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Eye tracking has become the de facto standard measure of visual attention in tasks that range from free
viewing to complex daily activities. In particular, saliency models are often evaluated by their ability to
predict human gaze patterns. However, fixations are not only influenced by bottom-up saliency (com-
puted by the models), but also by many top-down factors. Thus, comparing bottom-up saliency maps
to eye fixations is challenging and has required that one tries to minimize top-down influences, for exam-
ple by focusing on early fixations on a stimulus. Here we propose two complementary procedures to eval-
uate visual saliency. We seek whether humans have explicit and conscious access to the saliency
computations believed to contribute to guiding attention and eye movements. In the first experiment,
70 observers were asked to choose which object stands out the most based on its low-level features in
100 images each containing only two objects. Using several state-of-the-art bottom-up visual saliency
models that measure local and global spatial image outliers, we show that maximum saliency inside
the selected object is significantly higher than inside the non-selected object and the background. Thus
spatial outliers are a predictor of human judgments. Performance of this predictor is boosted by including
object size as an additional feature. In the second experiment, observers were asked to draw a polygon
circumscribing the most salient object in cluttered scenes. For each of 120 images, we show that a
map built from annotations of 70 observers explains eye fixations of another 20 observers freely viewing
the images, significantly above chance (dataset by Bruce and Tsotsos (2009); shuffled AUC score
0.62 ± 0.07, chance 0.50, t-test p < 0.05). We conclude that fixations agree with saliency judgments,
and classic bottom-up saliency models explain both. We further find that computational models specif-
ically designed for fixation prediction slightly outperform models designed for salient object detection
over both types of data (i.e., fixations and objects).

Published by Elsevier Ltd.
1. Introduction

Visual attention is a remarkable perceptual and cognitive capa-
bility of human visual system that selects and gates important
information to higher-level cortical areas for further processing
(see Baluch & Itti, 2011; Borji & Itti, 2013; Carrasco, 2011; Desi-
mone & Duncan, 1995; Itti & Koch, 2001; Tatler et al., 2011, for re-
views). Eye movements as proxies of visual attention have gained
widespread use. They convey a lot of information about the pro-
cessed scene regions when humans are engaged in free viewing
tasks or performing daily activities such as sandwich making (Hay-
hoe, 2000). Previous research has shown two broad categories of
visual attention mechanisms: exogenous bottom-up cues mainly
based on characteristics of a visual stimulus (Nothdurft, 2005; Tre-
isman & Gelade, 1980), and endogenous top-down cues deter-
mined by cognitive phenomena such as knowledge, expectations,
reward, memory, goals, and task demands (Ballard, Hayhoe, & Pelz,
1995; Duncan, 1984; Land & Hayhoe, 2001; Navalpakkam & Itti,
2005; Navalpakkam et al., 2010; Posner, 1980; Yarbus, 1967).
The relative influence of these two components varies across
everyday behaviors. While for some behaviors attention is highly
driven by task demands (Ballard, Hayhoe, & Pelz, 1995; Land &
Hayhoe, 2001), for some others attention is believed to be influ-
enced by bottom-up saliency (Itti, 2005; Itti & Koch, 2001; Park-
hurst, Law, & Niebur, 2002; Peters et al., 2005; Tatler, Baddeley,
& Gilchrist, 2005).

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.visres.2013.07.016&domain=pdf
http://dx.doi.org/10.1016/j.visres.2013.07.016
mailto:borji@usc.edu
mailto:sihite@usc.edu
mailto:itti@pollux.usc.edu
mailto:itti@pollux.usc.edu
http://dx.doi.org/10.1016/j.visres.2013.07.016
http://www.sciencedirect.com/science/journal/00426989
http://www.elsevier.com/locate/visres


A. Borji et al. / Vision Research 91 (2013) 62–77 63
Eye movements, as one of the main ways to tap into visual
attention, certainly convey a lot of information, but do not tell
the whole story as attention is not necessarily always directed to
the gaze location (i.e., covert attention, Posner, 1980; Wright &
Ward, 2008). Yet, in using eye movements as a proxy for attention,
it is often assumed that attention is primarily directed toward the
location of gaze. For example, correlations between eye fixations
during free viewing and saliency models have been the main crite-
rion for judging how predictive models are (Foulsham & Under-
wood, 2008; Itti, 2005; Parkhurst, Law, & Niebur, 2002; Peters
et al., 2005; Reinagel & Zador, 1999; Tatler, Baddeley, & Gilchrist,
2005; Zetzsche, 2005). Most models address the computation of
salience and the guidance of covert attention without any consid-
eration of gaze control mechanics. In addition, even in free viewing,
one cannot rule out the existence of top-down factors. Thus, to jus-
tify using eye movements for evaluating saliency models, research-
ers have had to employ a variety of techniques. For example, rapid
stimulus presentation times less than 5 s, focusing the analysis on
the first few saccades that presumably are more bottom-up, and
discounting center bias (Foulsham & Underwood, 2008; Parkhurst,
Law, & Niebur, 2002; Tatler et al., 2011; Tseng et al., 2009) have
been used to minimize the impact of top-down attentional compo-
nents. While these techniques may help to some extent, they can-
not completely eliminate conceptual top-down factors such as
global scene context (Torralba et al., 2006) and semantic object
dependencies (Hwang, Wang, & Pomplun, 2011) that influence
the way people look at scenes. Top-down factors are even more
abundant in free viewing of videos (Itti, 2005) where concepts such
as actors, actions, predictions, social cues, gaze and pointing direc-
tions, and movement trajectories affect eye movements. Finally,
free viewing fixations also confound slow and fast processing as
they indiscriminately measure both truly saliency-driven saccades
(presumably very rapid) and also slower memory/cognition-driven
saccades (Powers, 2013).

From a physiological point of view, bottom-up and top-down
attention have tight interplays. Fig. 1 illustrates the brain circuitry
driving eye movements and shows that the superior colliculus, the
last brain nucleus before the brainstem driving eye movements,
receives inputs from a complex network, involving early and
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Fig. 1. (A) A simplified system overview of gaze control. Solid black arrows indicate the
bottom-up (BU) attention component. In daily life, top-down (TD) component of attention
and suggest that, together with free-viewing, explicit saliency judgment can be used to st
with permission from White and Munoz (2011)). Shading from light to dark represen
superficial layers, SCi: SC intermediate layers. SC is influenced by both BU and TD comp
high-level cortical regions. This figure clearly shows that eye
movements are driven by the joint of bottom-up and top-down
attention. Experimental findings by Mannan, Kennard, and Husain
(2009, ’s) witness the presence of top-down influences in free-
viewing. They studied the relative contribution of bottom-up and
top-down influences and showed that fixations of normal observ-
ers conform less with predictions of the saliency map model (by
Itti, Koch, & Niebur (1998)) compared with fixations of agnosia pa-
tients in free-viewing of natural scenes. These patients have severe
problems recognizing objects and understanding global scene
properties, thus having impaired ability in applying top-down
guidance. Henderson and Hollingworth (1999) also argue that fix-
ations during scene viewing tend to be idiosyncratic and influ-
enced by both bottom-up and top-down factors. These and some
other findings have triggered development of integrated attention
models to better account for fixations. For instance target features
have been used to bias attention during naturalistic search tasks
(Ehinger et al., 2009; Navalpakkam & Itti, 2005; Zelinsky, 2008)
or scene gist has been used to shrink the search space (Torralba
et al., 2006). Ultimately when dealing with a black-box system like
brain, where we do not have direct access to its entire neural
mechanisms, a reasonable strategy is collecting more experimental
(behavioral/neurophysiological) data. In the context of attention,
we can study its bottom-up mechanisms by correlating all col-
lected data with (imperfect) saliency measures that are known to
be bottom-up by construction.

