
A

U
C

REG

Train from

 

 

3D DT 18 TD NW NU MK WR BS HD MA PW MS HU JB TG

3D
DT
18
TD

NW
NU
MK
WR
BS
HD
MA
PW
MS
HU
JB
TG 0.6

0.65

0.7

0.75

0.8

0.85

0.9

Train from

 

 

3D DT 18 TD NW NU MK WR BS HD MA PW MS HU JB TG

3D
DT
18
TD

NW
NU
MK
WR
BS
HD
MA
PW
MS
HU
JB
TG 0.6

0.65

0.7

0.75

0.8

0.85

0.9

Train from

Te
st

 o
n

 

 

3D DT 18 TD NW NU MK WR BS HD MA PW MS HU JB TG

3D
DT
18
TD
NW
NU
MK
WR
BS
HD
MA
PW
MS
HU
JB
TG

3D
DT
18
TD
NW
NU
MK
WR
BS
HD
MA
PW
MS
HU
JB
TG

3D
DT
18
TD
NW
NU
MK
WR
BS
HD
MA
PW
MS
HU
JB
TG

3D
DT
18
TD
NW
NU
MK
WR
BS
HD
MA
PW
MS
HU
JB
TG

0.55

0.6

0.65

0.7

0.75

0.8

0.85

 

 

 

-1

-0.5

0

0.5

0.5

1

1

1.5

1.5

2

2

2.5

3

3.5

 

0.5

1

1.5

2

2.5

3

3.5

Fig. 11. Confusion matrices of applying a model trained over one game to other games. Three models were considered: Regression, kNN, and MEP. X-axis
shows the trained games and Y-axis shows the tested ones. Top-row is the normalized scanpath saliency (NSS) score and the bottom row shows Area Under
ROC Curve (AUC) score. Training over similar games leads to higher test performance.



IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS 14

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 

 

MEP
Rand
G
BU
Mouse
REG (Y−>X)
REG (O−>Y+X)
DB (Y−>X)
DB (O−>Y−>X)

0

1

2

3

3.5
NSS score

R
a

n
d

B
U G

R
E

G
(O

−
>

Y
−

>
X

)

M
E

P

M
o

u
s

e

R
E

G
(Y

−
>

X
)

D
B

(Y
−

>
X

)

D
B

(O
−

>
Y

−
>

X
)

2 4 6 8 10 12 14 

 

0

1

2

3

4

5

6

R
a

n
d

B
U G

M
o

u
s

e

M
E

P

R
E

G
(O

−
>

Y
−

>
X

)

R
E

G
(Y

−
>

X
)

D
B

(Y
−

>
X

)

D
B

(O
−

>
Y

−
>

X
)

Scene objects

Scene objects

Attneded object predcition accuracy
pr

ob
ab

ilit
y 

of
 a

tte
nd

in
g 

to
 th

e 
rig

ht
 o

bj
ec

t

Fig. 10. Prediction of our Bayesian model in presence of noise (i.e., object
detection results in left column and saccade prediction at right) over the HDB
game. Top) for the memory-dependent saccade prediction, Bottom) for the
memory-dependent fixation prediction cases.

results since subjects have different adventures in games and
more data can capture the task demands better.

Fig. 13 shows sample predicted maps by our models for
three games.

V. DISCUSSIONS AND CONCLUSIONS

Results show the superiority of the generative Bayesian
object-based approach to predict the next attended object/gaze
position over 3 different complex tasks and large amount of
data. This approach is applicable to many tasks where objects
are processed sequentially in a spatio-temporal manner.

Using DPM model [60], we were able to automatically
detect objects in HDB game with high detection accuracy,
yet there are still uncertainties in object variables. Having a
causality structure over object variables could eventually give
more evidence regarding the attended object (i.e., relaxing
conditional independence assumptions). One problem we ex-
perienced was learning the structure of DBN since to date,
structure learning algorithms are limited to certain network
structures and variable types.

Despite promising results, there are some open questions for
future research. Current analysis focuses on overt attention,
however some parts of the scene are processed by subjects
without direct gaze, e.g., by covert attention, which cannot be
measured with an eye-tracker. Measuring and modeling covert
attention in the context of top-down attention is a challenging
topic for future research.

A more biologically plausible future extension would be
using foveated representation of the scene similar to [74]
where object features in the periphery are accessible with
less confidence. Also, analysis of knowledge transfer would
be a rewarding work. For instance, by training classifier-based
models over a game and applying them over similar games,

G BUMEP

REG (1) REG (2) SVM (1)

SVM (2) DB (5) DB (3)

Mean BU

MEP BU REG

REG (Gist) SVMkNN

HDB # 2838

TG # 1581

3DDS # 4211

Mean BU

MEP BU REG

REG (Gist) SVMkNN

Mean BU

Rand

Fig. 13. Sample frames of video games and corresponding predicted maps
of models. Red circle indicates the human fixation and blue square is the
maximum point of each map. Smaller distance hence means better prediction.
Currently we don’t have action data for TG game.

we found that they scored better than chance implying that
gist and action features to some extent capture the semantics
directing gaze.

Here we compared several algorithms for modeling top-
down attention over different tasks on very different stimuli.
It would be also interesting to compare algorithms performing
different tasks on the same visual stimulus close to the often-
cited Yarbus experiment (similar to [90]).

We aim to build a top-down evaluation open challenge by
sharing our datasets (some used here) and evaluation programs
to make a fair comparison of models and raising interest in this
field similar to PASCAL VOC challenge in object recognition
literature.

Finally, current work shows a promising direction to tackle
this very complex problem, and helps designing experiments
that can further shed light on mechanisms of top-down atten-
tion.
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