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Abstract—Several visual attention models have been proposed
for describing eye movements over simple stimuli and tasks
such as free viewing or visual search. Yet, to date, there exists
no computational framework that can reliably mimic human
gaze behavior in more complex environments and tasks such
as urban driving. In addition, benchmark datasets, scoring
techniques, and top-down model architectures are not yet well
understood. In this paper, we describe new task-dependent
approaches for modeling top-down overt visual attention based
on graphical models for probabilistic inference and reasoning.
We describe a dynamic Bayesian network that infers probability
distributions over attended objects and spatial locations directly
from observed data. Probabilistic inference in our model is
performed over object-related functions that are fed from manual
annotations of objects in video scenes or by state-of-the-art object
detection/recognition algorithms. Evaluating over approximately
3 h (approximately 315 000 eye fixations and 12 600 saccades) of
observers playing three video games (time-scheduling, driving,
and flight combat), we show that our approach is significantly
more predictive of eye fixations compared to: 1) simpler
classifier-based models also developed here that map a signature
of a scene (multimodal information from gist, bottom-up saliency,
physical actions, and events) to eye positions; 2) 14 state-of-the-
art bottom-up saliency models; and 3) brute-force algorithms
such as mean eye position. Our results show that the proposed
model is more effective in employing and reasoning over
spatio-temporal visual data compared with the state-of-the-art.

Index Terms—Bottom-up saliency, complex natural scenes, eye
movement prediction, gaze prediction, interactive environments,
task-driven attention, top-down attention, visual attention.
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I. Introduction

SELECTIVE processing of scenes known as visual atten-
tion is a remarkable capability of human vision allow-

ing subsequent complex processes (e.g., object recognition)
feasible. Knowledge of the task is a crucial factor in this
selection mechanism. A considerable amount of experimental
and computational research has been conducted in the past few
decades to understand and model visual attention mechanisms,
yet progress has been most rapid in modeling bottom-up atten-
tion and simple tasks such as visual search and free viewing.
Furthermore, the field of visual attention lacks principled com-
putational top-down frameworks that are applicable to different
task types. Aside from being an interesting yet challenging
scientific problem, from an engineering perspective, there are
numerous applications for attention modeling in computer
vision and robotics, including video compression [34], [49]
and summarization [38], object recognition and detection [20],
[32], [57], robot navigation and localization [37], [39], inter-
active computer graphics (virtual reality or video games) [35],
flight and driving simulators (e.g., driver assistant systems),
and visual prosthetic devices [36].

It is widely agreed that visual attention operates in both
bottom-up and top-down modes, where in the bottom-up
mode, attention is driven by image-based conspicuities, while
in the top-down mode, task, knowledge, memory, expectations,
emotions, etc., guide gaze toward relevant/informative scene
regions. Furthermore, visual attention can be either object-
based, space-based, or feature-based [2], [3]. Thus, attention
is a multifaceted phenomenon engaging all of these
mechanisms. A frequently referenced model for saccade
prediction is the saliency map model of Itti et al. [18]
built on the top of the computational architecture of Koch
and Ullman [69] and the feature integration theory [4].
This bottom-up approach is based on contrasts of intrinsic
image features such as color, orientation, intensity, flicker,
motion, and others. Later implementations have added
new feature channels to this model, including text and
faces [60], symmetry [73], gist and horizontal lines [74]
(see [86] for an interesting application of scene gist), and
optical flow [75], and these models have been able to
account for an increasing fraction of human eye fixations. In
addition, several other bottom-up models with significantly
different inspirations—either biologically inspired or purely
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computational—have been proposed, including Bayesian
models (e.g., surprise [52], SUN [54], discriminant
saliency [44]), information-theoretic models (e.g., Bruce
and Tsotsos [41], Hou and Zhang [50], rarity model [51]),
spectral analysis models (e.g., PQFT [49], adaptive whitening
saliency [47]), bottom-up graphical models (e.g., GBVS [56],
E-saliency [76], Pang et al. [15]), and classification-based
approaches (e.g., Judd et al. [12], Kienzle et al. [11]). Please
refer to [68] for a comprehensive review of the bottom-up
saliency models. Although bottom-up models have been
very successful in explaining fixations in free-viewing, they
explain only a small portion of fixations in everyday tasks
such as driving [5], [8], [77].

A. Related Research on Top-Down Attention Modeling

The second component of visual attention comes from
top-down demands such as knowledge of the task, emo-
tions, expectations, and predictions that are embedded in a
temporally extended task. Modeling top-down attention is
conceptually hard to frame since: 1) different tasks require
different algorithms, and 2) there are often several factors
(e.g., actions, objects) that need to be taken into account
specially in the context of a long temporally extended task.
Research on top-down attention dates back to the classic study
by Yarbus [7] which showed that gaze patterns are dependent
on the asked question when viewing a photo. It has also been
shown that the vast majority of fixations are directed to task-
relevant locations, and fixations are coupled in a tight temporal
relationship with other task-related behaviors such as reaching
and grasping [16]. Furthermore, eye movements often provide
a clear window to the mind of an observer in a way that it is
sometimes possible to infer how a subject solves a particular
task from the pattern of her eye movements for tasks such as
block copying [17], tea making [8], and driving [16]. Peters
and Itti [17] learned a mapping from global context of a scene
(also scene gist) to eye fixations using the data of subjects
playing contemporary video games. Peters and Itti [19], using
this model, evaluated the relative importance of bottom-up
and top-down factors at the time of an event (e.g., hitting
a target in shooting games or accident in driving games).
Based on this, they built templates for different events and
used them for event detection (thus combining stimulus and
behavior information for event detection). Navalpakkam and
Itti [20] proposed guidelines for top-down attention modeling
in conjunction with the saliency model in situations where the
algorithm for the task is at hand. Sprague and Ballard [21]
proposed a method based on reinforcement learning for learn-
ing visio-motor behaviors and used their model to account
for saccades in a sidewalk navigation task [22]. Hidden
Markov models (HMM) have been successfully applied to
fixation prediction in reading (e.g., E-Z reader model [61]).
Butko and Movellan [78] proposed a POMDP approach for
visual search. Erez et al. [62] proposed a similar approach for
a synthetic eye-hand coordination task. Rimey and Brown [63]
modeled top-down attention with a Bayesian network for an
object manipulation task. Cagli et al. [64] proposed a Bayesian
approach for sensory-motor coordination in drawing tasks.
Inspired by the visual routines theory (Ullman [65]), Yi and

Ballard [66] programmed a dynamic Bayesian network (DBN)
for recognizing the steps in a sandwich making task.

