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The Role of Memory in Guiding Attention during Natural 
Vision 
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What is the time frame in which perceptual memory guides attention? Current estimates range from a few hundred 
milliseconds to several seconds, minutes, or even days. Here we answer this question by establishing the time course of 
attentional selection in realistic viewing conditions. First, we transformed continuous video clips into MTV-style video clips 
by stringing together continuous clip segments using abrupt transitions (jump cuts). We then asked participants to visually 
explore either continuous or MTV-style clips, and recorded their saccades as objective behavioral indicators of attentional 
selections. The utilization of perceptual memory was estimated across viewing conditions and over time by quantifying the 
agreement between human attentional selections and predictions made by a neurally-grounded computational model. In 
the critical condition, jump cuts led to sharp declines in the impact of perceptual memory on attentional selection, followed 
by monotonic increases in memory utilization across 7 consecutive saccades and 2.5 seconds. These results 
demonstrate that perceptual memory traces play an important role in guiding attention across several saccades during 
natural vision. We propose novel hypotheses and experiments using hybrid natural-artificial stimuli to further elucidate 
neurocomputational mechanisms of attentional selection. 
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Introduction 
Paying attention to the right thing at the right time 

underlies the ability of humans and other animals to learn, 
perceive, and interact with their environment. Such atten-
tional selections are determined by interactions between 
memory-free and memory-dependent influences (James 
1890, Hernandez-Peon et al. 1956, Henderson and Holl-
ingworth 1999). Memory-free (bottom-up) influences are 
stimulus-centric factors, such as visual onsets (Jonides and 
Yantis 1988, Gottlieb et al. 1998), which can lead to auto-
matic, or reactive, selection of attention targets. Memory-
dependent (top-down) influences refer to behavioral goals 
and expectations (Yarbus 1967), which can guide attention 
proactively based on prior knowledge. Among potential 
top-down influences, there is a consensus that sensory 
snapshots are overwritten within a single fixation (up to a 
few hundred milliseconds), while semantic information can 
be accumulated and utilized for guiding attention across 
many fixations. In contrast, the utilization of perceptual 
memory, especially involving locations of previously fixated 
targets, has been debated extensively (Maljkovic and Naka-
yama 1996, Levin and Simons 1997, Chun and Jiang 1998, 
Horowitz and Wolfe 1998, Melcher and Kowler 2001, 
Hollingworth and Henderson 2002, Rensink 2002, Hayhoe 
et al. 2003, Najemnik and Geisler 2005).  

Two competing theories about the accumulation and 
utilization of perceptual memory have emerged. According 
to the “world as an outside memory” (WOM) theory 
(O'Regan 1992, Rensink 2000), humans rely on the conti-

nuity of the world to access external information on de-
mand, leading to conscious perceptions that are seemingly 
rich and continuous, in the absence of perceptual memory 
that persists across several fixations. More recent studies 
have shown that perceptual information can be accumu-
lated over time during inspection of static scenes (Melcher 
2001, Hollingworth and Henderson 2002). Nevertheless, 
other results have indicated that the WOM theory may still 
hold in the particular context of attentional selection 
(Horowitz and Wolfe 1998, Melcher and Kowler 2001, Na-
jemnik and Geisler 2005). One suggestion is that attention 
targets are selected at random from an instantaneous pool 
of candidates (Horowitz and Wolfe 1998). Another study 
argued for a semi-random process, in which attentional 
selections are determined by proximity weighting of poten-
tial candidates relative to the instantaneous fixation loca-
tion (Melcher and Kowler 2001). According to a third sug-
gestion, humans select targets based on a continuously up-
dated posterior probability map. While the proposed map 
relied on perfect memory, a temporal analysis of its predic-
tive power showed that is mostly attributable to informa-
tion accumulated during the last 1-2 fixations (Najemnik 
and Geisler 2005). The common thread to all these pro-
posals is that location-specific memories are rarely utilized 
for guiding attention across more than 1-2 saccades.  

In contrast, the "implicit memory" (IM) theory (Land 
and Furneaux 1997, Chun and Nakayama 2000) postulates 
that previously attended targets typically trigger perceptual 
memory traces that are routinely utilized across several fixa-
tions. Such memory traces may often be hidden from con-



Journal of Vision (????) ?, ?-? Carmi & Itti 2 

 

scious introspection, leading to the common failure of hu-
man observers to explicitly report changes in scenes 
(Rensink 2002), even when their eye-movement patterns 
are clearly affected by such changes (Hollingworth and 
Henderson 2002). Proponents of the IM theory argue that 
location-specific memories are critical for facilitating target 
detection, especially in the context of visually-guided ac-
tions that require motor planning in spatial coordinates 
(Land and Lee 1994, Land and McLeod 2000, Hayhoe et 
al. 2003).  

A general criticism of the traditional psychophysical 
approach for studying memory utilization is the question-
able relevance of related conclusions to everyday life (Land 
and Furneaux 1997, Hayhoe et al. 2003). The crux of the 
argument is that the honorable tradition of designing 
highly controlled experiments often backfires by leading to 
oversimplifications and misrepresentations of the chal-
lenges posed by natural stimuli and tasks. In comparison, 
studies of attentional selection in realistic environments 
(Land and Lee 1994, Shinoda et al. 2001, Hayhoe et al. 
2003) have so far focused on highly practiced behaviors, 
which may also reflect atypical interactions between percep-
tual memory and attention. Moreover, while such studies 
provide valuable accounts of eye-movement patterns in eve-
ryday life activities, they have so far been confined to de-
scriptive analyses, which are inherently limited in their ex-
planatory and predictive powers (Viviani 1990). 

 The main goal of the present study is to bridge the ex-
isting gap between real world relevance, hypothesis-driven 
experimentation, and predictive power. Specifically, we 
used computational tools to establish the time frame in 
which perceptual memory guides attention during visual 
exploration of novel dynamic scenes. The rationale for fo-
cusing on this particular behavior is that humans seem to 
spend a lot of time in everyday life visually exploring new 
people or environments, such as while watching television 
and films, without necessarily being engaged in highly prac-
ticed goal-oriented behaviors. Furthermore, visual explora-
tion is the main drive for attentional selections during the 
first year of life starting from 3 months postnatally 
(Atkinson and Braddick 2003), indicating that it may be 
critical for learning regularities in one's environment.  

To manipulate the potential impact of perceptual 
memory on attentional selection, we converted continuous 
video clips into MTV-style video clips (see Figure 1). The 
only criterion for choosing the original video clips was di-
versity maximization in an attempt to capture the stimulus 
complexity and heterogeneity that humans encounter in 
real world environments. The rationale for the MTV-style 
manipulation is that frequent jump cuts repeatedly under-
mine the utility of perceptual memory.  