Above statements and findings hence imply that eye movements
are contaminated by both top-down and bottom-up factors. This
motivates us to consider other (complementary) possibilities of
measuring saliency on complex natural scenes. We conduct an ex-
plicit saliency judgment task to explore whether human observers
could access and report their internal sense of saliency directly, thus
possibly discounting top-down factors through conscious intro-
spection and decision. Note that we do not expect explicit saliency
(or any single behavioral measure) to entirely replace other atten-
tional proxies or eliminate all issues with testing attention, but we
believe it can provide additional non-redundant information. We
examine the validity of the hypothesis that humans are able to make
saliency judgments (by checking observers’ agreement) and
common assumption in free-viewing that eye movements are mainly driven by the
is always present. We ask whether observers can intentionally eliminate TD effects

udy bottom-up attention. (B) Circuitry of the primate superior colliculus SC (adapted
ts the gradual shift from bottom-up to top-down processes respectively. SCs: SC
onents.



1 This dataset is freely available online at: http://www.wisdom.weizmann.ac.il/
vision/Seg_Evaluation_DB.
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whether saliency models can explain such judgments (similar to
free-viewing studies). While some behavioral results such as search
accuracy or reaction time exist in pop-out visual search arrays, no
study has thus far asked human observers for explicit judgment of
conspicuous regions in natural scenes. Even those researchers
addressing related concepts to saliency such as interest (Elazary &
Itti, 2008; Masciocchi et al., 2009) mention that their task simulta-
neously reveals bottom-up and top-down influences on attention
and they had no control over their relative contributions. In fact,
Masciocchi et al. (2009) consider the presence of bottom-up and
top-down factors in interest judgment as one reason why interest
is a robust predictor of fixations in free-viewing (see additional de-
tails in Section 5).

In summary, we attempt to answer the following questions:

1. Are humans able to report saliency with little disturbance from
top-down factors? Do they agree in their judgments? Do they
have conscious access to lower-level fast saliency
computations?

2. How can explicit judgments complement previous measures of
visual attention? So far, saliency has been mainly measured
through fixations, often with a free viewing task to minimize
top-down influences, yet a major concern with this task is that
there is no explicitly-asked and well-defined question for the
observer (Henderson, 2003; Tatler et al., 2011). This could cause
subjectivity (e.g., due to observer’s mood, culture, interest, gen-
der) and emanation of different top-down factors into eye
movements. Our task has the advantage of being easy to con-
duct (no need for eye tracking, calibration, etc.).

3. Do saliency judgments correlate with fixations? If humans
agree on their responses (hinting toward the objectivity of this
task), one might expect explicit judgments and fixations, two
indicators of attention, to be associated. Here we examine this
expectation and analyze the degree to which explicit saliency
correlates with fixations, by first employing all fixations and
then each fixation separately (i.e., 1st fixations, 2nd fixations,
etc.). While we do not expect a perfect correlation (due to dif-
ferences in task, top-down set, etc.), some partial correlation
would reinforce the idea that our explicit saliency measure
can complement eye movement measures.

4. Can models of bottom-up attention explain saliency judg-
ments? If so, which models correlate with saliency judgments
better? Our experiments explore the generality of classic bot-
tom-up saliency models in explaining other facets of attention
in addition to free-viewing. Collecting new types of data also
helps draw distinctions among existing models and investigate
their biological plausibility.

5. Do explicit saliency judgments correlate more or less with
object-based saliency models? Our tasks here probe the human
saliency judgment at the object-level and not spatial locations.
Using our data, we can compare models that detect and seg-
ment the most salient object in a scene versus traditional sal-
iency models that predict fixation locations.

6. To what degree does object size correlate with saliency judg-
ments? As a feature, size has been suggested to guide visual
attention (e.g., Treisman & Gelade, 1980; Wolfe & Horowitz,
2004). How well can size alone predict which object might be
selected as the most salient one, and how are predictions of sal-
iency and size related?

As further detailed in Section 5, some studies have addressed
related concepts that resemble our question at a first glance. There
are, however, important differences: First and foremost, we explic-
itly address saliency judgment, not interest (Elazary & Itti, 2008;
Masciocchi et al., 2009), object importance (Spain & Perona,
2010), nor memory recall (Einhäuser, Spain, & Perona, 2008; Isola
et al., 2011). Please note that interest does not necessarily corre-
spond to saliency as interest is a subjective concept while saliency
is more objective which depends on low-level image features.
Also, a salient object might not be interesting or important (and
vice versa). Second, we address explicit saliency judgment at the
object level (as opposed to Masciocchi et al. (2009)) as it is more
likely that humans represent and understand a scene in terms of
objects (Einhäuser, Spain, & Perona, 2009; Nuthman & Henderson,
2010). Therefore for explicit saliency judgment, it might be more
natural for humans to choose objects (as opposed to clicking on
salient points which needs some knowledge about center-sur-
round dissimilarity). Note that interestingness has a large portion
of top-down influences, while here we try to minimize them.
Third, we carefully control the data gathering process and also
use fixations (as opposed to Elazary & Itti (2008) who studied
interest judgment using pre-collected data from the LabelMe data-
set (Russell et al., 2008)). Above studies have used web-based
tools to collect data where viewing distance, observer’s engage-
ment in the task, subject’s posture or mood, and other factors
are often hard to control.

From a computational perspective, our work reconciles salient
object detection models with cognitive mechanisms of explicit sal-
iency judgment in humans. We also conduct a model-based analy-
sis by comparing both types of existing models (fixation prediction
models such as Itti, Koch, and Niebur (1998) versus salient object
detection models such as Goferman, Zelnik-Manor, & Tal (2010))
across two types of data. From an application perspective, in sev-
eral occasions (e.g., image re-targeting or advertisement) it is more
useful to know which objects explicitly stand out in a scene as op-
posed to predicting where people look.
2. Study of human explicit saliency judgment

We conducted two experiments in which observers were asked
to ‘‘Select the object that stands out the most in the scene’’. We fur-
ther explained to observers that they should select the object that
maximally differs from the rest of the scene based only on its low-
level features and visual appearance (and not conceptual top-down
factors or preferences). The goal in the first experiment was to study
the explicit saliency judgment of humans on simple stimuli which
were images with only two objects. Observers had to click inside
one of the two objects that they consider stands out the most.

In the second experiment, observers were supposed to draw a
polygon around the object that stands out the most. We were con-
cerned with the case of selection of a single salient object in an im-
age. Observers’ annotations were supposed not to be too loose
(general) or too tight (specific) around the object. Observers were
shown an illustrative example for this purpose.

2.1. Method

2.1.1. Participants
A total of 70 students (13 male, 57 female) from the University

of Southern California (USC) participated in both experiments. The
experimental methods were approved by the USC’s Institutional
Review Board (IRB). Observers had normal or corrected-to-normal
vision and were compensated by course credits. Observers were in
the age range between 18 and 23 (mean = 19.7, std = 1.4).