B. Integrated Bottom-Up and Top-Down Models

A central open question in modeling visual attention is,
“how the bottom-up salient and top-down task-driven stim-
uli are integrated in the course of a task?” Few attempts
have been made to answer this question and existing models
mainly apply to simple tasks such as visual search [20].
An example application for integrated attentive systems is
video surveillance where the aim is to detect goal-relevant
targets like suspects while being aware of unexpected vi-
sual events such as gun shots or sudden explosions. An-
other example is robot navigation where top-down attention
helps detection of landmarks and road signs while bottom-up
attention detects unexpected obstacles and accidents. Some
experimental studies have considered interaction of bottom-
up and top-down attention. For instance, in modeling eye
fixations of observers when looking for a pedestrian in a scene,
Ehinger et al. [29] showed that a model of search guidance
combining three sources: low level saliency, target features,
and scene context, outperforms models based on any of these
sources taken separately. Navalpakkam and Itti [20] proposed
optimal cue selection strategy by tunning the gains of the basic
saliency model [18] through maximizing the signal to noise
ratio of the target object versus distractors (background) by
considering target and distractors feature distributions. Peters
and Itti [17] used multiplication of bottom-up saliency and
their top-down fixation prediction. However, it is not clear
how this simple mechanism will generalize to complex tasks.
Overall, while several models have addressed understand-
ing and modeling visual attention mechanisms separately, to
date there exists no principled approach that combines these
components in the context of a complex, interactive, and
temporally extended task such as those we are considering
in this paper.

C. Influence of Multimodal Data on Attention

The interaction between attention and physical actions
makes up one of the most important facets of our everyday
life. Many studies support the idea that attention affects actions
[23]. It has also been proposed that changes due to actions lead
to corresponding changes in attention and perception [23],
[24]. For instance, Schtz-Bosbach and Prinz [26] showed
that preparation of a grasping movement affects detection
and discrimination of visual stimuli. A good example of
interaction between action and attention is driving which needs
sophisticated coordination between motor actions and eye
movements. Our work here borrows from the ideas of sensory-
motor integration: “The process by which the sensory and
motor systems communicate and coordinate with each other
(e.g., hand–eye coordination).” The above statement is closely
related to the premotor theory of spatial attention which argues
that the major function of attentional selection is not only a
reduction in the incoming information, but rather to select an
appropriate action on the basis of a specific stimulus [25].
There are also interactions among other modalities such as
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auditory or emotion on attention. Here, we investigate the
influence of physical actions on eye positions albeit our
approach is scalable for using all other sources of information.

D. Our Contributions

Our primary goal is to present a general framework for
interpreting human eye movement behavior that explicitly
represents demands of many different tasks, perceptual uncer-
tainty, and time. This approach allows us to model visuomotor
sequences over long time scales, which have been typically
ignored in vision sciences. For that, we employ graphical
models that have been widely used in different domains,
including biology, time series modeling, and video processing
(see, for instance, [82] and [83]). We have been inspired by
the application of HMMs for analysis and segmentation of
videos into semantic shot sequences (see [84] and [85]). These
approaches are very helpful when sequential actions are linked,
when documents are highly structured or organized such a
tennis match that is composed of sets, games and points.

We introduce two types of models: space-based and object-
based. Space-based models are discriminative models that
estimate probability of the next attended object or spatial
location over time directly from raw image and action features
such as gist, bottom-up saliency, physical actions, and events.
An advantage of space-based models over object-based models
is that they are easily applicable to a wide range of interactive
visual environments. Thus, we intend to take advantage of
the sequential nature of everyday tasks for modeling visual
attention and eye movement prediction. Although the whole
framework is general (i.e., the equations do not change from
one task to another), but it needs to be trained for each specific
task. By being able to explain human attentional behavior,
we hope that our framework could be used for engineering
applications.

Since objects are essential building blocks in scenes, it is
reasonable to assume that humans have instantaneous access to
task-driven object-level variables, as opposed to only gist-like
(scene-global) representations [74], [79]. Our proposed object-
based approach is a Bayesian framework developed to reason
over objects. We compare this approach to several space-based
models that learn a mapping from scene signatures to gaze
position. In this paper, we use an object recognition oracle
from manually tagged video data to carefully investigate the
prediction power of our approach. For some of the tasks
and visual environments tested here (older 2-D video games),
simple object recognition algorithms are capable of providing
highly reliable object labels, but for more complex environ-
ments (modern 3-D games) the best available algorithms still
fall short of what a human annotator can recognize. Therefore,
we also did an uncertainty (over objects) analysis when
variables are fed from outputs of two highly successful object
detection approaches (boosting classifier [81]) and deformable
part model (DPM) by Felzenszwalb et al. [58].