The WOM theory (O'Regan 1992, Rensink 2000) pre-
dicts that MTV-style jump cuts will have little to no effect 
on the utilization of perceptual memory, which is con-
stantly being overwritten on a fixation-by-fixation basis even 
during continuous viewing. On the other hand, if percep-
tual memory is utilized across several fixations, as predicted 

by the IM theory (Land and Furneaux 1997, Chun and 
Nakayama 2000), then jump cuts are expected to repeatedly 
modulate the extent to which perceptual memory guides 
attention. Specifically, each jump cut should invalidate per-
ceptual memory traces that were triggered by the preceding 
clip segment (clippet), followed by increasing accumulation 
and utilization of such traces based on the following clip-
pet. 

 

Figure 1. Schematics of continuous and MTV-style clips. Colored 
squares depict video frames. Different colors represent semanti-
cally unrelated clip segments (clippets). 

The results show strong trans-saccadic utilization of 
perceptual memory across up to 7 saccades and 2.5 sec-
onds.  These findings support and quantitatively elaborate 
the IM theory (Land and Furneaux 1997, Chun and Naka-
yama 2000), but are inconsistent with the WOM theory 
(O'Regan 1992, Rensink 2000). We also observed a trend 
of delayed amnesia that was not predicted by either of these 
theories. To explain this trend, we propose novel testable 
hypotheses and related experiments that would require fur-
ther integration of computational, behavioral, and neuro-
physiological techniques.  

Methods 

Participants 
16 paid participants (6 women and 10 men), 23- to 32-

years old, provided written informed consent, and were 
compensated for their time ($12/h).  All participants were 
healthy, had normal or corrected-to-normal vision, and 
were naïve as to the purpose of the experiment. 

Stimuli 
50 video clips (30 Hz, 640x80 pixels/frame, 4.5-30 s, 

mean ± s.d.: 21.83 ± 8.41 s, no audio) from 12 heterogene-
ous sources, including indoor/outdoor, daytime/nighttime 
scenes shot at various locations in Los Angeles, video 
games, television newscasts, interviews, commercials, and 
sporting events. These continuous clips were randomly cut 
every 1-3 s (2.09 ± 0.57 s) into 523 clip segments (clippets), 
which were re-assembled into 50 MTV-style clips (see the 
left panel of Movie 1 and Movie 2 for examples). The uni-



Journal of Vision (????) ?, ?-? Carmi & Itti 3 

 

form distribution of clippet lengths minimizes the ability to 
anticipate the exact timing of jump cuts.   

 

Movie 1. Example #1 of an MTV-style clip, instantaneous eye 
positions of a human observer during visual exploration, and the 
corresponding attention-priority maps based on the saliency 
model.  
- Left Panel: mtvclip03. 
- Middle Panel: same as left panel, plus the instantaneous eye 
position of a human observer (MC), depicted by a small cyan 
square.  Each time MC initiates a saccade, the square color 
changes to magenta, and a yellow ring is drawn around the sac-
cade target. 
- Right Panel: dynamic attention-priority maps generated by the 
saliency model based on mtvclip03.  Each time MC initiates a 
saccade, a white ring is drawn around the saccade target. 

 

Movie 2. Same as Movie 1, but for mtvclip04, participant JR. 

Continuous and MTV-style clips were matched in 
length, and each MTV-style clip contained at most one 
clippet from a given continuous clip. As such, the MTV-
style clips provide a unique opportunity to test conflicting 
predictions made by theories of memory and attention, 
while the continuous clips serve as an important control 
with a highly similar contribution of bottom-up influences 
and semantic factors. 

The MTV-style manipulation was inspired by the cine-
matic practice of using jump cuts to compress time while 
preserving perceptual and semantic continuity (Hochberg 
1986, Anderson 1996). The critical difference is that the 
MTV-style clips used here were deliberately designed to 
maximize the perceptual and semantic unrelatedness be-
tween adjacent clippets. Even the shortest clippets in our 
MTV-style clips (1 second long) are sufficiently long for 
human observers to recognize the depicted scene, and per-
form several saccades.  

Experimental design 
Participants were divided randomly into 2 groups of 8 

participants each. One group inspected continuous clips, 
and the other group inspected MTV-style clips. All partici-
pants sat with their chin supported before a 22'' color 
monitor (60 Hz refresh rate) at a viewing distance of 80 cm 

(28° x 21° usable field-of-view). Their task was: “try to fol-
low the main actors and actions, and expect to be asked 
general questions after the eye-tracking session is over”.  
Participants were told that the questions will not pertain to 
small details, such as specific small objects, or the content 
of text messages, but would rather help the experimenters 
evaluate their general understanding of what they had 
watched. The purpose of the task was to allow participants 
to engage in natural visual exploration, while encouraging 
them to pay close attention to the display throughout the 
viewing session. The motivation for providing a task came 
from preliminary tests with free viewing, in which observers 
tended to disengage from the display over time. A potential 
concern with this particular task is that it may bias observ-
ers to track motion in the display, which may lead to an 
unrealistically high agreement with a bottom-up model that 
includes motion cues. While this seems possible, we note 
that a previous study that relied on either free viewing or 
the task used here found no differences in the level of 
agreement with the saliency model (Itti 2005). Nevertheless, 
it would be interesting to test if and how the results would 
change when using different instructions, such as: “Try to 
understand the scenes…” or "Hit a button when you see a 
famous person…"     

We relied on 2 separate groups of subjects (1 per view-
ing condition), because the point of this study was to meas-
ure how perceptual memory formed during the viewing 
session affected attentional selection. A single-group design, 
with or without randomized order of presentation, would 
have been vulnerable to asymmetrical priming effects (re-
tention of scene gist and layout is likely to be more persis-
tent during continuous versus MTV-style viewing condi-
tions). A potential problem with our 2-group design is that 
differences between the groups may contaminate compari-
sons across viewing conditions. While this confound seems 
unlikely given the random assignment of subjects into 
groups, it remains a possibility. In any case, comparisons 
over time within a single viewing condition are not sensi-
tive to inter-group differences. 

Data acquisition and processing 
Instantaneous position of the right eye was recorded 

using an infrared-video-based eye tracker (ISCAN RK-464, 
240 Hz, <1° spatial error, see Figure 2).  Calibration and 
saccade extraction procedures have been described else-
where (Itti 2005). In short, the raw eye-position data was 
segmented into saccade, blink and fixation/smooth-pursuit 
periods. 8812 and 10187 saccades (>2°) were extracted 
from the raw eye-position data of the continuous and MTV-
style groups, respectively.  These totals exclude saccades 
that either started or ended outside of the display bounds 
(65 and 34 saccades from the continuous and MTV-style 
groups, respectively). The saccade amplitude criterion (>2°) 
minimizes the rate of false positives in saccade extraction, 
and also focuses the analysis on actual attention shifts 
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rather than mere gaze adjustments during inspection of the 
same object. 

 

Figure 2. A human observer during a calibration session. 

Attention-priority maps 
Attention-priority maps were computed based on a sa-

liency model (see Figure 3). Multi-scale feature pyramids 
were generated at the input frame rate (30Hz), and con-
verted through a series of computations into proto-saliency 
maps (1 per input frame). Each proto-saliency map was fed 
into a two-dimensional layer of leaky integrator neurons 
that accounted for sensory persistence and provided tem-
poral smoothing at 10 kHz. 