2.1.2. Stimuli and apparatus
For the first experiment, we chose 100 images of the SED

dataset1 by Alpert et al. (2007). Each image of this dataset contains
�
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Fig. 2. (A) Histogram of saliency judgment agreement (max votes over total votes for each image; r values) according to Eq. (1). (B) Sample images with low, average, and high
observer agreement along with their corresponding annotations.
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two objects in a natural background with low clutter (e.g., grass or
sky). Three human observers have already segmented object bound-
aries in these images. We then computed the union of these three
segmentations and binarized it after thresholding (i.e., each pixel
in the final map have been tagged by at least one of three observers).

For the second experiment, we chose the dataset by Bruce and
Tsotsos (2009) which contains eye movements over 120 color pho-
tographs of indoor and outdoor environments with the resolution
of 511 � 681 pixels. Images have been presented at random to
20 observers for 4 s with 2 s of delay (a gray mask) in between.2

Observers in Bruce and Tsotsos’s study viewed images freely.
Figs. 2 and 8 show sample images from the above-mentioned
2 This dataset is freely available online at: www-sop.inria.fr/members/Neil.Bruce.
datasets.
In our experiments, observers were seated at a viewing distance

of 130 cm from the screen (subtending a field of view of 43� � 25�).
Stimuli were presented on a 4200 computer monitor at a resolution
of 640 � 480 pixels and refresh rate of 60 Hz. These values were
chosen to mimic the observer’s distance of 0.75 m and screen size
of 2100 used in the Bruce and Tsotsos dataset. We also attempted to
match the color and luminance settings similar to Bruce and Tsot-
sos (2009).
2.1.3. Procedure
Both experiments were self-paced. In the first experiment, a trial

ended when observers clicked inside one of the two objects. In the
second experiment, observers successively clicked on the object
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boundary (to trace it) until they reached back to their starting
point where a small circle hinted closure. They would then need
to click inside the annotated object to move to the next screen.
After the annotation, observers could get back to any point to fur-
ther adjust their annotation (polygon). Observers had the opportu-
nity to relocate their drawn polygon from one object to another. On
average, each trial in the second experiment took 17.02 s
(std = 3.66) over all images and observers.

Experiments were run back to back with no rest in between. Or-
der of experiments were balanced across observers. The first
experiment usually took about 10 min while the second one lasted
about 35 min.
3. Results of Experiment 1

3.1. Quantifying observer agreement

To assess consistency in explicit saliency judgment, we define
an agreement measure for observers’ selection of the object that
stands out the most. Let xi and yi be the number of votes (i.e., judg-
ments) for two objects over all observers for the ith image. Then
the agreement ri is defined as max(xi,yi)/(xi + yi) with xi + yi = 70
being the number of all observers. Fig. 2A shows the histogram
of r values and Fig. 2B shows images with low, medium, and high
saliency judgment agreement. Observer agreement is above chance
level (0.5) over all images. Object size is an important feature in
judgments but subjects do not always base their decisions on this
feature. In Fig. 2B, low agreement images often have two instances
of essentially the same object (e.g., 2 birds, or 2 horses); if people
had used an alternative strategy than saliency (e.g., prefer the lar-
ger object), then agreement should be high (e.g., see the large dog
and small bunny image in the 5 images with lowest agreement).
So, the low agreement in these images suggests that the two ob-
jects were closely tied in terms of their explicit saliency, and peo-
ple were split close to 50/50 in picking one object or the other. For
some images (Fig. 2B; right column), subjects tended to choose the
larger object. We will analyze the role of object size in detail in Sec-
tions 3.4 and 3.6.

Fig. 3 shows the histogram of normalized object sizes (object
size/image size) for selected, it non-selected, and it all objects. It
shows a rightward shift for selected objects indicating that observ-
ers tended to choose larger objects. Fig. 3 also shows it Mean Anno-
tation Position (MAP) defined as:

MAP ¼ 1
UV

XU¼100

u¼1

XV¼70

v¼1

suv ð1Þ

averaged over U images and V observers where suv is the annotation
(i.e., vote) over the uth image by the vth observer. There are two
peaks in the MAP map of images (at the left and right corresponding
to two object positions; Fig. 3).

3.2. Quantifying visual saliency and employed saliency models

To quantify saliency, we exploit 10 state-of-the-art bottom-up
saliency models that only use low-level image features (and not
object detectors such as faces). The intuition behind using more
than one model is to make sure that our results and conclusions
are independent of the model type. Selected models include: AIM
(Bruce & Tsotsos, 2009), AWS (Garcia-Diaz et al., 2012), GBVS
(Harel, Koch, & Perona, 2006), HouCVPR (Hou & Zhang, 2007),
HouNIPS (Hou & Zhang, 2008), ITTI (Itti & Koch, 2000), ITTI98 (Itti,
Koch, & Niebur, 1998), PQFT (Guo & Zhang, 2010), SEO (Seo & Mil-
anfar, 2009), and SUN (Zhang et al., 2008). ITTI model is similar to
the ITTI98 model but uses an iterative half-rectifying normaliza-
tion operator which yields very sparse saliency maps. This variant
of Itti et al.’s model is more desirable for machine vision applica-
tions as it clearly selects only a few salient regions in a scene. For
more details on these models, the interested reader can refer to
(Borji & Itti, 2013; Borji, Sihite, & Itti, 2013a). Note that saliency
is not a unique measurement and may change from one model
to another. That is why here we employ several models instead
of one.

3.3. Comparing saliency of selected and non-selected objects, and the
background

We hypothesize that bottom-up saliency inside the selected ob-
ject is higher than the non-selected object. We evaluate the effect
of maximum saliency inside the selected object on observers’ deci-
sions. Fig. 4A shows the hit percentage (using all models) for se-
lected objects, non-selected objects, and image background for all
observers and images. A hit happens when the maximum salient
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location happens inside an area. In some cases, upsampling the sal-
iency map to the original image size, smoothness of the saliency
map, or several equal maxima in the saliency map cause challenges
for calculating a hit. To tackle this, we first find the maximum re-
gion. If the maximum region overlaps with the selected object, we
consider it as a hit for the selected object, (elseif) if it overlaps with
the non-selected object we consider it as a hit for non-selected ob-
ject, (else) otherwise we count a hit for the background.

We check whether maximum saliency could be a predictor of
human judgments. Let random variables X and Y represent events
that a random point uniformly thrown in the image fall inside se-
lected or non-selected objects, respectively. Each value is calcu-
lated for each image and each observer, separately. Each of these
two variables has a binomial distribution which with many trials
can be approximated by a normal distribution. We simulate a ran-
dom process to measure mean and standard deviation of X and Y.
We then define the random variable Z = X � Y with
E(Z) = E(X) � E(Y) and r2(Z) = r2(X) + r2(Y). Theoretically, means
of the resultant normal distributions will be equal to the normal-
ized object sizes.3