II. Psychophysics and Data Gathering

To test our models, we have collected a large amount of
multimodal data from subjects playing video games. We share

Fig. 1. Eye tracking and action recording setup. Subjects play video games
using wheel, joystick, or keyboard with their actions being logged by a
computer. Game stimuli are shown to the subjects and eye movements are
recorded. Each data item has a time stamp that allows aligning frames, actions,
and fixation data after recording.

our data and accompany software to encourage follow-up
research on modeling top-down attention.1

A. Stimuli and Subjects

We chose video games since they resemble real-world
interactive tasks in terms of having near-natural renderings,
noise, and statistics. It is also easier to control data recording
over video games versus real-world scenarios (for example
in driving). Participants (variable number for each game,
18–25 years old) played PC video games under a protocol
approved by the University of Southern California’s Institu-
tional Review Board. Subjects were compensated for their
participation by cash or course credits. In the training session
for each game, subjects were introduced to the goal of the
game, rules, how to handle buttons, etc. All subjects were
novice computer gamers and had no prior experience with our
games, but some had limited experience with other games.
Subjects had different adventures in games, and thus it is
unlikely that the exact same image is rendered in multiple
runs. After training, in a test session, subjects played the game
(but a different scenario) for several minutes.

B. Experimental Setup

Fig. 1 shows our eye and action recording setup. At
the beginning of the test session, the eye tracker (PC1,
Windows 95) was calibrated using nine-point calibration. Sub-
jects were seated at a viewing distance of 130 cm (subtending
a field of view of 43° × 25°). A chinrest (or headrest in
driving games) was used to stabilize their heads. Stimuli
were presented at 30 Hz on a 42-in computer monitor at a
resolution of 640 × 480 pixels and refresh rate of 60 Hz.
Frames were captured at 30 Hz using a computer (PC2, Linux

1Our data is publicly available at: http://ilab.usc.edu/∼borji/Resources.html.
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Mandriva OS) under SCHED FIFO scheduling (to ensure
microsecond accuracy) which sent a copy of each frame to
the LCD monitor and saved one copy to the hard disk for
subsequent processing. Finally, subjects’ right eye positions
were recorded at 240 Hz (ISCAN Inc. RK-464 eye tracker,
PC1). Subjects played games on PC3 with Windows XP where
all their joystick/steering/buttons actions were logged at 62 Hz.

In driving games, subjects drove using the Logitech driving
force GT steering wheel, automatic transmission, brake and
gas pedals, 11-in rubber-overmold rim, 900° rotation (only
360°, 180 left, 180 right, were used), force feedback, con-
nected via USB to the PC3. In HDB and TG games, sub-
jects used mouse and joystick for game playing, respectively.
Multimodal data including frames, audio (not processed here),
physical actions, and eye positions were recorded.

C. Physical Actions and Eye Movement Data

Actions and fixations are tightly linked; thus, sometimes by
knowing a performed action it is possible to tell where should
be looked next. We recorded motor actions while humans
were involved in game playing. We assumed that these actions
correspond to some high-level events in the game (e.g., mouse
click for shooting). We logged actions for driving games (e.g.,
wheel position, pedals (brake and gas), left and right signals,
mirrors, left and right side views, and gear change), from
which we only generated a 2-D feature vector from wheel
and pedal positions between 0 and 255. For other games,
2-D mouse position and joystick buttons were used (further
explained in Section III-A).

Fig. 2 shows a summary of our collected data over video
games classified in three categories. Fig. 3 shows sample
frames from each of the games. Part of our data has been
previously collected by Peters and Itti [17], [19].

III. Our Top-Down Visual Attention Models

In contrast to the majority of previous models dealing with
spatial attention, we aim to predict both the next object (what)
and the next spatial location (where) that should be attended.
Usually, prediction of saccades (jumps in eye movements to
bring the relevant object to the fovea)2 has been considered
by bottom-up models in free-viewing tasks. Here, we consider
prediction of fixations for all frames (one fixation per frame)
and saccades endpoints for those frames in which a saccade
has happened.

In its most general form, gaze prediction is to estimate
P(Rt+1|St+1) where Rt+1 is the next attended object Yt+1 or
next attended spatial location Xt+1, and St+1 is the subject’s
mental state. However, since it is not possible to directly access
the hidden (latent) variable St+1, we estimate P(Rt+1) directly
from observable variables. Two modes for gaze prediction are
possible: 1) memory-dependent and 2) memory-less. The only
difference is that in the memory-less mode, information of
previous actions and gazes is not available. The memory-less
mode has been mostly considered in spatio-temporal saliency

2Saccades were defined by a velocity threshold of 20◦/s and amplitude
threshold of 2°.

modeling, where the input is a video and the task is to predict
likely attended locations. However, in the context of sensori-
motor interaction and online interactive tasks like those used
here, memory-dependent prediction is a valid assumption with
several applications when the goal is to predict gaze one step
ahead.

In the rest, we explain the features that we use as indica-
tors/predictors of eye fixations along with spatial and object
based models using these features. We focus on three games
for developing models and at the results section we analyze
generalization power of our models over other games/tasks
[Fig. 4(a)]. Stimuli consist of: 1) a time-scheduling game
known as hot dog bush (HDB) in which subjects had to serve
customers food and drinks; 2) a driving game called 3-D
driving school (3DDS) in which subjects were supposed to
drive a car in an urban environment, following all traffic rules;
and 3) a flight combat game known as top-gun (TG) where
players had to control a simulated fighter plane with the goal
of destroying specific enemy targets.

A. Features

As opposed to previous saliency models [12], [17], [11] that
have only considered scene features for fixation prediction,
we use features from both vision (features extracted from
frames and visual events annotated for some games) and action
modalities. Employed features include the following.

1) Gist: Gist is a light-weight yet highly discriminant
representation of the whole scene and does not contain details
about individual objects. We used the gist descriptor of [27]
which relies on 34 feature pyramids from the bottom-up
saliency model [18]: six intensity channels, 12 color channels
(first six red/green and next six blue/yellow color opponency),
and 16 orientations. For each feature map, there are 21 values
that encompass average values of various spatial pyramids:
value 0 is the average of the entire feature map, values 1 to 4
are the average values of each 2 × 2 quadrant of the feature
map and values 5 to 20 are the average values of the 4 × 4
grids of the feature map leading to overall of 34 × 21 = 714
dimensions. In [17], the motion map has also been added for
gist description. There are also other gist models that could
be used here.3 For a comparison of some gist models, please
see [80].

