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Abstract

Tolerance to image variations (e.g., translation, scale,

pose, illumination, background) is an important desired

property of any object recognition system, be it human or

machine. Moving towards increasingly bigger datasets has

been trending in computer vision especially with the emer-

gence of highly popular deep learning models. While be-

ing very useful for learning invariance to object inter- and

intra-class shape variability, these large-scale wild datasets

are not very useful for learning invariance to other parame-

ters urging researchers to resort to other tricks for training

models. In this work, we introduce a large-scale synthetic

dataset, which is freely and publicly available, and use it to

answer several fundamental questions regarding selectiv-

ity and invariance properties of convolutional neural net-

works. Our dataset contains two parts: a) objects shot on

a turntable: 15 categories, 8 rotation angles, 11 cameras

on a semi-circular arch, 5 lighting conditions, 3 focus lev-

els, variety of backgrounds (23.4 per instance) generating

1320 images per instance (about 22 million images in to-

tal), and b) scenes: in which a robotic arm takes pictures

of objects on a 1:160 scale scene. We study: 1) invariance

and selectivity of different CNN layers, 2) knowledge trans-

fer from one object category to another, 3) systematic or

random sampling of images to build a train set, 4) domain

adaptation from synthetic to natural scenes, and 5) order

of knowledge delivery to CNNs. We also discuss how our

analyses can lead the field to develop more efficient deep

learning methods.

1. Introduction

Object and scene recognition is arguably the most im-

portant problem in computer vision and while humans do

it quickly and almost effortlessly, machines still lag be-

hind humans. In some cases, where variability is relatively

low (e.g., frontal face recognition) machines outperform hu-

mans but they do not perform quite as well when variety is

high. Hence, the crux of the object recognition problem is

tolerance to intra- and inter-class variability, lighting, scale,

in-plane and in-depth rotation, background clutter, etc [9].

Thanks to big data and deep neural networks, computer

vision has recently enjoyed a rapid progress, witnessed

by high accuracies over the ImageNet dataset (top-5 er-

ror rate between 3-10% over 1,000 object categories). Re-

cent models (e.g., Alexnet [31], VGG [54], Overfeat [50],

GoogLeNet [57], and ResNet [23]) have surpassed previ-

ous scores in several benchmarks such as generic object and

scene recognition [31, 54], object detection [50, 20], seman-

tic scene segmentation [6, 20], face detection and recog-

nition [66], texture recognition [7], fine-grained recogni-

tion [39], multi-view 3D shape recognition [56], activity

recognition [53, 28], and saliency prediction [32].

One chief concern regarding the wild large-scale bench-

marks and datasets, however, is the lack of control over data

collection procedures and deep comprehension of stimulus

variety. While existing large-scale datasets are very rich in

terms of inter- and intra-class variability, they fail to probe

the ability of a model to solve the general invariance prob-

lem. In order words, natural image datasets (e.g., Ima-

geNet [8], SUN [64], PASCAL VOC [14], LabelMe [48],

Tiny [61], and MS COCO [38]) are inherently biased in the

sense that they do not offer all object variations [60]. To

remedy this, some works (e.g., [45, 35, 41]) have resorted

to synthetic datasets where several object parameters exist.

Ideally, we would like models to be tolerant to identity-

preserving image variations (e.g., variation in position,

scale, pose, illumination, occlusion). To probe this, some

researchers have used synthetic home-brewed datasets ei-

ther by taking pictures of objects on a turntable (e.g.,

NORB [35], COIL [41], SOIL-47 [29], ALOI [19],

GRAZ [42], BigBIRD [55]) or by constructing 3D graphic

models and rendering textures to them (e.g., Pinto et al.[45],

Peng et al. [43]). While proven to be beneficial in the past,

these datasets are very small for training deep neural net-

works with millions of parameters. Further, they usually

have small number of classes, instances per class, back-

ground variability, in plane and in-depth rotation, illumi-

nations, scale, and total number of images. Here, to remedy

these shortcomings, we introduce a large-scale controlled

object dataset with rich variety and a larger set of images.
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Dataset Ref Domain Object Objects Backgrd Views per Bounding Object Total
Classes per Class per obj obj+bg Box? Contours? Images