First, we test the hypothesis that maximum saliency is a predic-
3 Variable Z has also a normal distribution since the difference of two independen
(or correlated) normally distributed random variables has a normal distribution. We
empirically and theoretically calculate parameters of the random variables. Over al
images and observers, X has the mean of 0.1227 and standard deviation of 0.3281
Similarly, the mean and standard deviation for Y (i.e., non-selected objects) are
0.0721 ± 0.2586. These values for background regions are 0.8052 ± 0.4210. We also
empirically calculate the E(Z) by subtracting the vector Y from X, which is equal to
0.0506, identical to the theoretical mean (i.e., 0.1227 � 0.0721). For variance
empirical variance (0.38352 = 0.1471) is smaller than the summation of variances
(i.e., 0.1745). This means that the assumption that X and Y are independent is not true
However, we already know that sum of two normally correlated distributions is stil
normally distributed but the variance is no longer the simple addition of variances
but is as follows: r2(Z) = r2(X) + r2(Y) � 2qr(X)r(Y). Looking at the data, we
empirically calculate the correlation coefficient q between X and Y which was
0.1617. Inserting this value in above equation, now both theoretical and empirica
variances are exactly the same. There is a small correlation between sizes of the
selected and non-selected objects (indeed in some images, both objects are two
instances of a same kind, shown side by side; see for example horses and birds in
Fig. 2).
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tor of human judgments and performs significantly higher than
chance (i.e., E(X)). We calculate distributions of random variables
by simulating a binomial process (i.e., by throwing a point uni-
formly random on the image and check whether it happens inside
the selected object) 100 times for each image and observer pair,
and calculating the mean and variance of the normal distributions
(mentioned above). We repeat the same process for non-selected
objects and for the background regions. For each model, by looping
over images and observers, we calculate a 1 � 7000 vector (70
observers over 100 images; linearized) where each value indicates
whether maximum saliency happens inside the selected object by
that observer on that image, or not (similarly for non-selected ob-
jects and background). We then use the z-test to check whether
our data samples (vectors) come from the same normal distribu-
tion represented by the random processes (a = 0.05). Results are
shown in Fig. 4A. We conclude that for all models, hit results (max-
imum saliency falling inside the selected object) are significantly
higher the uniform random chance (same is true for non-selected
objects). Maximum saliency does not fall on the background signif-
icantly higher than its corresponding chance level. This is in align-
ment with our expectation that salient regions happen on the
objects rather than image background (Elazary & Itti, 2008).

Next, we investigate whether maximum saliency happens more
often inside the selected object than the non-selected object. For
the statistical test, we investigate whether the difference between
hits on the selected and non-selected objects (looping over all
images and observers) follows the distribution of variable Z or
not (i.e., comparing with the difference in chance levels). We have
a vector of size 7000 (selected - nonselected) with each element
being either 1, 0, or �1 depending on whether the maximum sali-
ent point happens inside the selected object, background (none of
the objects), or the non-selected object, respectively. Since variable
Z has a normal distribution, we then test whether the above differ-
ence vector (for model hits) follows the distribution of Z or not
using z-test. Shown in Fig. 4A, the difference is significant for all
models (a = 0.05). Thus, the hit percentage (averaged over observ-
ers and then images) of maximum saliency being inside the se-
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lected object is higher than the hit rate over non-selected objects
(and also background) using all models.

To check observer variability, we perform a balanced one-way
ANOVA (MATLAB) analysis. We calculate the accuracy of each ob-
server (over all images, i.e., similar to Fig. 4 but for each observer
separately). The result is a 70 � 3 matrix (denoted as A) where col-
umns in order are accuracies for selected object, non-selected ob-
ject, and background. Mean accuracies (across observers, each
column) are significantly different (df = 2, p < 5.76e�85 for all
models) which indicates that observers are consistent with each
other (in accordance to Figs. 2A and 4A). To further investigate ob-
server variability over selected versus non-selected objects (i.e.,
accuracy of saliency in predicting selections), we conduct a t-test
(a < 0.05) between the first two columns of matrix A (one matrix
for each model). We observe a significant difference among se-
lected versus non-selected objects across all observers
(p < 7.5e�14 for all models).

3.4. Addressing object size

While the above analysis has already accounted for the con-
founding factor of object size, here, in a rudimentary analysis, we
approach the problem from a different angle. From Fig. 3, we know
that observers tend to select larger objects: the probability that the
larger object in a scene to be selected is 0.1504 ± 0.1149, compared
to 0.0851 ± 0.1149 for the smaller object being selected. The
chance level that a random point falls inside the selected object
(0.1286) is between these two values. To handle the possible con-
founding factor of object size, we devise a new decision criterion: a
hit happens when the selected object is the larger one or the max-
imum saliency inside the selected object is higher than the non-se-
lected one (i.e., contribution of both size and saliency together).
With this new criterion (selecting one of the two objects), chance
level4 is now at 0.5. As Fig. 4B shows, hit percentages increase (com-
pared with Fig. 3) meaning that both saliency and object size convey
information regarding the selected object (again using z-test by com-
paring the difference between the new criterion and max saliency
versus the difference of two chance levels which are normal distribu-
tions with mean 0.5 and standard deviation of 0.5). This is equivalent
4 Please note that this is the accuracy of a completely random process that has no
information about the object. Do not confuse this with the accuracy of the size model
which we are considering as a baseline model.
to focusing our analysis to cases where the selected object is not the
larger one. Then maximum saliency can predict the selected object
with the accuracy above chance (0.5).

Analysis of observer consistency for the combined rule of size
and saliency (binary decision) shows a significant difference be-
tween saliency-only and combined rule predictions across observ-
ers (using first two columns of above-mentioned matrix A; t-test;
p < 8.4e�35 for all models; corresponding to Fig. 4B).
3.5. Analysis of images with high observer agreement

In previous analyses, we used all images and observers but we
did not differentiate between images with different levels of agree-
ment (e.g., a 69 versus 1 vote against 36 versus 34). We considered
a observer as an independent decision maker and tested a model’s
prediction against his decision. Here, we repeat the above analysis
(i.e., Section 3.3) on images with high observer agreement (thres-
holding over the agreement r at 0.75 leads to 59 images; see
Fig. 2). Now we have only one ground-truth answer for each image
which is the selected object by the majority of observers (thus,
there is no longer a loop through observers). A hit happens when
the maximum value of a saliency map happens inside the selected
object. We calculate parameters for random distributions and sta-
tistically test model hits (vectors of size 59) against them. Results
are shown in Fig. 5A. Again, hit percentages by the maximum sal-
iency are significantly higher than chance levels (probabilities are:
selected = 0.1302 ± 0.03365; non-selected = 0.0698 ± 0.2549; back-
ground = 0.8000 ± 0.4000). Similar to above results, there is a sig-
nificant higher chance for maximum saliency to happen inside
the selected object than the non-selected object. The combined
rule of maximum saliency and the larger object size outperforms
both criteria significantly (Fig. 5B). Hit percentages are higher here
compared with Fig. 4, indicating that when observers agree much,
models also perform very well.
3.6. An integrated model of saliency and object size

So far we have shown that saliency and object size are impor-
tant factors in observer’s explicit judgment of the most salient ob-
ject. How are these factors integrated by humans? Here, we
suggest a model by linearly combining these two sources of infor-
mation. We build a saliency map S which is equal to aSobjSize +
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(1 � a)Smodel where SobjSize is the map with 1s at the location of the
larger object in the image (annotation map), while Smodel is the sal-
iency map of a model. In practice, SobjSize can be the output of a seg-
mentation algorithm only for the largest segmented region.
Parameter a determines the relative influence of two factors. We
then vary a and calculate the hit percentage (i.e., fraction of the
times that maximum of the combined map happens inside the se-
lected object; by looping over images and observers). Results are
shown in Fig. 6A for a ranging from 0 to 1 in steps of 0.02. In align-
ment with Fig. 4, results show that a linear combination of object
size and saliency can explain the explicit saliency judgment of hu-
man observers. Fig. 4B shows accuracy of the combined model over
all observers using three saliency models. Contribution of object
size on observers’ decisions varies across observers. Overall sal-
iency influences judgments of majority of observers since there is
at least one point where accuracy goes above the accuracy of the
objSize model. Fig. 4C summarizes Fig. 4B by plotting the histogram
of points where accuracy is maximum (i.e., a⁄). While histograms
differ across models, they show that saliency has been important
in observers’ decisions. Observers agree in the level of the contri-
bution of size feature (in the combined model) for some saliency
models (i.e., SUN or PQFT models show a large peak).