2) Bottom-Up Saliency Map (BU): For the bottom-up com-
ponent of our gaze-prediction model, we used the freely avail-
able implementation of the Itti-Koch saliency model [18].4

This model includes 12 feature channels sensitive to color con-
trast (red/green and blue/yellow), temporal luminance flicker,
luminance contrast, four orientations (0◦, 45◦, 90◦, 135◦), and
four oriented motion energies (up, down, left, right). Then,
center and surround scales are obtained from dyadic pyramids
with nine scales, from scale 0 (the original image) to scale
8 (the image reduced by a factor of 28 = 256 in both
the horizontal and vertical dimensions). Six center-surround
difference maps are then computed as point-wise differences

3For example, see the Gist descriptor by Oliva and Torralba:
http://people.csail.mit.edu/torralba/code/spatialenvelope/.

4[Online]. Available: http://ilab.usc.edu/toolkit.
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Fig. 2. Summary statistics of our video games classified in three categories: 1) hardcore games demanding superb focus and have near natural visual
renderings; 2) casual games mostly consisting 2-D video games with simple policies; and 3) driving games including in-city and free-way driving routes. We
intend to share our data for follow-up research on modeling top-down visual attention. Some games are simple 2-D cartoon games.
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Fig. 3. Sample frames of the video games listed in Fig. 2. Some of the data (right column) are collected in our laboratory by Peters and Itti [17], [19].
Middle columns show the mean eye position of all subjects and the third columns show the mean bottom-up saliency map derived from Itti et al. [18] model
showing the average bottom-up salient regions through the whole time course of a game.

across pyramid scales, for combinations of three center scales
(c = 2,3,4) and two center-surround scale differences (σ =
3,4). Each feature map is additionally endowed with internal
dynamics that provide a strong spatial within-feature and
within-scale competition for activity, followed by within-
feature, across-scale competition. In this way, initially noisy
feature maps can be reduced to sparse representations of only
outlier locations which stand out from their surroundings.
All feature maps finally contribute to a unique saliency map
representing the conspicuity of each location in the visual field.

3) Physical Actions (A): In the 3DDS game, this is a 22D
feature vector derived from wheel and buttons while subjects
were driving. The main elements of this vector include: [wheel
position, pedals (brake and gas), left and right signals, mirrors
(rear, left), left and right side views for panning the current
forward view to the left or right window (mainly its purpose

is to do traffic check), and gear change]. Signals, mirrors and
views are thus binary variables. Other action vector compo-
nents are: wipers, light indicators, horn, GPS, start-engine,
radio volume and channel, show-menu, look-back view, and
view change. Subjects were encouraged not to use these latter
buttons. In the HDB game, actions were mouse position (x, y),
left, middle, and right mouse clicks by which subjects handled
orders. Currently, we don’t have physical actions for the
TG game.

4) Labeled Events (L): Each frame of the 3DDS game
was manually labeled as belonging to one of several events:
left turn, right turn, going straight, red light, adjusting left,
adjusting right, stop sign, traffic check, and error frames due
to unexpected (mistake) events that terminate the game such
as hitting other cars or passing the red light. Hence this is only
a scalar feature.
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5) Object Features (F): This is an N-dimensional vector
of properties of objects (F 1:N ) (e.g., here N = 15 is the number
of objects and hence the cardinality of this vector), as will be
further explained in Section III-C.

B. Space-Based Classifier Models

We first explain our models that learn a mapping from
features to attended objects, eye fixations (or saccades) for
each task. We developed several classifiers as well as brute-
force control algorithms with the same input representations.
The advantage of our space-based and classifier-based models
is that they are easily applicable to every visual task and there
is no need for object tagging. According to the Bayes theorem,
these classifiers estimate

P(R|M) =
P(M|R)P(R)

P(M)
(1)

with R being either X or Y , and M being either the feature-
based representation E, or the object-based representation F ,
or a combination of both. Since calculating P(M|R) and P(M)
is impractical due to high dimensionality of M, we follow
a discriminative approach to estimate the posterior P(R|M).
Classifiers calculate either P(X|E) (i.e., gaze directly from
features; similarly predicting the attended object from E,
P(Y |E)) or using the marginal likelihood

P(X|M) ∝ P(X|Y ) × P(Y |M) (2)

(i.e., a classifier first predicts attended object from features and
then a second classifier maps the predicted attended object
to the gaze position). The following linear and nonlinear
classifiers were developed.

1) Mean Eye Position (MEP): This family of predictors
ignores feature vectors and simply uses the prior distribution
over all fixations, saccades, or attended objects over entire
training set. It is formally defined as

MEP =
1

T

T∑
j=1

Rj (3)

where R is the spatial location (saccade or fixation) or attended
object and T is the number of frames over the course of the
game in the training phase for which a location or object was
attended. Note that while this model is easy to compute given
human data, it is far from a trivial model, as it embodies human
visual-cognitive processes which gave rise to the gaze.

2) Random Predictor (R): At each time point, the next
attended object is drawn from a uniform distribution (without
replacement for the duration of the current video frame) with
probability 1/N where N is the number of remaining objects
in the scene. For fixation prediction, this is a random map.

3) Gaussian (G): It has been shown that subjects tend to
look at the center of the screen (center-bias or photographer-
bias issue [42]); therefore, a central Gaussian blob can score
better than almost all saliency models when datasets are
centrally biased. We thus also compare our results with this
heuristic model, which is simply a Gaussian blob (σ = 3
pixels) at the image center.