This saliency model is used here as a probe for the 
availability of strictly bottom-up influences on attentional 
selection. It should be noted that an earlier version of this 
model was published as part of a larger framework for 
simulating attention shifts (Itti and Koch 2000), which in-
cluded winner-take-all and inhibition-of-return. These 
model components were excluded here, because they do 
not reflect strictly bottom-up influences, and hence would 
have complicated the interpretation of the results. More-
over, it is unclear whether the still image-oriented inhibi-
tion-of-return that was used in previous versions of the sali-
ency model is justified in the context of dynamic scenes. All 
simulations were run on a Linux-based computer cluster 
containing 1,830 dual-processor nodes, which is capable of 
performing 10.75 trillion calculations per second 
(http://www.usc.edu/hpcc). We used only a fraction of the 
available processing power in this study (90 nodes), which 
allowed us to compress months of processing time into a 
few hours. To obviate the need to store or explicitly down-
sample attention-priority maps, we sampled instantaneous 
maps as they were being generated based on the procedure 
described below (the sampling rate was bound by the eye-
tracker frequency, or 240 Hz). 

 

 

Figure 3. Schematic of the saliency model, which takes a video 
stream as input, detects stimuli that stand out in either space or 
time, and outputs a corresponding video stream of attention-
priority maps. Saliency computations are based on a series of 
non-linear integrations of contrast detections across several 
scales and feature dimensions, including color, intensity, orienta-
tion, flicker and motion. These computations are motivated by 
neurophysiological (Frost and Nakayama 1983, Sillito et al. 
1995, Gottlieb et al. 1998), psychophysical (Treisman and Ge-
lade 1980, Polat and Sagi 1994), and theoretical (Koch and Ull-
man 1985) studies. The mathematical formulation of this model 
is described elsewhere (Itti and Koch 2000). 

Prediction of single saccades 
Normalized prediction for all human saccades was cal-

culated by sampling the attention-priority map at the sac-
cade target, and dividing that local value by the global 
maximal value in the instantaneous map. Measurements 
were taken at the end of the fixation period prior to sac-
cade initiation, as defined by the last eye-position sample 
during the preceding fixation. The timing of these meas-
urements is based on the assumption that bottom-up influ-
ences, which affect individual selections in natural condi-
tions, are mostly accrued during the preceding fixation 
(Parkhurst et al. 2002, Caspi et al. 2004). We did not ex-
plicitly take into account known sensory-motor delays in 
saccade execution (Caspi et al. 2004), because such delays 
are already included in the internal dynamics of the sali-
ency model (Itti and Koch 2000). We also did not try to 
optimize the sampling latency, and instead used subjective 
observations to verify that the saliency of newly appearing 
targets reaches its peak value in close proximity to the ini-
tiation of human saccades towards these targets.      

We compensated for potential inaccuracies in human 
saccade targeting and the eye-tracking apparatus by sam-
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pling the maximal local value in an aperture around each 
saccade target. The size of the aperture (r=3.15°) was chosen 
rather arbitrarily – we did not optimize the performance of 
the model by trying different aperture sizes. This issue 
seems peripheral for this study because sampling inaccura-
cies are not expected to differ consistently across the condi-
tions tested here. Furthermore, the baseline measurements 
described below correct for sampling inaccuracies on a sac-
cade-by-saccade basis.  

For each human saccade, we simulated a concurrent 
random selection based on a spatially uniform distribution 
of potential targets. To appreciate the importance of using 
such an adaptive baseline, it is helpful to consider a hypo-
thetical model that achieves optimal hit rates by generating 
uniform attention-priority maps. In the absence of a base-
line, such a non-informative model will be deemed maxi-
mally predictive because human saccades will always target 
the maximal value in the attention-priority map. With the 
random baseline in place, uniform attention-priority maps 
would have no predictive power, because human and ran-
dom saccades will achieve equal hit rates. Generally speak-
ing, the random baseline ensures that both hit rate and 
target selectivity are taken into account when measuring 
model performance. 

Several authors proposed that baseline samples should 
be drawn from a distribution of human selected locations 
rather than a uniform distribution (Parkhurst and Niebur 
2003, Tatler et al. 2005). This proposal is motivated by the 
fact that observers tend to fixate centrally, which is further 
compounded by the central fixation cross that commonly 
precedes stimulus onsets. The rationale for using a non-
uniform baseline is based on the assumption that the hu-
man tendency to fixate centrally arises from motor biases, 
such as a tendency to make short saccades or look towards 
the center of the display. If this assumption is valid, then 
differences between the saliency at human saccade targets 
versus random samples from a uniform distribution may 
not reflect bona-fide saliency effects. Instead, they may be 
entirely attributable to methodological limitations (the cen-
tral fixation cross) and motor biases. Alternatively, the ten-
dency of human observers to fixate centrally may be attrib-
utable to the centrally-biased distribution of saliency and 
objects of interests in photography-based stimuli (Tatler et 
al. 2005). If this assumption is valid, then baseline sampling 
from a distribution of human saccade targets would under-
estimate the actual magnitude of saliency effects.  

The debate over which baseline should be used to 
measure saliency effects is peripheral to this study, as exem-
plified by the results using the ASH metric, which does not 
depend on any baseline-related assumptions. We chose to 
address this issue in this paper because of its important 
implications for developing generic metrics that quantify 
the agreement between human attentional selection and 
attention-priority maps (Mannan et al. 1997, Reinagel and 
Zador 1999, Krieger et al. 2000, Parkhurst et al. 2002, 
Oliva et al. 2003, Parkhurst and Niebur 2003, Torralba 
2003, Itti 2005, Peters et al. 2005, Tatler et al. 2005).  

The ASH metric 
The average saliency at human saccade targets (ASH) 

metric is defined as:  

∑×=
=

N
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where N  is the number of human saccades, and iS  is the 
saliency at the human saccade target prior to saccade initia-
tion (at the end of the preceding fixation).  

The ASH metric computes hit rate while ignoring tar-
get selectivity. As such, it is limited in its applicability to 
comparisons (across viewing conditions or over time), 
which involve equivalent attention-priority maps in terms 
of the distribution and density of values.   

The DOH metric 
The difference of histograms (DOH) metric quantifies 

the human tendency to initiate saccades towards high-
priority targets by measuring the rightward shift of the hu-
man saccade histogram relative to the random saccade his-
togram:  
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where Hi and Ri are the fractions of human and random 
saccades, respectively, which fall in bin i  with boundaries 

nini /,/)1( − , where 10=n  is the number of bins, and 
niWi /)5.0( −=  is the mid-value of bin i . 

The weighting vector reflects the assumption that de-
viations from the baseline in mode-defined “high-priority” 
bins are more informative (should be given stronger 
weights) than similar deviations in “low-priority” bins. The 
rationale for this assumption is that model-defined priority 
should be indicative of functional importance, for example: 
if the tested model assigns higher value to location X com-
pared to location Y then humans should be more likely to 
select location X rather than location Y. We used a linear 
weighting scheme because of its simplicity, but other mono-
tonic functions could serve the same purpose.  