A sample image from the SED dataset, saliency judgments, and
maps of 10 models are shown in Fig. 7.

4. Results of Experiment 2

Our purpose in the second experiment is to study human’s ex-
plicit judgment of visual saliency over cluttered scenes containing
multiple objects with different sizes. See Section 2 for experimen-
tal details. Fig. 8 shows sample images (smallest and largest) from
the employed dataset (Bruce & Tsotsos, 2009) along with their
annotations, histogram of normalized object sizes, as well as anno-
tation agreement. Mean annotation map (over all images and
observers) shows a center-bias indicating that in majority of
images objects happen at the image center. The closest fitted
bounding box to each annotated object has the average width
(W) and height (H) of 95.78 and 100.74 pixels, respectively result-
ing in aspect ratio of 0.95 (W/H). This figure also indicates that
there are few objects with large sizes in this dataset. Object sizes
usually range from small to medium and occupy about 30% of
the whole image.

4.1. Quantifying observer agreement

We define the following index to measure annotation agree-
ment (or consistency in selecting object regions) among observers
over the kth image:

rk ¼
2

nðn� 1Þ
Xn�1

i¼1

Xn¼70

j¼iþ1

jsik \ sjkj
jsik [ sjkj

ð2Þ

where sik and sjk are annotations of ith and jth observers, respec-
tively (out of n observers) over the kth image. Above index has
the well-defined lower-bound of 0 when there is no overlap in seg-
mentations of users and the upper-bound of 1 when they have per-
fect overlap. Fig. 8 shows histogram of r values. According to this
figure, observers have low or medium agreement. Inspection of
images with lowest agreement shows that these scenes have sev-
eral salient objects while images with highest annotation agree-
ment have often one unique salient object.

4.2. Correlation between explicit saliency and fixations

To test whether explicit saliency judgments (i.e., annotations)
and fixations agree with each other, we treat each annotation
map as a saliency map and use it to predict fixations. We use the
Area Under the ROC Curve (AUC) (Green & Swets, 1966; Tatler,
Baddeley, & Gilchrist, 2005) for evaluation of the fixation predic-
tion power of an annotation map. For AUC calculation, first, the
prediction map is resized to the image size where fixations have
been recorded. Then, human fixations are considered as the posi-
tive set and some points from the image are sampled uniformly
random as the negative set. The saliency map is then treated as a
binary classifier to separate positive samples from negative sam-
ples. By thresholding over the saliency map, true positive rate is
the proportion of fixations above a threshold while it false positive
rate is the proportion of random points above that same threshold.

Fig. 9A shows the accuracy of the annotation map for fixation
prediction. Annotation map scores AUC of 0.71 (std = 0.09) which
is significantly above chance using t-test, p < 0.05. Chance level is
the accuracy of a random map with value of each pixel drawn uni-
formly random between 0 and 1. We also report the accuracy of the
Inter-observer (IO) model, a map build from fixations of other
observers over the same image which is convolved with a small
Gaussian kernel (see Fig. 11 for the size of the Gaussian).
4.3. Addressing the confounding factor of center-bias

One confounding factor when measuring the accuracy of a mod-
el against fixations is the center-bias. Center-bias is the tendency
of human observers to preferentially look at the center of image
(Parkhurst, Law, & Niebur, 2002; Tatler, 2007; Tseng et al., 2009).
Due to center-bias in data, a simple Gaussian blob at the center
of the image explains fixations better than almost all saliency mod-
els (Borji, Sihite, & Itti, 2013a). To tackle the center-bias issue, we
use the shuffled AUC score (Tatler, 2007; Zhang et al., 2008) which
is similar to the AUC score, but with the difference that negative
points are randomly selected from fixations of other observers
(plus the same observer viewing other images than the one under
test) for each image (instead of being selected uniformly random
over the entire image). Using the shuffled AUC, annotation map
scores 0.62 (std = 0.07) which is again significantly above the shuf-
fled AUC for the random map (t-test p < 0.05). Uniform random
map scores 0.5 (std = 0.03) using both types of AUC scores. Overall,
taking the results over two scores together, we conclude that hu-
man’s explicit judgment of saliency and fixations agree with each
other. In other words, people look at and judge the same object
as the most salient object in a scene. Also, note that the prediction
accuracy of the annotation map is as good as the ITTI98 saliency
model.
4.4. Explicit saliency judgment and fixation order

We used all fixations in the previous analysis. Here, we attempt
to know which fixations (i.e., first, second, etc.) match better with
the annotation map. We repeat the same procedure as in Sec-
tion 4.3, but each time evaluate the annotation map against a par-
ticular set of fixations on the image. Results are shown in Fig. 10
using shuffled AUC score based on the fixation order. Prediction
accuracy is low at the first fixation, peaks at the 2nd one, and des-
cends for subsequent fixations. It does not peak at the 1st fixation
because majority of first fixations happen at the center of the screen
(due to viewing strategy). This can be verified from average fixation
maps shown in Fig. 10 (top of the figure). At the 2nd fixation (com-
pared with the first one), observers have time to detect and direct
gaze toward the most salient object. The accuracy of the IO model
for all fixations is well above other predictors and shows a slight
increasing trend. The AM map is as good as the AWS model and per-
forms significantly above the ITTI98 model.
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Fig. 6. (A) Hit percentages of our combined model of saliency (normalized to [01]) and object size for different levels of contributions of these two factors (a). For all models
there is at least one point when accuracy surpasses the accuracy of the object size (objSize) model (the prediction of the larger object denoted by the horizontal solid black
line). The maximum accuracy belongs to the AWS model at a = 0.24. SUN model also results in high accuracy. For a > 0.5, the object size model always wins the competition
with the maximum salient location (because the term 1 � a suppresses the saliency map) and thus performance flattens (converges) to the accuracy of the objSize model.
Accuracies at the left (a = 0) belong to the pure saliency (i.e., selection according to the maximum saliency criterion; see Fig. 4). Results are over all observers and images. A
sample image, its annotation, and combined maps (larger object + AWS map) from some a levels are also shown. (B) Hit percentage of the combined linear model for each
observer using AWS, SUN, and ITTI98 models. At one point in the x axis the accuracy of the combined model converges to the accuracy of the objSize model (i.e., selection of
the largest object). These plots show that contribution of object size is different over observers. (C) Histogram of a⁄ values where the combined model (saliency + objSize)
takes it maximum accuracy (over all 70 observers indicating a high observer agreement in employing object size).
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Fig. 7. A sample image, human consistency in saliency judgment, and prediction maps of employed saliency models.
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4.5. Fixation prediction models versus salient object detection models

We conduct a model-based analysis by comparing the state-of-
the-art models of salient object detection and fixation prediction
over our data. On one hand, fixation prediction models need to
accurately measure the conspicuity of local image regions in order
to correctly predict humans fixation. On the other hand, salient ob-
ject detection models try to generate homogeneous maps (similar
to segmentation approaches) in a way that regions with high acti-
vation on these maps match with human annotation maps. We
choose AIM, HouNIPS, AWS, GBVS, and ITTI98 models (used in Sec-
tion 3) which have been shown to perform very well for fixation
prediction in previous works (e.g., Borji, Sihite, & Itti, 2013a). For
salient object detection, we choose Goferman (Goferman, Zelnik-
Manor, & Tal, 2010), CBSal (Jiang et al., 2011), SVO (Chang et al.,
2011), and RC (Cheng et al., 2011) models which have been shown
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to perform very well (Borji, Sihite, & Itti, 2012). We apply both
types of models to both types of data (fixations and annotations).