TABLE I

Algorithm 1: kNN Algorithm for Gaze Prediction

4) Linear Regression (REG): This model does not take
into account the temporal progress of a task and simply maps
Gist of the scene to the eye position. Mathematically, the goal
is to optimize the following objective function:

arg min
W

||M × W − X||2

subject to W ≥ 0 (4)

where M indicates the matrix of feature vectors (only Gist
feature is used in [17]) and X is the matrix of eye posi-
tions (one fixation per frame or saccades for those frames
that a saccade occurred). The least-squares solution of the
above objective function is W = M+ × X, where M+ is the
pseudoinverse of matrix M through SVD decomposition. In
our experiments, we only take the largest singular value of
the SVD since this avoids numerical instability and results in
higher accuracy. Given vector E = (u, v) as the eye position
over a 20×15 map (i.e., w = 20, h = 15) with u ∈ [1, 20] and
v ∈ [1, 15], the gaze density map can then be represented by
vector X = [x1, x2, . . . , x300] with xi = 1 for i = u+(v−1)×20
and xi = 0 otherwise. Finally, for each test frame, we compute
feature vector F and generate the predicted map P = F × W

which is then reshaped to a 20 × 15 saliency map. The
maximum of this map is used to direct spatial attention.

5) kNN: Here, attention map for a test frame is constructed
from the distribution of fixations of its most similar frames in
the training set. Since kNN is usually slow, we developed a fast
matrix implementation of kNN, as shown in Table I. Matrix
Q denotes dot product similarity of all test frames U (for a
subject) to all training frames M (other subjects). Number of
neighbors (K) was 40, 5, and 5 for HDB, 3DDS, and TG,
respectively. Parameter K was set to give high accuracy in a
trial and error basis. Note that by performing matrix operations
in this fashion, computational complexity of our kNN is less
than when iterating through all test frames.

6) SVM: To ensure that SVM training did not overwhelm
available computational resources, we first reduced the high-
dimensional feature vectors (E) using PCA by preserving
95% of variance. Then, a polynomial kernel multiclass SVM
classifier was trained with p (|Y | = 15 objects or |X| = 300
eye positions) output classes. We used Libsvm [71], a publicly
available Matlab version of SVM.
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Fig. 4. (a) Summary statistics of three video games. (b) Time series plot of probability of objects being attended and a sample frame with tagged objects
and eye fixation overlaid (some objects are available). Subjects could select an object by clicking. Jumps in fixation that pass a certain criteria are considered
saccades. (c) Two time-slice representations of three DBNs used in this paper.

C. Object-Based Bayesian Models
In order to be able to accurately predict which object or spa-

tial location should be attended, a detailed understanding of a
scene at the level of objects and their interactions is necessary
(as opposed to models based on only global scene context).
This object-based representation should be updated over time
and the effect of physical actions on them should also be taken
into account. We therefore argue that for learning a task, it is
enough to learn which objects should be manipulated by which
objects over time. By learning the task when can then learn
task-driven visual attention. For that, we need an object-level
representation of the scene which could be provided either by
object annotations (segmenting objects by bounding boxes)
of humans or automatic detection of objects using object
detection approaches. We then compare performance of these
models with space-based models mentioned in Section III-B.

Due to the noise in eye tracking, subjectivity in performing
a task, and high-level gaze programming strategies, saccades
do not always land on specific objects. One way to solve this
problem is to ask humans to review the data, decide which
object has been attended, and then take their average decisions.
Instead, we followed a simpler and more objective approach by
defining a function that assigns a probability to objects in the
scene being attended, based on their inverse distance to the
saccade/fixation position X, i.e., z(oj) = 1/eαd(X,C(oj)) where
C(oj) is the center of the object oj and d is the Euclidean
distance. Parameter α controls the spatial decay with which an
object is considered as attended for a given gaze location (here
α = 0.1). This way, closer objects to the gaze position will

receive higher probabilities. These values are then normalized
to generate a pdf P(oj) = z(oj)/

∑N
i=1 z(oi), where N is the

total number of objects. Fig. 4(b) shows a sample time line
of attended objects probabilities over HDB for ∼ 1000 frames
along with a sample tagged frame. The object under the mouse
position when clicking was considered a selected object.

We followed a leave-one-out approach, training models
from data of n − 1 subjects and evaluating them over the
remaining nth one. The final score is the average over all
n cross-validation runs. The object-based attention model is
developed over HDB and classifier-based models are for all
games.

DBN is a generalized extension of Bayesian networks
(BN) to the temporal dimension representing stationary and
Markovian processes. For simplicity, we drop the index of
subject in what follows. Let Ot = [o1

t , o
2
t , · · · , oN

t ] be the
vector of available objects in frame at time t. Usually, some
properties (features) of objects within the scene are important.
Assuming that function f (o) denotes such property, an object-
level representation of this frame will hence be Ft = {f i(oj

t )},
where i is a particular property function and j is a particular
object. In its simplest case, f could be just the number of
instances of an object in the scene. More complex functions
would take into account spatial relationships among objects
or task-specific object features (e.g., is ketchup empty or
not). Let Y1:T = [Y1, Y2, · · · YT ] be the sequence of attended
objects, X1:T = [X1, X2, · · · XT ] be the sequence of attended
spatial locations, and C1:T = [C1, C2, · · · CT ] be the selected
objects by physical actions (e.g., by clicking, grabbing). Here,
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Fig. 5. Gaze prediction accuracies. (a) Probability of correctly attended object (first row) and MNSS scores for prediction of saccades and fixation positions
(second row) for all models. White legends on bars show the mapping from feature types to gaze position X. For instance, REG (Ft → Yt → Xt) maps
object features to the attended object and then maps this prediction to the attended location using regression. Property functions f (.) in HDB indicate whether
an object exists in the scene or not (binary). (b) and (c) MNSS scores of our classifiers over 3DDS and TG games. (d) and (e) NSS scores (corresponding
to γ = 0 in MNSS) of bottom-up models for saccade prediction over three games. Almost all of bottom-up models perform lower than MEP and Gaussian,
while our models perform higher. Some models are worse than random (NSS < 0) since saccades are top-down driven instead of bottom-up.

we treat selection as another object variable affecting the
attended object. It is also possible to read out the next selected
object (action in general) from DBN by slightly modifying the
network structure, but here we are only interested in predicting
the next attended object. Knowing the attended object, gaze
location could be directly inferred from that.