DOH values are expressed as percentages of IDOH , 
which reflects the ideal rightward shift of the human sac-
cade histogram relative to the random saccade histogram:  

8633.0)1()( 1 =−×−= pWWDOH nI  (3) 

Theoretically, the largest possible difference between 
model responses at human vs. random saccade targets 
would occur if human and random saccades always land on 
the maximal and minimal map values, respectively. How-
ever, even if assuming an ideal model that always generates 
a single value at saccade targets, and 0 elsewhere (see Figure 
4), a certain fraction of random saccades would land on the 
maximal map value by chance, with probability:  

0408.0/ == ma NNp  (4) 
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where 49=aN  is the number of pixels in an aperture  
around the saccade target (r=3.15°, approximated by 9 ad-
jacent rows consisting of 1,5,7,7,9,7,7,5,1 pixels), and 

1200=×= mmm HWN  is the number of pixels in the at-
tention-priority map, where 40=mW  is the map width, 
and 30=mH  is the map height. 

 

Figure 4. Hypothetical scenarios of predicting attentional selec-
tion.  
(A) An ideal attention-priority map prior to saccade initiation, 
which contains a single positive value at the saccade target, and 
zero elsewhere. Blue markers depict the eye position of a human 
observer prior to saccade initiation (filled circle), the saccade 
trajectory (arrow), and the saccade target (ring). The red ring 
depicts a concurrent random target. 
(B) Saccade distribution as a function of map values at saccade 
targets. The ideal scenario leads to the maximal rightward shift 
of the human histogram relative to the random histogram. 
(C) A null attention-priority map prior to saccade initiation. Any 
map that contains positive values at random locations would 
qualify as a null map. In this particular example, only a single 
random location is set to a non-zero value. 
(D) same as B, but for the null scenario. Human and random 
saccades are just as likely to land on positive values, leading to 
identical histograms and no rightward shift of the human histo-
gram relative to the random histogram. 
 

In the ideal scenario, the human histogram (saccade 
distribution as a function of map value) will only contain 
saccades in the highest bin (90-100% of the max response), 
while the random histogram will have p−1  saccades in the 
lowest bin (0-10% of the max response), and p  saccades in 
the highest bin. In comparison, the null scenario occurs 
when a model is unpredictive of attentional selection, in 
which case human and random saccades would be just as 

likely to hit high-priority targets, leading to a complete over-
lap between human and random histograms. To summa-
rize, the expected range of DOH values expressed in per-
centages is from 0 (chance) to 100 (ideal). Models that are 
worse predictors than chance would lead to negative DOH 
values. 

The DOH metric has several advantages compared to 
previously suggested metrics (Mannan et al. 1997, Reinagel 
and Zador 1999, Krieger et al. 2000, Parkhurst et al. 2002, 
Oliva et al. 2003, Parkhurst and Niebur 2003, Torralba 
2003, Itti 2005, Tatler et al. 2005), including: linearity, 
meaningful upper bound, priority weighting, directionality, 
and sensitivity to high-order statistics. The strongest alter-
natives to DOH are KL-divergence (Itti 2005) and ROC 
analysis (Tatler et al. 2005). The main advantage of the KL-
divergence and ROC metrics relative to the DOH metric is 
their grounding in information theory and signal detection 
theory, respectively. However, both of these metrics are 
inferior to DOH in the particular context of quantifying 
the agreement between human attentional selection and 
attention-priority maps. For example: both KL-divergence 
and DOH estimate the overall dissimilarity between two 
probability density functions (saliency at human fixated vs. 
random locations), but KL-divergence suffers from the fol-
lowing relative disadvantages: non-linearity (metric values 
should not be compared as interval variables across differ-
ent groups of saccades or models), infinite upper-bound, no 
priority-based weighting, and bi-directionality (no distinc-
tion between instances in which models are more versus 
less predictive than chance). In comparison, the ROC met-
ric (Tatler et al. 2005) estimates the overall discriminability 
between two probability density functions (saliency at fix-
ated vs. non-fixated locations). Similar to KL-divergence, it 
has no priority-based weighting. Moreover, the ROC metric 
provides a misleadingly high upper-bound due to its im-
plicit assumption of linear discriminability.  

Given that the inter-observer agreement in attentional 
selection is imperfect, even the ideal attention-priority map 
should sometimes contain more than one potential candi-
date. Consequently, the probability of random saccades 
landing on valid attention candidates would be higher than 
reported here, leading to a lower normalizing factor (DOH 
upper bound). Hence, the DOH values reported here rep-
resent conservative estimates of bottom-up impact. More 
realistic estimates of the practical upper bound could be 
based on inter-observer agreement, although such estimates 
would necessarily involve additional assumptions. For ex-
ample, there is no consensus on how inter-observer agree-
ment should be quantified in dynamic viewing conditions. 
Our conclusions are independent of the upper bound be-
cause they only depend on estimating differences in bot-
tom-up impact across conditions and over time. We in-
cluded the upper bound in the metric definition because it 
makes its values intuitively more meaningful as conservative 
estimates for the relative impact of bottom-up versus top-
down influences on attentional selection. 
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Results 
The conclusions of this paper are based on the assump-

tion that the more humans act proactively, the less likely 
they are to act reactively, and vice versa. In other words, we 
assume that there is a functional trade-off between bottom-
up and top-down influences  (James 1890, Hernandez-Peon 
et al. 1956, Henderson and Hollingworth 1999). It should 
be noted, however, that bottom-up influences may some-
times overlap rather than compete with top-down influ-
ences. For example, motion contrast signals generated by 
an approaching predator may attract one’s attention in a 
bottom-up manner, which may then help to recognize the 
predator, and trigger top-down attention guidance towards 
the exact same location in the visual field. This example 
notwithstanding, the fact that top-down mechanisms 
evolved at all suggests that they often provide a unique con-
tribution compared to the evolutionary more conserved 
bottom-up influences (Land 1999).          

The trade-off assumption allows us to make quantita-
tive inferences about the impact of memory on attention 
guidance, even though we do not have at our disposal 
computational models of memory-driven attention in real-
istic viewing conditions. Specifically, we infer modulations 
in the impact of top-down influences by quantifying modu-
lations in the impact of bottom-up influences. To this end, 
we set out to establish the availability of potential bottom-
up influences using a computational saliency model (Figure 
2) that has no memory other than sensory persistence (Itti 
and Koch 2000, Itti 2005). The key design features that 
distinguish this particular saliency model from the available 
alternatives (Mannan et al. 1997, Reinagel and Zador 1999, 
Krieger et al. 2000, Oliva et al. 2003, Parkhurst and Niebur 
2003, Torralba 2003, Tatler et al. 2005) are its detection of 
dynamic signals, spatial interactions between local detec-
tors, and neural grounding. While the results presented 
here are not tied in any way to the implementation details 
of a particular saliency model, they do depend on accurate 
estimation of bottom-up influences. In this context, the 
detection of dynamic signals is particularly critical, because 
previous studies have shown that stimulus changes are the 
strongest bottom-up influences on attentional selection in 
dynamic environments (Jonides and Yantis 1988, Gottlieb 
et al. 1998, Findlay and Walker 1999, Itti 2005).  