COIL [41] Handheld 100 1 1 72 Implicit No 7,200
SOIL-47 [29] Handheld — 47 1 42 Implicit No 1,974
Pascal [14] Misc 20 790-10,129 1 1 Yes Partial 11,540
Caltech-101 [15] Google 102 31-800 (µ = 90) 1 1 No No 9,144
Caltech-256 [22] Google 257 80-827 (µ = 119) 1 1 No No 30,607
LabelMe [48] Misc 900 ? ∼1 ∼1 Partial Partial 62,197 (a)
NORB [35] Toys 5 10 1 (b) 1,944 Implicit No 48,600 (b)
FERET [44] Faces 1 1,199 1 1-24 Yes No 14,051
MNIST [34] Digits 10 6,000 1 1 Implicit No 60,000
ETHZ [17] Natural 5 32-87 1 1 Yes Yes 255 (c)
TINY [61] Web 75,062 ? 1 (?) 1 Implicit No 79,302,017 (d)
CIFAR-100 [30] Web 100 600 1 1 Implicit No 60,000 (d)
ALOI [19] Handheld 1,000 (e) ∼1 1 108 Implicit No 110,250
GRAZ [42] Photographs 4 311-420 1 1 No Partial 1,476
CoPhIR [3] Flickr ? (f) ? 1 (?) 1 (?) No No (f) 106,000,000
ImageNet [8] Misc 21,841 ∼1 ∼1 ∼1 Yes No 14,197,122
SUN [64] Misc 3,819 (g) 1 1 Yes Yes 131,067
MS COCO [38] Misc 91 ∼5,000 1 1 Yes Yes 328,000 (a)
RGB-D [33] Household 51 ∼6 1 250 Yes No 250,000
Big-BIRD [55] Household 100 1 1 600 Yes No 250,000
iLab-20M – Toy vehicles 15 25-160 14-40 1,320 Implicit No 21,798,480

Table 1. Overview of some popular object recognition datasets. The last one proposed here avoids the dreaded entry of “1” in any column of the table.

Implicit bounding box means that it can be trivially computed (e.g., objects are centered within images). Notes: (a) Still growing. (b) Many additional

images were created by digitally jittering objects and compositing various backgrounds. (c) 289 objects in 255 images. (d) Image resolution 32× 32. Note

that CIFAR is a subset of the TINY dataset. (e) 1,000 objects total, not grouped by categories. (f) MPEG-7 and Flickr user tags (e.g., summer, Paris, China)

available. (g) The number of instances per object category shows the long tail phenomenon: a few categories have a large number of instances (window:

16,080, chair: 7,971, wall: 20,213) while a majority of them have a relatively modest number of instances (airplane: 179, floor lamp: 276, boat: 349).

2. Related work

Several controlled datasets have been introduced in the

past which have dramatically helped progress in com-

puter vision (Table 1). Two famous examples are FERET

face [44] and MNIST digit [34] datasets. Nowadays, we

have face and digit recognition systems that perform either

at the level of humans (e.g., [58]) or superior (perhaps not

as robust due to variations and noise). Similar datasets are

available for generic object recognition but lack character-

istics of a large-scale representative dataset covering many

sorts of invariance (e.g., background clutter, shape, occlu-

sion, size). For example, the COIL dataset [41], which also

used a turntable to film 100 objects under various lightings

and poses, contains one object instance per category (e.g.,

one telephone, one mug). The larger ALOI dataset [19]

contains 1,000 objects but few instances per category. The

NORB dataset [35] has 50 small toy objects (10 instances in

each of 5 categories). Almost all available turntable datasets

are small scale and not very rich in terms of variations.

Previous research using controlled datasets, such as

turntables images, has been mainly focused on inspecting

models or brewing concepts and ideas. Some recent works

have attempted to show that there is a real benefit of these

datasets in transferring knowledge to large-scale natural

scene datasets [26, 67]. This has been studied under the

names of domain adaptation, task transfer, or multi-task

learning. The idea here is that knowledge gained from a

controlled dataset (or task), via turntables or graphic mod-

els, can be transferred to real-world naturalistic datasets

with even different statistics (e.g., texture). For example,

Peng et al. [43] trained models on an augment of syntheti-

cally generated images (using a 3D graphics object model)

and natural scenes (from ImageNet and PASCAL) and re-

ported an improvement in accuracy over the latter datasets.

They, however, did not probe whether the improvement was

due to learning better invariance or instance level variety

and richness. Some other works have also advocated simi-

lar directions [21, 49, 11, 16].

Another motivation for utilizing controlled datasets

comes from neuroscience and cognitive vision literature.

CNNs were initially inspired by the hierarchical structure

of the visual ventral stream [18]. They were later used

to explain some physiological and behavioral data of hu-

mans and monkeys (e.g., [46, 52, 65, 51]). It has been

asserted that humans learn invariance with few exemplars

a.k.a. zero- or one-shot learning. This is the opposite of the

way that CNNs currently learn recognition. These models

need an enormous amount of labeled data. In this work, we

explore the ways a large-scale controlled dataset, contain-

ing rich information regarding various object parameters,

can be utilized to improve object recognition performance.