We use the shuffled AUC score to compare both types of models.
To discount center-bias for salient object detection models, we
simulate fixations over images similar to human fixations. This al-
lows us to generate negative samples from the simulated fixations
of other observers (and the same observer over other images)
which is needed for calculation of the shuffled AUC score. For each
image, simulated fixations are randomly drawn with a probability
density equal to the annotation map (i.e., annotation map is con-
sidered as a probability distribution). This process is illustrated in
Fig. 11 for a sample image. An advantage of the simulated fixations
is that the same shuffled AUC algorithm used over human fixations
is applicable here (which we actually use).

Results for both types of models are shown in Fig. 12A. Models
originally built for fixation prediction (i.e., AIM, HouNIPS, AWS, and
GBVS) have higher accuracy for predicting human fixations than
salient object detection models (right bar chart in Fig. 12A). This
is because fixation prediction models detect image-based outliers
while salient object detection models try to merge salient regions
into coherent object regions (i.e., segment the entire object and not
its regions). Thus these two types of models somehow behave in
the opposite direction. On the other hand, both categories of mod-
els have similar performances for prediction of simulated fixations
(left bar chart). Over both types of data, there is a large gap be-
tween IO and models. This difference is larger over human fixa-
tions. In sum, our results show that despite the recent effort in
Sample image Annotation Simulated
moveme

(A)

Fig. 11. (A) A sample image overlaid with human eye fixations, its annotation (averaged
proportional to the annotation map for that image; for each observer separately), smooth
pixels (with r = 10).
computer vision for detecting the most salient object in a scene,
still traditional fixation prediction models slightly outperform
those models. This partially stems from the fact that current data-
sets used for evaluating salient object detection methods have
images with often one salient object at the center, while here we
employ cluttered scenes with multiple objects. Fig. 12B shows pre-
diction maps for both types of models for a sample image.

Fig. 13 shows annotations and human fixations for sample
images side by side. To overlay images with maps, we first normal-
ize the map to the range of [01] and then multiply it with the im-
age. For some cases, annotated objects fall at peaks of the fixation
map while for some others there is not much overlap between two
maps. Similar to Judd et al. (2009), we observe that humans con-
sider faces, text, people, animals, and cars as the most salient ob-
jects in natural scenes.

5. Discussions

We now put our results into perspective with respect to the re-
lated literature mentioned earlier in the Introduction section.

5.1. Visual saliency, eye movements, and free-viewing

The traditional objective definition of saliency refers to bottom-
up attentional processes that render certain image regions more
conspicuous than the rest of the scene. Bottom-up saliency has
been successful in predicting fixations in free-viewing of images
(Foulsham & Underwood, 2008; Parkhurst, Law, & Niebur, 2002;
Peters et al., 2005), videos (Itti, 2005), and visual search tasks
(Ehinger et al., 2009; Treisman & Gelade, 1980; Wolfe & Horowitz,
2004). From a computational perspective, the concept of saliency
has its roots in the early behavioral and psychophysical studies
of visual search, Feature Integration Theory (Treisman & Gelade,
1980), and Koch and Ullman’s computational architecture (Koch
& Ullman, 1985). One of the early implementations of the saliency
concept by Itti, Koch, and Niebur (1998) suggests that low-level
feature discontinuities represented in the saliency map can explain
a significant proportion of where people look. This is supported by
studies that show measures such as local contrast correlate with
fixation locations (e.g., Reinagel & Zador, 1999). In contrast to bot-
tom-up saliency, top-down attention deals with high-level and
cognitive factors that choose image regions relevant to a behavior,
such as task demands, emotions, and expectations. For instance in
visual search tasks, top-down attention biases search toward fea-
tures of the target object (Ehinger et al., 2009; Navalpakkam & Itti,
2007; Rajashekar, Bovik, & Cormack, 2006). In more complex real-
world tasks, such as sandwich making (Hayhoe, 2000) or driving
(Land & Lee, 1994), where attention is tightly entangled with phys-
ical actions, fixations are driven to task-related locations to serve
actions and goals. Please refer to Land and Hayhoe (2001), Tatler
et al. (2011), Henderson et al. (2007, chap. 25), Navalpakkam and
Itti (2005), Borji and Itti (2013), and Ballard, Hayhoe, and Pelz
(1995) for a review of attention and eye movements in daily tasks.
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Fig. 12. (A) Fixation prediction accuracy of nine models (4 salient object detection and 5 fixation prediction) and the IO model (different IO models for human fixations and
simulated eye movements). Shuffled AUC values for prediction of simulated eye movements (left bar) and human fixations (right bar) are also shown. Error bars are standard
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Evaluating saliency hypothesis by measuring prediction power
of models against fixations in necessary but not sufficient. Models
can also be evaluated against some other findings about human
attention. In this regard, our task offers such a basis. In addition,
explicit judgment procedures can be used for study of covert
top-down visual attention where humans attend to task-driven ob-
jects that they do not look at (e.g., walking in a sidewalk and avoid-
ing mobile obstacles).

5.2. Objects and saliency

Our work is linked to previous object-based models of attention
in that our definition of explicit saliency is inherently object-based.
Subjects were asked to select salient objects based on whether the
most salient location falls within their boundary. This suggests that
salience map must have some object-level information incorpo-
rated. Some studies have emphasized the role of object informa-
tion on guiding attention and fixations in scene viewing and
other daily-life tasks such as grasping or manipulating an object,
or to navigate an environment while avoiding obstacles. Einhäuser,
Spain, and Perona (2009) investigated top-down and semantic
selection of scene objects when humans freely viewed images for
remembering their contents. They recorded eye positions while
human observers inspected photographs of common natural
scenes. Observers were asked to view an image and to name ob-
jects they remembered, right after the stimulus presentation. They
showed that an annotated object map weighted by object recall
frequency explains fixations better than chance. Hwang, Wang,
and Pomplun (2011) showed that people tend to look at an object
with less semantic distance to the currently attended one. As an-
other support in favor of object-based representations, Nuthman
and Henderson (2010) (and recently Pajak & Nuthmann, 2013) ar-
gued that if fixations are directed to objects, then they should hap-
pen around the center of objects. They were inspired by two
findings: (1) people look at the center of words when reading text
(Rayner, 1979) and (2) viewers prefer to look at objects over the
background (Buswell, 1935; Elazary & Itti, 2008; Henderson,
2003; Torralba et al., 2006; Yarbus, 1967). Wischnewski, Belardi-
nelli, and Schneider (2010) proposed a computational framework
in which proto-objects, volatile medium-level static and dynamic
features within the hierarchy of the visual system, are computed
pre-attentively and are used to prioritize items of visual environ-
ment. The above findings are in line with object-based theories
of visual attention stating that humans attend to objects and
high-level concepts rather than spatial locations. Inspired by these
cognitive results, some researchers (e.g., Cerf, Frady, & Koch, 2009;



74 A. Borji et al. / Vision Research 91 (2013) 62–77
Judd et al. (2009)) have used object detectors for objects such as
faces, humans, or text to detect salient locations and predict
fixations.