By highlighting conspicuous locations in the display, 
saliency maps reflect the potential availability of bottom-up 
influences, but not their actual impact on attentional selec-
tion. To measure the bottom-up impact, we developed two 
metrics that can quantify the agreement between human 
attentional selection and attention-priority maps. The first 
metric - “Average Saliency at Human targets” (ASH) - sim-
ply computes the average saliency at human saccade targets. 
The utility of ASH is limited because it is highly sensitive to 
the baseline distribution of saliency values. For example, 
conditions that involve different models and/or set of 
stimuli may lead to very different distributions of saliency 

values and incomparable ASH values. The second metric – 
“Difference of Histograms” (DOH) – is a more powerful 
metric whose values are comparable across conditions that 
may have different baseline distributions of saliency values. 
In the following sections, we focus on data analyses using 
the relatively more generic DOH metric. The results of cor-
responding analyses based on the ASH metric are described 
in the text and shown in Figure 10.  

Average bottom-up impact on attentional se-
lection 

Figure 5 and Figure 6 show two pairs of saccades that 
straddle jump cuts. Eye position markers and the output of 
the saliency model depict the basic measurements that we 
took in order to quantify the impact of bottom-up influ-
ences on attentional selection (see Methods).  

 

Figure 5. Saccades that straddle an MTV-style jump cut 
(mtvclip03, participant MC). The temporal offset between the 
saccade initiation times was 1261.0 ms, during which MC 
smoothly pursued the people jogging to the right, followed by a 
short saccade (<2°) towards the bottom-right (the camera was 
stationary in both clippets, see Movie 1). Superimposed markers 
(yellow) depict the eye-position prior to saccade initiation (filled 
circle), saccade trajectory (arrow), and saccade target (ring). 
Upper filmstrips depict the instantaneous input frames at the time 
of saccade initiation (the last eye tracker sample from the pre-
ceding fixation). Lower filmstrips depict the corresponding atten-
tion-priority maps based on the saliency model (see Figure 2). 
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Figure 6. Same as Figure 5, but for mtvclip04, participant JR. 
The temporal offset between the saccade initiation times was 
431.4 ms, during which JR smoothly pursued the fixated person 
who was moving to the right due to a leftward camera pan (see 
Movie 2).  

Figure 7A shows the distribution of saccades as a func-
tion of normalized saliency in the continuous viewing con-
dition.  

 

Figure 7. Saliency-based saccade distributions, and average 
bottom-up impact on attentional selection.  
(A) The distribution of saccades, pooled over all participants and 
clips from the continuous group, as a function of normalized sali-
ency at saccade target. Red and blue vertical bars represent the 
random and human saccade histograms, respectively.  Numbers 
above histograms depict the bottom-up impact based on the 
saliency model (DOH ± the inter-participant s.d.).  

(B) Hypothetical saccade histograms for the MTV-style group, 
assuming that the impact of top-down influences on attentional 
selection fades within 2 s during inspection of continuous clips.  
(C) Same as B, but assuming that the impact of top-down influ-
ences on attentional selection persists for more than 2 s during 
inspection of continuous clips.  
(D) Same as A, but for the MTV-style group. 

It demonstrates that approximately 30% of the random 
saccades targeted the lowest possible saliency (0-10% of the 
max), while 15% of the human saccades targeted the high-
est possible saliency (90-100% of the max), with the re-
maining saccades targeting intermediate saliency values. 
The random saccade histogram reflects the actual distribu-
tion of saliency values, while the human saccade histogram 
shows the distribution of saliency values sampled by human 
saccades. The DOH metric measures the human tendency 
to visit salient locations by quantifying the rightward shift 
of the human saccade histogram relative to the random 
saccade histogram. 

Assuming equivalent random histograms across view-
ing conditions, three scenarios are possible for the human 
saccade histogram in the MTV-style viewing condition: 

1) The human histogram might be shifted to the left 
compared to its continuous counterpart. This would indi-
cate that human observers were less likely to select targets 
based on bottom-up influences in the MTV-style condition, 
even though the potential availability of valid top-down 
influences was limited compared to the continuous condi-
tion. One possible interpretation would be that the rapid 
succession of novel scenes in the MTV-style condition in-
duced observers to select targets more randomly (i.e., the 
trade-off assumption is invalid). Such a result would not be 
informative for distinguishing between the memory utiliza-
tion theories addressed here. 

2) The MTV-style manipulation might have no effect 
on the relative shift of the human saccade histogram (see 
Figure 7B). This would indicate that top-down influences 
during continuous viewing are rarely utilized beyond 2 s 
(the average length of persistent context in MTV-style clips), 
leading to the same overall bottom-up impact in both view-
ing conditions. This scenario is consistent with either the 
WOM theory or a transient version of the IM theory, in 
which perceptual memory is utilized across fixations, but 
rarely beyond 2 s. 

3) The MTV-style human histogram might be shifted to 
the right compared to its continuous counterpart (see Fig-
ure 7C). This result would indicate that top-down influ-
ences that guided attention beyond 2 s during continuous 
viewing were replaced by bottom-up influences during 
MTV-style viewing. This scenario is inconsistent with the 
WOM theory, and instead supports a more persistent ver-
sion of the IM theory. 

Figure 7D shows the actual saccade histograms in the 
MTV-style condition. The random saccade histogram mir-
rors its continuous counterpart, while the human saccade 
histogram is slightly shifted to the right compared to the 
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continuous condition. However, these small differences 
across viewing conditions are not statistically significant 
(t[14]=1.05, p>0.20, based on the inter-observer s.d.’s 
shown in Figure 8). We obtained similar results using the 
simpler ASH metric, which does not depend on the ran-
dom baseline: the average saliency at human saccade targets 
was 49.15 ± 2.16 in the continuous condition and 50.89 ± 
1.79 in the MTV-style condition (t[14]=0.62, p>0.20). 

 

Figure 8. Average bottom-up impact on attentional selection per 
participant. 
(A) Continuous group. Left ordinate depicts the DOH values 
(black bars). Red error bars depict the bootstrap  s.d. based on 
1000 subsamples (Efron and Tibshirani 1993). White error bars 
depict the weighted inter-participant s.d. based on the number of 
saccades per participant, shown by the right ordinate (gray hori-
zontal bars, log scale).  
(B) Same as A, but for the MTV-style group. 

These results indicate that top-down influences were 
not utilized beyond 2 s in either of the viewing conditions. 
As such, they are consistent with either the WOM theory 
(O'Regan 1992, Rensink 2000), which claims that percep-
tual memory is not utilized across more than 1-2 fixations, 
or a transient version of the IM theory (Land and Furneaux 
1997, Chun and Nakayama 2000), in which perceptual 
memory is utilized across several fixations, but rarely be-
yond 2 s. It is also possible that perceptual memory is util-
ized beyond 2 s, but the memory utilization probe is too 
coarse to detect existing differences between the two view-
ing conditions.  