It is important to be aware of human performance to gauge

the progress [4]. Just recently, He et. al. [24] reported a

top-5 error rate of 4.9% on ImageNet which is lower than

5.1% human error rate on this dataset [47]. This raises some

questions: Have models surpassed humans? If yes, in what

aspects? Is it theoretically possible to achieve a better per-

formance than humans on these problems? etc.

Another related area to our work, which naturally fits

well to turntable setups, is the manifold embedding and di-
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mensionality reduction. These techniques try to preserve

and leverage the underlying low dimensional manifold in

data in supervised or unsupervised manners (e.g., [69, 59]).

For instance, Weston et al. [63] introduced an embedding-

based regularizer to impose the same labels for the neigh-

boring training samples to benefit from the structure in the

data. They used gradient descent to optimize the regular-

izer and adopted it for CNNs. Another classic example is

Siamese Networks [5] which are two identical copies of the

same network, with the same weights, fed into a ‘distance

measuring’ layer to compute whether the two examples are

similar or not. Given the labeled data, the network encour-

ages similar examples to be close, and dissimilar ones to

have a certain minimum distance from each other. While

these techniques have been applied to controlled datasets,

their usefulness over large-scale controlled datasets still re-

mains to be explored. Our proposed dataset can be help-

ful in this direction as it combines the best of the two

worlds: instance-level variety of large-scale datasets and

rich parametrization of controlled synthetic images which

are precious to study probing the behavior of CNNs.

3. The iLab-20M dataset

Many image datasets have been proposed to assist ma-

chine vision algorithm development and testing (Table 1).

Those datasets which have provided large collections of

training exemplars per well-defined object category have

been useful in advancing the state of the art. Excellent

examples include FERET for face recognition [44], with

14,051 images of 1,199 individuals in one class (human

faces), or MNIST for handwritten digits [34], with 60,000

images in 10 classes from 500 writers. Today, recognizing

faces or handwritten digits is considered a reasonably well

solved problem, although of course improving tolerance to

noise and other nuisance parameters is always possible.

In other domains, including recognition of objects from

generic categories, most efforts have focused on providing

very useful test sets and performance challenges (e.g., Ima-

geNet [8]), but these often lack in the sheer volume of train-

ing exemplars provided within each object category and for

each object instance, lack pose information, and often con-

tain occlusions. This limits their usefulness for training.

For example, the ‘calculator’ category of Caltech-256 [22]

contains 100 images of what appears to be 100 different cal-

culators with no pose data. While this is highly appropriate

for testing, we hypothesize that training can be greatly im-

proved by using many different views of different instances

of objects in a number of categories, shot in many different

environments, and with pose information explicitly known.

Indeed, biological systems can rely on object persistence

and active vision to obtain many different views of a new

physical object. In humans and monkeys, this is believed

to be exploited by the neural representations [37], though
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Figure 1. Turn-table photo shooting setup. a) turntable with 8 rotation

angles, 11 cameras on a semicircular arch, 4 lighting sources (generating 5

lighting conditions), 3 focus values and random backgrounds (overall 8×

11× 5× 3 = 1320 images for each instance per background). Recording

parameters are: resolution 960× 720, color mode YUYV, brightness 128,

contrast 32, saturation 32, gain 30, auto white balance off, manual white

balance temperature 3100K, sharpness 72, auto exposure off, auto focus

off, focus base value 97-119. b) robotic-assisted arms, one holding the

camera, the other taking wide-field pictures from random viewpoints and

distances. c) a sample instance of a car from 5 consecutive rotations and 5

consecutive arch cameras. d) a sample instance from each object category

(same lighting, rotation and focus; all set to zero) presented in the order

shown in Table 2. e) an instance of a boat under different illuminations.

the exact mechanisms remain poorly understood. Although

adult humans can learn new object instances from a sin-

gle view, one should not forget that this ability might only

emerge at the culmination of a long evolutionary process

plus 20-some years of individual training.

Popular datasets fall short in at least one dimension, be

it the number of classes, objects per class, number of back-

grounds/environments, or views per object, as shown in Ta-

ble 1. Particularly relevant to our effort are: 1) COIL [41],

which also used a turntable to film 100 objects under var-

ious lighting and poses; however, COIL only contains one

object instance per category and only black backgrounds

(similar to the larger ALOI dataset with 1,000 objects and a

few per category [19]), and 2) NORB [35] with 50 small toy

objects similar to the ones we used (10 instances in each of

5 categories); however, all objects were painted uniformly

and shot in grayscale on blank backgrounds (different back-

grounds were later composited digitally).
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