A separate line of evidence toward object-based attention
comes from the visual search literature. Zelinsky (2008) proposed
a model of visual search, known as target acquisition model
(TAM) and was able to simulate human gaze patterns in search
of toy objects using low-level object features. Rajashekar, Bovik,
and Cormack (2006) showed that during visual search our atten-
tion and eye movements are biased by visual information resem-
bling the target causing the image statistics near our fixated
positions to be systematically influenced by basic visual features
of the target. Mack and Eckstein (2011) proposed object co-occur-
rence as a contextual cue to guide and facilitate visual search in
natural viewing. These studies along with Pomplun (2006) and
Najemnik and Geisler (2005) suggest that object information have
strong influences on the way we look at natural scenes. The first
two results can however be also interpreted by those theories that
postulate that attention modulates the weights of early visual fea-
tures to render objects of interest more salient (Navalpakkam &
Itti, 2007; Wolfe, 1998; Wolfe & Horowitz, 2004).

Eventually, the debate between two contrasting views: (1)
attention is directed toward salient locations first and then a finer
object processing is happening there, or (2) conversely saliency
does not drive attention directly but through its correlation with
objects, needs to be investigated by more controlled studies in fu-
ture (see Borji, Sihite, & Itti, 2013a). One direction would be to
eliminate spatial outliers and then see whether/how objects guide
attention (i.e., replicating results of Nuthman & Henderson (2010)
and Pajak & Nuthmann (2013) on textureless objects). It is how-
ever very likely that both spatial outliers and objects contribute
to our allocation of attention and gaze in natural scenes. It is also
likely that spatial image outliers direct attention heavily in absence
of strong task demands. Alternatively, when there is a task, accord-
ing to the cognitive relevance hypotheses (see Henderson, Mal-
colm, & Schandl, 2009; Tatler et al., 2011), objects may guide
attention and fixations relatively more than spatial outliers.

5.3. Interest judgment

In an early study related to saliency judgment, Mackworth and
Morandi (1967) recorded fixations of 20 observers over 2 images
and asked 20 other observers for the recognizability (informative-
ness) of image patches (on a 10-point scale). Observers in the eye
monitoring group fixated longer on image areas that observers in
the rating group independently rated as more informative. Using
a large database of labeled images, Elazary and Itti (2008) found
low-level saliency a highly significant predictor of which objects
humans choose to label (what authors considered interesting ob-
jects). The saliency map model found a labeled object 76% of the
time within the first three predicted locations (chance = 43%).
Masciocchi et al. (2009) addressed decision processes by which hu-
mans choose points in a scene as the most interesting ones (by
mouse clicking on 5 most interesting locations). Using a large ob-
server population (more than 1000 in a web-based online study),
they found that interest selections are correlated with their eye
movements, and both types of data correlate with bottom-up sal-
iency. Masciocchi et al. (2009) concluded that interest and fixation
judgments have both bottom-up and top-down attentional influ-
ences and that is the reason behind higher correlation between
interest and free-viewing fixations.

5.4. Object importance

Spain and Perona (2010) addressed the problem of object
importance and proposed a model for it. They argued that the goal
of visual recognition is not only to detect and classify objects but
also to associate a level of priority to each scene object. Since reli-
able algorithms do not exist for segmentation and recognition of all
objects in a scene, Spain and Perona (2010, ’s) approach has a lim-
ited applicability. Berg et al. (2012) proposed a less-constrained
model of object importance which uses visual features and verbal
descriptions on images. Spain and Perona (2010) also showed that
bottom-up saliency influences object importance. Note that expli-
cit judgment of saliency is not necessarily the same as object
importance. Similar to Spain and Perona (2010, ’s) study, we also
verify that observers are able to make judgments at the object le-
vel. The impact of top-down factors seems to be more profound in
importance judgment than saliency judgment, as importance judg-
ment demands more semantic reasoning. Overall, all these three
studies: Elazary and Itti (2008), Masciocchi et al. (2009) (by show-
ing that clicks cluster around objects), and Spain and Perona
(2010), support our finding that humans are able to judge saliency
at the object-level. While importance, saliency, and interest are re-
lated concepts, further research is needed to elucidate their
differences.
5.5. Salient object detection

Diverging from traditional saliency modeling for explaining fix-
ations in free-viewing, Liu et al. (2007) attempted to detect and
segment the most salient object in a scene. They asked 9 human
observers to manually draw a bounding rectangle to specify a sali-
ent object in about 20,000 scenes (MSRA dataset). Achanta et al.
(2009) annotated 1000 images from this dataset with mainly one
unambiguous object (usually at the center) to set a benchmark
for salient object detection approaches (ASD dataset). Although
several models have been proposed for detecting salient objects
in a scene (Borji, Sihite, & Itti, 2012), so far explicit judgment of sal-
iency has not been systematically addressed in cognitive vision.
Here we aimed to study this problem from both behavioral and
modeling perspectives. Additionally, we share new data including
annotations around salient objects chosen by human observers.
As opposed to existing datasets, scenes in our dataset contain sev-
eral objects in background clutter (on and off-center). Thus, our
data offers a challenge for models, which have often been evalu-
ated over images with a single object at the image center.

Thus far, several applications for salient object detection algo-
rithms have been proposed in computer vision (e.g., image
thumb-nailing (Marchesotti, Cifarelli, & Csurka, 2009), image com-
pression (Itti, 2004), and object recognition (Kanan & Cottrell,
2010; Walther et al., 2005)). Behavioral investigation of explicit
saliency judgment can further help practitioners in finding new
application areas.
5.6. Mechanisms of explicit saliency judgment

Saliency is a pre-attentive and fast process allowing the brain to
focus slower, complex, and expensive processes on few scene re-
gions. We argued that humans have conscious access to a saliency
map computed by the brain, since our observers were able to re-
port reliably the most salient object in a scene. A likely mechanism
is that humans have conscious access to the final saliency map,
although maybe not to single feature maps (orientation, color,
intensity, etc.) that contribute to saliency. An alternative possibility
to conscious access to the saliency map is that observers keep track
of where they look and finally choose an object among those they
have visited in their scanpath. The latter suggests that judgments
are made on the basis of a (re-) construction of conspicuity after
effortful consideration of task requirements.