To address these alternative interpretations in the con-
text of a positive effect, we analyzed the bottom-up impact 
on attentional selection at a finer time scale than 2 s, as 
described in the next section.  

Time course of bottom-up impact on atten-
tional selection 

To reveal memory effects over time, it is informative to 
align this temporal analysis to anchor points in which mem-
ory is invalid, which are followed by potential memory ac-
cumulation and utilization. Theoretically, both clip onsets 
and jump cuts may provide such anchor points, but in 
practice jump cuts are superior for several reasons: 

(1) Prior to clip onsets, observers fixate the center of a 
blank display. In contrast, jump cuts occur while observers 
are actively engaged in visual exploration. As a result, jump 
cuts provide a unique opportunity to examine the time 
course of competitive interactions between old and new 
attention-priority maps. The WOM theory predicts that old 
representations would be overwritten within 1-2 fixations, 
while a strong version of the IM theory predicts that mem-
ory effects due to the preceding clippet would persist across 
jump cuts. Alternatively, memory utilization may be con-
tingent on the availability of persistent context. According 
to this weaker version of the IM theory, jump cuts would 
lead to rapid amnesia, followed by increasing impact of 
memory over time as persistent context builds up within a 
clippet. 

(2) The deliberate initiation of clip onsets by observers 
may introduce unknown anticipatory artifacts. In compari-
son, jump cuts occur irregularly without soliciting input 
from the observer. 

(3) The initial central fixation may conspire with other 
factors and produce an artifactual peak in bottom-up im-
pact following clip onsets (see the “Prediction of single sac-
cades” subsection in the Methods for an in-depth descrip-
tion of this issue). This potential artifact is avoided by ana-
lyzing the time course of bottom-up impact following jump 
cuts, which are not preceded by a predetermined fixation 
location (central or otherwise).  

 (4) Each participant is exposed to approximately 10 
times more jump cuts than clip onsets, leading to the initia-
tion of a correspondingly larger number of saccades follow-
ing jump cuts vs. clip onsets. This order of magnitude dif-
ference in the number of saccades greatly improves the sig-
nal-to-noise ratio and statistical confidence of the results. 

As described below, competing theories of memory 
utilization predict different patterns of memory utilization 
following jump cuts (see Figure 9A):  

(1) Scenario #1 (black plot): The WOM theory 
(O'Regan 1992, Rensink 2000) holds that perceptual mem-
ory is being overwritten every 1-2 fixations even during con-
tinuous viewing. If this is true, jump cuts are expected to 
have little to no effect on the balance between bottom-up 
and top-down influences.  

(2) Scenario #2 (blue plot): the attention system relies 
heavily on perceptual memory, but this reliance is contin-
gent on the availability of persistent context. This version 
of the IM theory (Land and Furneaux 1997, Chun and Na-
kayama 2000) predicts that internal representations elicited 
by clippet X (before the jump cut) will be swiftly replaced by 
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novel internal representations triggered by visual inputs 
from clippet X+1 (after the jump cut). In this case, the im-
pact of bottom-up influences is expected to peak early on, 
because they are faster acting than top-down influences 
(Wolfe et al. 2000, Henderson 2003). After the scene gist 
and layout are recognized, top-down influences are ex-
pected to kick in and gradually replace bottom-up influ-
ences.  

(3) Scenario #3 (orange plot): internal representations 
based on clippet X interfere with the accumulation and 
utilization of novel representations based on clippet X+1. 
This version of the IM theory predicts that bottom-up im-
pact will drop immediately after jump cuts, because at that 
point in time observers will be selecting attention targets 
based on irrelevant attention-priority maps shaped by clip-
pet X (before the jump cut). Assuming that reliance on 
such maps will be transient, the same temporal pattern to 
the one described in scenario #2 is expected to emerge after 
a short delay.  

 

Figure 9. Time course of bottom-up impact on attentional selec-
tion.  
(A) Hypothetical scenarios: 1. memory plays no role in guiding 
attention across fixations (WOM, black plot); 2. memory plays an 
important role in guiding attention across fixations, but only when 
semantically persistent context is available (IM v. 1, blue plot); 3. 
same as 2., but memory persists across jump cuts before it is 
overwritten (IM v. 2, orange plot).  

(B) The actual bottom-up impact as a function of time between 
jump cuts (blue circles). Saccades were pooled over all partici-
pants and clippets, starting from the first jump cut after clip onset 
onwards, and binned into consecutive 250 ms intervals. The 
horizontal displacement of each data point was determined by 
calculating the average delay in saccade initiation relative to the 
preceding jump cut. The vertical sides of error boxes depict the 
bootstrap s.d. of DOH values based on 1000 subsamples (Efron 
and Tibshirani 1993). The horizontal sides of error boxes depict 
the s.d. of the average delay in saccade initiation relative to the 
preceding jump cut. Black bars depict the available number of 
saccades in each temporal bin.  

Figure 9B shows the actual time course analysis as a 
function of time between MTV-style jump cuts. We meas-
ured bottom-up impact as a function of time by grouping 
saccades into consecutive 250 ms intervals between adja-
cent jump cuts. To account for the dead time prior to sac-
cade initiation (Caspi et al. 2004), during which visual in-
puts from clippet X+1 could not possibly affect saccade tar-
geting, the first data point in this analysis only includes 
saccades that were initiated at least 80 ms after jump cuts 
(1264/1537 saccades in the first temporal bin). To confirm 
that the results are not strongly affected by the dead time 
parameter, we performed additional analyses using other 
values (0,150 ms), which led to non-significant differences. 
Bottom-up impact on attentional selection peaked during 
the initial 250 ms after jump cuts, as depicted by the first 
data point (DOH = 28.81 ± 0.93). This result demonstrates 
that the visual system adapts rapidly to changing condi-
tions, and is inconsistent with the notion of memory utili-
zation across jump cuts (scenario #3). The following data 
points show monotonic decreases in bottom-up impact for 
up to 2.5 s after jump cuts, and thus rule out scenario #1 by 
indicating corresponding increases in the impact of com-
peting top-down influences. This inference is further sup-
ported by the fact that observers tended to make more sac-
cades faster in the first 0.5 s compared to the second 0.5 
second following jump cuts.   

To confirm that these results are not artifacts of the 
DOH metric or the temporal binning procedure, we per-
formed additional analyses of bottom-up impact following 
jump cuts based on the simpler ASH metric (see Figure 
10A) and saccade index (see Figure 10B). Regardless of the 
type of temporal analysis that was performed, a consistent 
decrease in bottom-up impact following jump cuts was evi-
dent across 7 consecutive saccades for up to 2.5 s.  