We studied three types of general DBNs shown in Fig. 4(c):

1) an HMM with a hidden variable (brain state Ht) con-
nected directly to the attended object and from there to
gaze position;

2) a DBN where the attended object is affected by the pre-
viously attended object (i.e., P(Yt+1|Yt)), hence predic-
tion is only based on the sequence of attended objects;

3) a DBN assuming that the attended object is influenced
by properties of current objects in the scene as well as
the previously attended object (i.e., P(Yt+1|Yt, F

1:N
t+1 ).

Given the following conditional independence assumptions:
1) Xt ⊥⊥ Fi

t | Yt; 2) Fi
t ⊥⊥ F

j
t (due to general structure

assumption); 3) Fi
t+1 ⊥⊥ Fi

t (happens when there is no
uncertainty in case of having tagged data, it is not the case in

general); and 4) Xt+1 ⊥⊥ Xt | Yt+1, then the full joint probability
of the HMM and third DBN, to be learned, reduces to

P(H1:T , X1:T , Y1:T ) = P(X1:T , Y1:T |H1:T )P(H1:T )

= P(X1:T |Y1:T )P(Y1:T |H1:T )P(H1:T )

= P(H1)P(Y1|H1)P(X1|Y1) ×
T∏

t=2

P(Ht|Ht−1) × (5)

T∏
t=2

P(Yt|Ht, Yt−1) ×
T∏

t=2

P(Xt|Yt)

P(X1:T , Y1:T , F 1:N
1:T ) = P(X1:T , Y1:T |F 1:N

1:T )P(F 1:N
1:T )

= P(X1:T |Y1:T )P(Y1:T |F 1:N
1:T )P(F 1:N

1:T )

=
N∏

j=1

P(Fj
1 )P(Y1|Fj

1 )P(X1|Y1)

×
T∏

t=2

N∏
j=1

P(Yt|Fj
t )P(Yt|Yt−1) ×

T∏
t=2

P(Xt|Yt) (6)

where F 1:N
1:T = [F 1:N

1 , F 1:N
2 , · · · F 1:N

T ] is the vector of functions
representing object properties over time.
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1) Inference and Learning: Learning in a DBN is to
find two sets of parameters (m; θ) where m represents the
structure of the DBN (e.g., the number of hidden and ob-
servable variables, the number of states for each hidden
variable, and the topology of the network) and θ includes
the state transition matrix A (P(Si

t |Pa(Si
t ))), the observation

matrix B (P(Oi
t|Pa(Oi

t))), and a matrix π modeling the initial
state distribution (P(Si

1)) where Pa(Si
t ) are the parents of

Si
t (similarly Pa(Oi

t) for observations). Learning is hence
to adjust the model parameters V = (m; θ) to maximize
P(O|V ).

Since designing a different network for each task needs task-
specific expert knowledge, to make the problem tractable, here
we assume fixed structures [Fig. 4(c)] that could generalize
over many tasks. Therefore, the joint pdf in (5) reduces to
predicting next attended object due to independence assump-
tions. As an example, we derive the formulation for the third
case in Fig. 4(c)

P(Yt+1|F 1:N
1:t+1, Y1:t , X1:t) % given all past info.

= P(Yt+1|F 1:N
1:t+1, Y1:t) % Yt+1 ⊥⊥ X1:t

= P(Yt+1|F 1:N
t+1 , Yt) % Yt+1 ⊥⊥ Y1:t−1 (7)

=
(
�N

j=1P(Yt+1|Fj
t+1)

)
× P(Yt+1|Yt)

% Fi
t+1 ⊥⊥ F

j
t+1 ∀ i 
= j.

P(Y ) is initialized uniformly over the objects (time 0 and is
equal to P(oj), j = 1 : 15) and is updated over time. The
HMM model (case 2) has one hidden variable and thus can be
trained by exploiting the EM algorithm. To avoid over-fitting
parameters in conditional probability tables while training,
train data was randomly split into k partitions, where DBN was
trained over k−1 partitions and validated over the kth partition.
The model with best validation performance was applied to
the test data. We used the Bayes net toolkit [70] for learning
parameters of DBN.

Since variables in our DBN take discrete values, while we
have a pdf over the attended object Yt , we follow a stochastic
sampling approach similar to the roulette-wheel algorithm.
For a number of iterations, we loop through the training
frames (t = 1 · · · T ) and generate more training sequences.
Let at be the feature vector for the frame at time t, a tuple
< at, yt, xt > is added to the sequence (< yt, xt > pair in
the second DBN) where yt is the index of an object sampled
from J(Yt), the cumulative distribution of Yt , and xt is the
eye fixation at that time (Xt). This way, objects with higher
probability of being attended in a frame will generate more
training samples. The same strategy is followed for classifier-
based models (Section III-B) for a fair comparison with DBNs.
Since DBN have access to the previous time information, a
sample < [at yt−1], yt, xt > is added to classifiers, where
yt−1 and yt are sampled from J(Yt−1) and J(Yt), respectively
(no yt−1 in memory-less mode).

2) Naive Bayes: (NB) In the memory-less case when there
is no time dependency between attended objects, our DBN
reduces to a static Bayes model incorporating only objects at
time t + 1. Assuming Fi

t+1 ⊥⊥ F
j
t+1 | Yt+1, this classifier models

Fig. 6. ROC curve and NSS scores for fixation and saccade prediction.
(a) 3DDS. (b) TG games in memory-less case. (c) HDB game in memory-
dependent case. In all cases, consistent with Fig. 5, our models score higher
than the MEP model. DBN models score the highest among classifiers and
control models.

P(Yt+1|F 1:N
t+1 ) (probability of attended object given the current

scene information). Therefore

P(Yt+1|F 1:N
t+1 ) =

1

Z

N∏
i=1

P(Fi
t+1|Yt+1) (8)
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Fig. 7. Prediction accuracy (NSS and AUC scores) of bottom-up saliency
model [18] and a central Gaussian blob for fixation prediction over
16 video games.

where Z is a normalization constant. With no object informa-
tion, this classifier reduces to priors P(Y ) and P(X) which are
equal to MEP. As in our DBN framework, here we also used
validation strategy to avoid overfitting while training.