A. Borji et al. / Vision Research 91 (2013) 62–77 75
5.7. Size feature

Wolfe and Horowitz (2004) counted size as an undoubted attri-
bute guiding attention. The size feature alone also explains a large
fraction of our data (see Figs. 4–6). However, this feature is not
fully predicted by models. Many saliency models have implicitly
accounted for the size feature through incorporating multiple spa-
tial scales of processing. But as we saw here, they failed to some
extent, because they try to account for size over image regions
and not over objects. Our results demonstrate that adding this fea-
ture increases accuracy of all employed models. Thus, models may
be enhanced by addressing the size feature more explicitly. Fur-
ther, explicit incorporation of Nuthman and Henderson (2010, ’s)
finding that humans tend to look at the center of objects may help
increase accuracy of existing fixation prediction models.
5.8. Advantages and disadvantages of explicit and implicit saliency
judgments

Explicit saliency judgments can supplement other previous
measures (e.g., eye movements, reaction times, accuracy) for two
main reasons: First, some researchers question the very nature of
free-viewing as there is no explicit task nor a well-defined ques-
tion5 and it is almost impossible to cut all top-down influences. This
could potentially cause idiosyncrasies in observers’ behaviors as top-
down influences might be very subjective and dependent on such
factors as time of the day, mood, cultural preferences, language,
and gender (Shen & Itti, 2012). As a result, it is not enough to use fix-
ations in free-viewing tasks for probing bottom-up saliency. Here,
we directly and systematically tackled this confound by asking
observers to explicitly determine the most salient object in a scene.
We further asked them to base their answers on low-level image fea-
tures irrespective of high-level factors such as importance, interest,
and context. Second, while the automatic and rapid nature of eye
movements in free viewing initially made them attractive to study
attention (Parkhurst, Law, & Niebur, 2002), recent research has chal-
lenged this idea. Indeed, a number of pitfalls of eye movement stud-
ies have recently been identified, such as the influence of context,
center bias (by which humans tend to preferentially look towards
the center of an image), and others (see Borji, Sihite, & Itti, 2013a;
Parkhurst, Law, & Niebur, 2002; Tatler, 2007; Tatler et al., 2011).
Although our explicit tasks do not guarantee to eliminate biases,
the longer stimulus presentation time and the self-paced nature of
our tasks here (compared to free-viewing) allow observers to fully
inspect the image and to choose the object they think is the most
salient one, possibly allowing them to voluntarily reduce such
biases. Our task can also help dissociate between covert and overt
attention (Posner, 1980; Wright & Ward, 2008). When someone does
a visually-guided task, sometimes s/he might not look at something
but still pay attention to it. In such case, eye movement recordings
cannot reveal which object was attended. But, when asked, subjects
may be able to report it explicitly.
5 For example Tatler et al. (2011), Henderson (2003), and Henderson et al. (2007)
believe free viewing is simply not a representative behavior and has limited
applicability to what we really do with our visual system. Some other studies (e.g.,
Land & Hayhoe, 2001; Tatler et al., 2011; Triesch et al., 2003) argue that saliency is not
a strong predictor of fixations when there is a task. In Borji, Sihite, and Itti (2011), we
have objectively confirmed this argument. While we believe that top-down factors
are important and always present, this does not necessarily mean that free-viewing
never happens is real life. A more realistic viewpoint is that top-down factors are
always present but their contribution is dependent on task demands and varies over
time as task proceeds. High task demands (e.g., negotiating a turn while driving) may
more strongly determine where eyes should be guided. There are occasions when task
demands are so low that observers may explore the scene more freely. As claimed
here and from the previous literature, bottom-up saliency more strongly drives
fixations and attention in such cases.
The high degree of consistency among humans in selection of
the most salient object in our experiments suggests that humans
have an objective criterion, rather than idiosyncratic decisions for
determining salient objects or regions. This means that our explicit
saliency task is a good complement to free viewing and to eye
movements for studying attention. This is good news as it now en-
ables new experiments, such as large-scale web-based studies, to
be run. In addition, laboratory setups will be easier and there will
be no need for an eye tracker, calibration, etc. Another advantage of
our proposed task is that it eliminates several challenging factors
for example, uncertainty in eye-tracker accuracy, uncertainty of
making a saccade by the observer (saccade end-point), smoothness
of fixation maps, scoring, etc. Asking humans for their judgment at
the object-level may be even more natural than asking them to
click on salient or interesting points (Masciocchi et al., 2009).
One may indeed argue that humans assign interestingness to ob-
jects rather than spatial points in the image. Besides, judging sali-
ent points needs a finer knowledge of spatial outliers or center-
surround mechanisms which are implemented in saliency models
but are difficult for humans. Finally, for some applications it is
more advantageous to know which object people explicitly find
is most salient (e.g., advertisement design) as opposed to where
they look.

While explicit judgment tasks offers insights to the nature of
human attention and model comparison, similar to eye move-
ments, they have some limitations. They do not completely elimi-
nate subjective idiosyncrasies as different subjects might have
different takes on low-level features when asked to choose salient
objects. In some other scenarios, however, this might be less of a
problem. For example, when asked to explicitly judge the most
task-relevant object that should be attended, subjects perhaps
agree more with each other. This is partly because the task demand
and the objective function is stronger compared to free-viewing of
natural scenes. Another problem with our explicit judgment task is
subject’s accuracy in annotating object boundary. Although sub-
jects were shown a representative sample, some subjects still
may have chosen tighter or looser boundaries. Some subjects
may have chosen to annotate smaller objects or easier ones.
6. Conclusions

In our first experiment, classic bottom-up saliency and size fea-
tures explain about 80% of human judgment (Fig. 4). This suggests
that humans were good at understanding the task instruction. In
the second experiment, the shuffled AUC score of 0.62, prediction
accuracy of the annotation map for explaining eye fixations, means
that majority of fixations happened on the most salient object. We
find that humans tend to find and segment the whole extent of the
object while eyes are mainly driven to image outliers which may
not necessarily form objects. We also find that human annotations
often fall on conceptual items which are also salient, usually con-
taining a full object or a part of it (e.g., faces). This finding matches
with behavioral findings from eye movements studies (e.g., Cerf,
Frady, & Koch, 2009; Judd et al., 2009) that faces, text, people,
etc. attract human fixations. Some of these objects have been ar-
gued to be bottom-up salient due to their features (e.g., text and
maybe faces). Faces are specially interesting because of their evo-
lutionary importance witnessed by the fact that certain brain areas
are devoted to process them (face cells in fusiform gyrus and IT
cortex) as well as facial expressions and emotions. For other ob-
jects such as people, cars, and animals the landscape is not much
clear and selection might be because of their low-level features.

In summary, we studied the saliency judgment of human
observers when they were explicitly asked to choose the most sali-
ent object in a complex scene. Our investigation in experiment one
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revealed that humans agree in their judgments and have conscious
access to bottom-up saliency (Fig. 2). We further showed that clas-
sical bottom-up saliency models, detecting spatial image outliers,
correlate with humans’ judgments of the most salient object in a
scene in terms of low-level features. In experiment two, we
showed a high correlation between explicit saliency and fixations
while humans freely viewed natural scenes. As opposed to previ-
ous studies which have usually used one saliency model (often
model by Itti, Koch, and Niebur (1998)), here we employed several
state-of-the-art models to validate independence of our results on
model type. We discounted the center-bias factor to make sure
that correlation between fixations and explicit judgments (annota-
tions) is not because of high distribution of objects or fixations at
the image center (a phenomenon known as photographer bias;
(Tatler, 2007)). We categorized the existing models of bottom-up
saliency as those that resemble segmentation techniques and aim
to predict human annotations (explicit saliency judgment) and
those attempting to predict fixations. We then compared both
types of models over two types of data and concluded that fixation
prediction models outperform salient object detection models for
fixation prediction while being as good as those models for detect-
ing the most salient object in a scene.
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