Interestingly, Figures 9 and 10 also show late increases 
in bottom-up impact occurring 2.5 s after jump cuts (this 
trend is only significant in Figures 9B and 10B, which may 
be attributable to the finer temporal resolution of these 
figures compared to Figure 10A). The late increases in bot-
tom-up impact cannot be explained by either of the mem-
ory utilization theories addressed here. Possible interpreta-
tions of this surprising result are discussed below in the 
section: "Attention and scene understanding". 
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Figure 10. Time course of bottom-up impact on attentional selec-
tion.  
(A) Similar to Figure 9B, but based on saccade index between 
jump cuts.  This analysis demonstrates that the trend of weaken-
ing bottom-up impact over time is not an artifact of the temporal 
binning procedure.  
(B) Similar to Figure 9B, but based on the ASH metric, which 
reflects the average saliency at human saccade targets. Error 
bars depict the standard error based on the number of saccades. 
This analysis demonstrates that the trend of weakening bottom-
up impact over time is independent of the random saccade base-
line that is used to compute DOH values. 

Discussion 
The results of this study support and elaborate the IM 

theory (Land and Furneaux 1997, Chun and Nakayama 
2000) by establishing quantitatively the time frame in 
which perceptual memory guides attention during natural 
vision. Specifically, perceptual memory was shown to be 
utilized across 7 consecutive saccades and 2.5 s, even in the 
absence of visually-guided actions (see Figures 9 and 10). 
The peak in bottom-up impact that occurred immediately 
after jump cuts demonstrates that memory utilization is 
strongly contingent on the availability of semantically per-
sistent context. Taken together, these results are inconsis-
tent with the WOM theory (O'Regan 1992, Rensink 2000), 

other than in extreme circumstances, such as immediately 
after jump cuts, when it would be maladaptive to rely on 
perceptual memory for guiding attention. Figure 9 also 
shows evidence of delayed perceptual amnesia occurring 
2.5 s after exposure to novel scenes. This surprising trend 
may reflect novelty or anticipatory effects, as discussed be-
low in the section: "Attention and scene understanding". 

Memory and attention 
The existing controversy about the time frame in which 

perceptual memory guides attention may be attributable in 
large part to the difficulty of generalizing conclusions from 
studies performed in highly artificial laboratory conditions. 
For example, the challenges faced by the attention system 
while searching for small sinusoidal gratings embedded in 
static noise backgrounds (Najemnik and Geisler 2005) may 
be quite different from challenges encountered during a 
visual search and discrimination task involving sparse arrays 
of simple shapes (Maljkovic and Nakayama 1994). Alterna-
tively, the plethora of estimates may reflect a real world 
flexibility of the attention system, which can automatically 
make pragmatic choices between relying on vision versus 
memory, depending on which source of information is 
more likely to improve performance (Oliva et al. 2004). In 
the following sections, we discuss two qualifications for this 
intuitively appealing proposal: 

(1) Contrary to many laboratory conditions, real world 
environments are typically too complex and demanding to 
allow for exclusive reliance on either vision or memory to 
select particular targets. If a savannah monkey is being 
chased by a lion, it better run for its life while simultane-
ously examining the path ahead, keeping track of the lion, 
and looking for alternative escape routes. In such dynamic 
circumstances that involve several different agents, obsta-
cles, and distractors, as well as a large field of view, survival 
depends on efficient allocation of limited visual and mental 
resources. In this example, the chased monkey would likely 
benefit from retaining accurate internal representations of 
pertinent information, such as the lion's location, speed, 
and direction, while ignoring irrelevant information, such 
as the lion's color and texture. In other circumstances, such 
as while searching for fruits embedded in foliage, the rela-
tive importance of colors and textures may increase com-
pared to motion signals, which may be irrelevant (leaves 
blowing in the wind). The important point here is not the 
type of perceptual information that may be retained in dif-
ferent circumstances, but rather the complexity of real 
world challenges, which often necessitate the involvement 
of both vision (or other forms of sensation) and memory.   

(2) Vision and memory are not interchangeable sources 
of information. For example: while watching players taking 
jump shots in a basketball game, our participants some-
times made saccades towards the hoop, even before the ball 
left the player's hands (i.e., before the ball's trajectory could 
have been analyzed based on its visual motion). It appears 
that such attentional selections depended on simultaneous 
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integration of several bottom-up and top-down influences, 
including the movement of the player, prior knowledge of 
what typically happens to balls when players take jump 
shots, and the exact location of the hoop. The conclusion 
that vision and memory can substitute for each other de-
pending on their instantaneous utility may only apply to 
artificial laboratory stimuli that often undermine the utility 
of prior world knowledge.  

Natural versus artificial approaches to study-
ing vision 

In addition to establishing the time frame in which 
perceptual memory guides attention, the more general con-
tribution of this study is in the context of the growing de-
bate about the usefulness of natural versus artificial stimuli 
and tasks to study biological vision (Felsen and Dan 2005, 
Rust and Movshon 2005). This debate has so far focused 
on low-level vision and the response properties of single 
neurons, and here we re-examine it in the context of high-
level vision.  

Proponents of the artificial approach argue that it is the 
best way to perform hypothesis-driven experiments, and 
contend that it is sufficient for characterizing neural 
mechanisms employed in everyday life.  Furthermore, they 
criticize the natural approach as being too difficult and also 
unhelpful for generating novel hypotheses. In contrast, 
proponents of the natural approach point to the slow pro-
gress in understanding neural computation at the single 
neuron level and even more so at the system level. This 
state of affairs may be attributable to several factors: 

1) The inherent complexity of biological brains. 
2) The difficult technical challenges of collecting net-

work-wide neural data with sufficient spatial and temporal 
resolutions. 

3) The relevance critique: highly artificial stimuli and 
tasks may lead to results that are unrepresentative of how 
brains operate in the real world.  

As for the first two factors, there is little one could do 
other than develop new technologies, and perhaps also 
shift more resources to studying simpler organisms, such as 
invertebrates, insects, and rodents. For those who prefer to 
focus on humans, the methodology presented in this paper 
shows that natural stimuli and tasks can be used to do hy-
pothesis-driven research. The "Attention and scene under-
standing" section below also discusses several novel hy-
potheses that arise from this study.   

The relevance question may also be raised in the con-
text of this study, given that jump cuts are highly disruptive, 
and may induce unnatural visual behavior. The general 
answer to this criticism is that one should be willing to sac-
rifice some realism to gain explanatory and predictive pow-
ers. The key question is whether the sacrifice undermines 
the real world relevance of the study, which seems unlikely 
in this case for several reasons: 

1) Jump cuts are ubiquitous in motion pictures, even 
though people are often not aware of their occurrence 

(Hochberg 1986, Anderson 1996).  The use of jump cuts 
was pioneered by Jean-Luc Godard in his 1960 movie 
Breathless, and later popularized by MTV in the 1980s 
(Thompson and Bordwell 2003). Contrary to earlier predic-
tions (Gibson 1979/1986), human perception does not 
appear to be adversely affected by jump cuts. On the con-
trary, many people (especially younger ones…) seem to be 
particularly attracted to MTV-style stimuli, perhaps because 
of the higher information content and associated excite-
ment compared to continuous stimuli. 

2) Saccades make continuous real world stimuli appear 
MTV-like on the retinas of human observers. This striking 
phenomenon was recently demonstrated by movie clips 
recorded using a head-mounted camera that was moved in 
real time according to three-dimensional eye movements 
(Wagner et al. 2006).    