IV. Experimental Results

A. Evaluation Metrics

Two scores were used to evaluate the accuracy of proposed
models explained as follows.

1) Normalized Scan-Path Saliency (NSS) [40]. NSS is the
response value at the human eye position (xh, yh), in a
model’s predicted gaze map (s) that has been normalized
to have zero mean and unit standard deviation

NSS =
1

σs

(s(xh, yh) − μs). (9)

NSS = 1 indicates that the subject’s eye position fall in a
region where predicted density is one standard deviation

Fig. 8. (a) Sample frame from hot dog bush game along with (b) root and
parts responses of the DPM model.

above average while NSS = 0 means that a model per-
forms at chance. Due to high subject agreement (peaks in
MEP, Fig. 13), Gaussian (when peak is in the center) and
MEP models generate many true positives which lead to
high scores for them. Since the chance of making false
positives is thus small, there is less opportunity for mod-
els to show their superiority over MEP or Gaussian. To
stretch the differences between sophisticated and brute-
force models, each time, we discarded those fixations
that were in top γ%, γ ∈ {0, 10, ..., 90} of the MEP
map. This gives an idea of how well models predicted
nontrivial fixations, i.e., away from the central peak of
MEP data. To summarize these scores, we defined mean
NSS (MNSS)

MNSS =
1

10

90∑
γ=0

NSS(γ). (10)

Along with MNSS, we also report the results using the
original NSS score.

2) Receiver Operating Characteristic (ROC) [41]. ROC is a
method used for evaluation of a binary classifier system
with a variable threshold (usually, between two methods
like saliency versus random). Using this metric, the
model’s (or so-called estimated) saliency map is treated
as a binary classifier on every pixel in the image; pixels
with larger saliency values than a threshold are classified
as fixated while the rest of the pixels are classified as
non-fixated. Human fixations are used as ground truth.
By varying the threshold, the ROC curve is drawn as the
false positive rate versus true positive rate, and the area
under this curve indicates how well the saliency map
predicts actual human eye fixations. Perfect prediction
correspond to a score of 1. This metric has the desired
characteristic of transformation invariance, in that area
under the ROC curve does not change when applying
any monotonically increasing function to the saliency
measure.

To evaluate object-based models, for a frame, a
hit is counted when the ground-truth attended object
(= arg maxj P(Y

′
)) is in top maximums (accumulative,

i.e., 1 : 2, 1 : 3, · · · , 1 : 15) of the predicted object
(= arg maxj=1···15 P(Y )). Hits are then averaged over all gazes
for each j.

B. Gaze Prediction

Fig. 5 shows prediction accuracies of models
in all conditions (memory-dependent/memory-less,
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Fig. 9. Precision-recall curves of object detection using DPM [58] and boosting models (blue and red curves, respectively) for each object and frame of the
HDB game. While booting model fails to detect many objects, the DPM model works very well over almost all objects of the HDB game. For results of
fixation and attended object prediction please refer to Fig. 10.

object/fixation/saccade, HDB/3DDS/TG). Bayesian models
performed the best in predicting the attended object followed
by SVM. All models performed significantly higher than
random, MEP and Gaussian and a simple classifier from
gist to eye position [17] using MNSS (same is true over
NSS score [Fig. 5(d) and (e)], KL, and ROC scores, Fig. 6).
Performances are higher in memory-dependent cases as
we expected which shows that information from previous
step is helpful. DBN model in the memory-dependent
mode and NB in the memory-less mode, scored the best
MNSS over fixations and saccades (followed by HMM
in memory-dependent and REG in memory-less modes).
Results show that inferring attended object first and using
it to predict gaze position is more effective than directly
mapping features to gaze position (DBN and NB). HMM
model scored high on memory-dependent/fixation case but
not as good in the memory-less case. A similar HMM with
added connection between object Ft and hidden variables Ht

raised the MNSS to 1.5 in memory-dependent/saccade case.
Best performance was achieved with five states for hidden
variables in HMM. To test to what degree gaze follows
mouse in HDB, we implemented two other algorithms: 1) by
placing a Gaussian blob at mouse position, and 2) learning
a regression classifier from mouse actions to eye position.
These models scored high but still lower than Bayesian
models.

Over 3DDS and TG [Fig. 5(b) and (c)], with combination of
all features, kNN achieved the best MNSS followed by SVM
and regression. Also, classifiers with event and action features
performed higher than MEP and Gaussian.

Fig. 10. Prediction of our Bayesian model in the presence of noise (i.e.,
object detection results in left column and saccade prediction at right) over the
HDB game. Top: memory-dependent saccade prediction. Bottom: memory-
dependent fixation prediction cases.

Fig. 6 shows the ROC curves as well as the NSS scores for
3DDS and TG games in memory-less case and HDB game in
memory-dependent case for both fixation and saccade location
prediction. As it shows over 3DDS, SVM and kNN (using all
features) score the highest using both area under ROC (AUC)
and NSS sore for fixation prediction. Over saccades, kNN
scores the highest. Over both saccades and fixations, kNN
and SVM score higher than MEP. The same trend happens
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Fig. 11. Confusion matrices of applying a model trained over one game to other games. Three models were considered: regression, kNN, and MEP. x-axis
shows the trained games and y-axis shows the tested ones. Top row is the normalized scanpath saliency (NSS) score and the bottom row shows AUC curve
score. Training over similar games leads to higher test performance.

Fig. 12. Analyzing the effect of the number of training subjects on model accuracies over testing subjects using NSS score. Each bar is the mean over all
possible selection of n training subjects (similarly for the remaining test subjects). The trend is the same for all compared models (except random), including
MEP, Gaussian, BU [18], Reg, and kNN. Results are for the memory-less fixation prediction case.

over the TG game with the exception that over saccades SVM
scores higher than kNN.