The take-home message is that hypothesis-driven stud-
ies of high-level vision can and should rely on much more 
realistic stimuli than dots, bars, gratings, and plaids, the 
bread and butter of traditional psychophysics. 

Neural Implications 
The MTV-style manipulation provides a controlled 

stimulus-based technique for repeatedly inducing amnesia, 
followed by cumulative reliance on top-down influences. 
This technique could be useful for determining the func-
tional connectivity between brain areas that control atten-
tional selection. Specifically, recurring surges in activation 
after jump cuts would highlight brain areas that are mainly 
involved with bottom-up processing, while increased activa-
tion over time between jump cuts would highlight top-
down areas. It remains to be seen whether the currently 
available neuroimaging technology is powerful enough for 
this purpose, but recent advances in fMRI (Hasson et al. 
2004) and EEG (Michel et al. 2004) seem promising. Simi-
larly, the repeated disruption of top-down signals triggered 
by jump cuts might also be useful for characterizing the 
response properties of individual neurons. By dissociating 
bottom-up from top-down input sources, MTV-style stimuli 
could help remove some of the confounds that plague tra-
ditional approaches for characterizing neuronal receptive 
fields (Lehky and Sejnowski 1988, Olshausen and Field 
2005). 

Attention and scene understanding 
Variants of the MTV-style manipulation could also be 

instrumental for studying interactions between attention 
and scene understanding. It is often assumed that attention 
plays a minor role in scene understanding because people 
can recognize the gist of static scenes very rapidly without 
making any attention shifts (Henderson 2003). However, 
accurate perception of dynamic scenes, which pose unique 
and more complex perceptual challenges compared to static 
scenes, may require well-coordinated attentional selections. 
Suggestive evidence for this proposal was provided by a 
study of people diagnosed with autism, which demon-
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strated strong correlations between anomalous attentional 
selections and difficulties in comprehending social interac-
tions (Klin et al. 2002).  

In this context, the late increases in bottom-up impact 
(see Figure 9B) may provide fertile ground for future re-
search. First, one should consider the possibility that this 
surprising trend may simply reflect an artifact due to insuf-
ficient data. Starting from the first second onwards, later 
temporal bins in Figure 9B are based on relatively fewer 
clippets and contain fewer saccades than earlier temporal 
bins. For example: the last two temporal bins in Figure 9B 
contain 219 and 104 saccades, compared to 1264 and 1436 
saccades in the first two temporal bins. Consequently, the 
reliability of DOH values decreases over time, as reflected 
by the relatively larger standard errors in later temporal 
bins. While it would be important to replicate this result 
using more data, the >300 saccades in the last two temporal 
bins seem to provide sufficient statistical power when using 
the bootstrapping technique. The rest of this section de-
scribes two alternative explanations for this result: 

1) One hypothesis is that participants learned to an-
ticipate the occurrence of jump cuts over the course of the 
experiment by estimating some sort of a hazard function.  
Indeed, it has been shown that humans can exploit knowl-
edge of elapsed time to anticipate sensory events (Eagleman 
et al. 2005). Such anticipations may have prompted observ-
ers to shift to “bottom-up mode” when they perceived a 
high likelihood of an impending jump cut, thus minimizing 
the frequency of anomalous memory-driven selections.  

2) Alternatively, the late increases in bottom-up impact 
may reflect novelty effects arising from the typical rate of 
change in natural stimuli. According to this hypothesis, 
observers shifted to “bottom-up mode” because of novel 
bottom-up influences that are likely to indicate important 
new events or changes to previously attended targets.  

Theoretically, both novelty and anticipatory effects may 
conspire in biasing observers to shift to “bottom-up mode”. 
To test the relative contributions of novelty versus anticipa-
tory effects, future studies could manipulate the rate of 
stimulus changes, such as by extending the range of clippet 
lengths from 1-3 s to 3-5 s. If the late increases in bottom-
up impact would not be affected by this manipulation, then 
the novelty hypothesis would be supported. In contrast, the 
anticipation hypothesis predicts that the bottom-up in-
creases reported here would be delayed further when clip-
pets are longer (e.g., occur 4.5 s instead of 2.5 s following 
jump cuts). Further testing of these hypotheses could be 
done by shortening clippets (e.g., to 1-2 s). In this case, the 
anticipation hypothesis predicts that the late increases in 
bottom-up impact would still occur shortly before jump 
cuts (i.e., sooner than reported here). On the other hand, 
the novelty hypothesis predicts that shorter clippets might 
not allow for enough stimulus changes to accumulate, thus 
eliminating the late increases in bottom-up impact. A po-
tential complication of shortening clippets is that the be-
havior of participants may become idiosyncratic if the 

length of persistent context becomes too short for allowing 
natural visual exploration.  

Other experiments could manipulate the frame rate 
within clippets while preserving the same distribution of 
clippet lengths across conditions. According to the antici-
pation hypothesis, both static and dynamic scenes should 
lead to the same anticipatory effect, because it is the im-
pending jump cut rather than the stimulus content, which 
prompts observers to shift to "bottom-up mode". However, 
if the late increases in bottom-up impact reflect novelty ef-
fects, then such increases are only expected to occur during 
inspection of MTV-style clips composed of dynamic scenes. 
The rationale behind this prediction is that static scenes 
contain a constant baseline contribution of bottom-up in-
fluences, and thus lack the stream of novelty that character-
izes dynamic scenes.  

The irregular timing of jump cuts combined with the 
swiftness of human perception (Henderson 2003) reduce 
the utility of anticipatory shifts to "bottom-up mode". It 
seems doubtful that the benefits of such anticipations 
would be large enough to offset the potential costs, includ-
ing the need to continuously estimate the likelihood of an 
impending jump cut and the suboptimal selection of targets 
before the jump cut. We thus propose that the following 
chain of events accounts for the time course of attentional 
selection revealed by this study (see Figure 9B): 

(1) Once a novel scene is experienced but before scene 
recognition (e.g., immediately following jump cuts), the 
impact of bottom-up influences on attentional selection is 
most pronounced. During this short period of time, top-
down influences are unreliable, and bottom-up influences 
represent the best guess of where pertinent information is 
located.  The fact that observers tended to make more sac-
cades faster in the first 0.5 s after jump cuts than later on 
further supports this interpretation, given that bottom-up 
influences are known to be faster acting than top-down in-
fluences (Wolfe et al. 2000, Henderson 2003) 

(2) After the scene is recognized, prior knowledge and 
perceptual memory become increasingly more reliable, lead-
ing to increases in the impact of top-down influences on 
attentional selection, coupled with corresponding decreases 
in the impact of bottom-up influences.  

(3) As time goes by between jump cuts, objects and peo-
ple move around compared to their initial positions, 
prompting observers to increase again their relative sensitiv-
ity to bottom-up influences.  

This chain of events may repeat itself during continu-
ous viewing conditions, leading to oscillatory changes in 
the balance between bottom-up and top-down influences 
on attentional selection. Future experiments with a larger 
number of participants would be needed in order to detect 
such oscillatory patterns in continuous viewing conditions. 
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