For HDB game in memory-dependent case, there is large
gap between prediction of our models and the MEP model
using both AUC and NSS scores. The DBN approaches score
higher than all models for both fixation and saccade prediction.

C. Model Comparison

We ran 14 state-of-the-art bottom-up saliency models5 to
compare saccade/fixation prediction accuracy over three games

5Compared bottom-up saliency models over our data include iNVT [18],
AIM [41], Hou et al. [53], local and global rarity [51], PQFT [49], AWS [47],
GBVS [56], Bian et al. [48], SDDR [46], Judd et al. [12], Torralba et al. [79],
Walther et al. [57], and SUN [54].

[see Fig. 5(d) and (e)]. These models were the only ones
that are readily applicable to our data compared to top-
down models which thus far have been specific each to a
particular task. Our models scored the best results compared
with all bottom-up models. These results highlight the poor
prediction power of bottom-up saliency models when humans
are actively engaged in a task (notice the big difference
between bottom-up, MEP, Gaussian, and our models). Fig. 7
shows the prediction accuracy of Itti’s bottom-up model [18]
and a central Gaussian blob over all of our video games. As it
shows a simple central Gaussian blob outperforms this model
over all games using AUC score. Please note that these models
do not use the motion channel which explains why some
of them perform lower than chance. Ullman [67] provided
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Fig. 13. Sample frames of video games and corresponding predicted maps
of models. Red circle indicates the human fixation and blue square is the
maximum point of each map. Smaller distance hence means better prediction.
Currently we do not have action data for TG game.

a comparative study of the state of the art bottom-up saliency
models.

D. Uncertainty Analysis

To analyze the degree to which our model is dependent
on the uncertainty of the variables, we trained two object
detection models: 1) boosting model,6 and 2) the DPM7 [58] to
automatically fill the variables instead of annotated data. These
models were trained over a small set of cross validation data
different from test frames. Fig. 8 shows a sample frame from
the HDB game along with hotdog pool object template using
DPM. Precision-recall curves of each of the 15 objects for both
models are shown in Fig. 9. As opposed to Boosting model,
DPM was very successful for detecting objects. Detection
performance was very high for each object due to limited
variation in object appearance. Therefore we used DPM for
subsequent analysis.

6[Online]. Available: http://people.csail.mit.edu/torralba/shortCourseRLOC/
boosting/boosting.

7[Online]. Available: http://www.cs.brown.edu/∼pff/latent/.

We tested models again with variables filled with these
data (instead of annotations). Accuracy of attended object
prediction are shown in Fig. 10. As we expected, there is a
graceful degradation in prediction of the attended object (in
comparison with Fig. 5) but still performance of our DBN was
higher than other models indicating partial robustness of our
model (similar trend with MNSS score).

E. Analysis of Generalization Across Tasks

Here, we analyze the capability of the space-based classifier
models for fixation prediction over other games. We trained a
model from data of one game/task and applied it to another
task. Fig. 11 shows the results. As is shows testing a model
trained from a game on a different game results in a pre-
diction accuracy still better than chance (AUC > 0.5) and
(NSS > 0). This is partially because our models generate
maps with high activation at the center; thus, applying this
map to a new game has a higher chance to predict fixations.
Interestingly, this analysis showed higher prediction accuracy
for similar games than dissimilar ones. For instance, training
on one of the driving games (3D, DT, 18Wos, TD, ...) has
better test accuracy over other driving games (see subclusters
in Fig. 11, MEP and kNN models).

F. Analysis of Number of Subjects in Learning

Here, we investigate that how much adding new subjects
can actually help learning. We started training on n subjects
and tested over the remaining P − n subjects (P is the whole
number of subjects for a game). Fig. 12 shows the results for
increasing n. As number of subjects are increased, fixation
prediction accuracy also increases for our models over each
of four games. This indicates that having more data can lead to
better results since subjects have different adventures in games
and more data can capture the task demands better.

Fig. 13 shows sample predicted maps by our models for
three games.

V. Discussions and Conclusion

Results show the superiority of the generative Bayesian
object-based approach to predict the next attended object/gaze
position over three different complex tasks and large amount of
data. This approach is applicable to many tasks where objects
are processed sequentially in a spatio-temporal manner.

Using the DPM model [58], we were able to automatically
detect objects in HDB game with high detection accuracy,
yet there are still uncertainties in object variables. Having a
causality structure over object variables could eventually give
more evidence regarding the attended object (i.e., relaxing
conditional independence assumptions). One problem we ex-
perienced was learning the structure of DBN since to date,
structure learning algorithms are limited to certain network
structures and variable types.

Despite promising results, there are some open questions for
future research. Current analysis focuses on overt attention;
however, some parts of the scene are processed by subjects
without direct gaze, e.g., by covert attention, which cannot be
measured with an eye-tracker. Measuring and modeling covert
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attention in the context of top-down attention is a challenging
topic for future research.

A more biologically plausible future extension would be
using foveated representation of the scene similar to [72]
where object features in the periphery are accessible with
less confidence. Also, analysis of knowledge transfer would
be a rewarding work. For instance, by training classifier-based
models over a game and applying them over similar games,
we found that they scored better than chance implying that
gist and action features to some extent capture the semantics
directing gaze.

Here, we compared several algorithms for modeling top-
down attention over different tasks on very different stimuli.
It would be also interesting to compare algorithms performing
different tasks on the same visual stimulus close to the often-
cited Yarbus experiment (similar to [87]).

We aim to build a top-down evaluation open challenge by
sharing our datasets (some used here) and evaluation programs
to make a fair comparison of models and raising interest in this
field similar to PASCAL VOC challenge in object recognition
literature.

Finally, current work shows a promising direction to tackle
this very complex problem, and helps designing experiments
that can further shed light on mechanisms of top-down atten-
tion.
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