
Mobile Robot Vision Navigation & Localization Using Gist and Saliency

Chin-Kai Chang* Christian Siagian* Laurent Itti

Abstract— We present a vision-based navigation and localiza-
tion system using two biologically-inspired scene understanding
models which are studied from human visual capabilities: (1)
Gist model which captures the holistic characteristics andlayout
of an image and (2) Saliency model which emulates the visual
attention of primates to identify conspicuous regions in the
image. Here the localization system utilizes the gist features
and salient regions to accurately localize the robot, whilethe
navigation system uses the salient regions to perform visual
feedback control to direct its heading and go to a user-provided
goal location. We tested the system on our robot, Beobot2.0,
in an indoor and outdoor environment with a route length
of 36.67m (10,890 video frames) and 138.27m (28,971 frames),
respectively. On average, the robot is able to drive within 3.68cm
and 8.78cm (respectively) of the center of the lane.

I. INTRODUCTION

Ability to go to specific locations in one’s environment in a
timely manner is fundamental in creating a fully autonomous
mobile robotic system. To do so, a robot not only has to be
able to move about its environment, but it also has to identify
its location. To solve this problem, available approaches
use proximity sensors such as Laser Range Finder (LRF),
cameras, encoders, and Global Positioning System (GPS).
While robot navigation and localization have made strides
indoors (using LRF [1], [2]) and on the road (like in DARPA
Grand Challenge, relying on a combination of LRF, GPS, and
visual road recognition [3], [4]), systems that can perform
well in the in-between settings such as a college campus,
where a robot needs to travel both inside buildings (through
hallways) and outside (between large structures), are still
lagging behind. For these scenarios, vision, human primary
perception, is ideal because of its versatility in recognizing a
variety of environments. However, because of the complexity
of a camera image, vision also comes with many challenges
such as lighting conditions, perspective, and occlusions.
Observe figure 1 for an example of a cluttered outdoor
environment that our robot Beobot2.0 is operating in.

In the current state of robotic research, vision-based nav-
igation and localization are usually dealt with separately.
For the most part, available literature concentrates more
on one but not the other. Researchers who work on vision
localization manually control their robots to move about the
environment. On the other hand, visual navigation is usually

* equal authorship.
C. Chang and C. Siagian are with Department of Computer Sci-

ence, University of Southern California, Hedco Neuroscience Building -
Room 10, 3641 Watt Way, Los Angeles, California, 90089-2520, USA.
(chinkaic,siagian)@usc.edu

L. Itti is with the Faculty of Computer Science, Psychology,and Neu-
roscience, Univesity of Southern California, Hedco Neuroscience Building
- Room 30A, 3641 Watt Way, Los Angeles, California, 90089-2520, USA.
itti@pollux.usc.edu

Fig. 1. Beobot2.0 navigating in a cluttered environment.

performed for a single predefined route, where robots do
not have to decide on where to turn when encountering an
intersection. This split in effort, is done for good reasons, in
that each individual problem is difficult by itself.

Although robust vision localization that can operate in all
environment are not yet available, state of the art systems can
now localize in large areas such as city streets [5], [6], across
multiple seasons [7], and in many different indoor [8], [9],
[10] and outdoor environments [11], [12], [13]. However,
most localization systems are trained and tested while the
robot’s movement is controlled by a user. The problem with
manual driving is that the robot’s point of view comes from a
perfect control. When one wants to integrate the localization
module with the rest of the system, including navigation,
the robot may need to recognize views it has not seen. For
example, the views from the same location with different
robot headings, can be strikingly dissimilar. One way to
alleviate this issue is through the use of omni-directional
cameras (as opposed to a regular straight-forward cameras)
[14] as the images produced can be realigned.

On the navigation side, there are two basic types of
systems. One uses a ”teach-and-replay” paradigm, and the
other tries to recognize the direction of the road. In the
former [15], [16], [17], the robot first is manually driven
through a pre-specified path, while recording all the pertinent
information necessary to replay the route being taught. Then,
in the replay phase, the robot compares the stored visual
features with what is currently seen to compute the positional
difference, which is used as a control feedback to stay on
the path. This type of system, which utilizes features such
as KLT [18] or SIFT [19], needs to recognize surrounding
landmarks to navigate. In other words, localization within

the path (not throughout the environment) is required. This
is done by retracing a sequence of keyframes, keeping track
of which frame the robot currently is at. When matching
between the current scene and keyframe fails, the system
has to re-synchronize itself. This can take extra time as
rematching from the start of the series is required.

On the other hand, road recognition systems, instead of
identifying landmarks, try to recognize the road’s appearance
as well as boundaries. Some systems rely on recognizing
road edges (based on the intensity of images, for example)
that separate the road from its surroundings [20]. Others do
so by performing color and texture segmentation [21], [22].
In addition, there are systems that combine both techniques
[23], [24], [25] to extract the road region in the image.
However, for these type of systems, the robot merely follows
the road and keeps itself within its boundaries, not knowing
where it will ultimately end up.

If a system has both localization and navigation, we can
command it to go to any goal location in the environment
by using the former to compute a route and the latter to
execute movements. In addition, such an integrated system
can internally share resources (visual features, for one) to
make the overall system run more effectively. However, this
also poses a challenging problem of integrating complex sub-
systems. In spite of the difficulties, many vision localization
[26] and navigation [15] systems have discussed that it is
advantageous to combine localization and navigation. Ours
is such an implementation.

We present a mobile robot vision system that both lo-
calizes and navigates by extending our previous work of
Gist-Saliency localization [11]. Instead of just navigating
through a pre-specified path (like teach-and-replay), the
robot can execute movements through any desired routes
in the environment (e.g., routes generated by a planner).
On the other hand, unlike teach-and-replay, a stand-alone
localization system allows the navigation system to not be
overly sensitive to the temporal order of input images. We
tested the system (reported in section III) in both indoor
and outdoor environments, each recorded multiple times to
validate our approach.

II. DESIGN AND IMPLEMENTATIONS

Our presented mobile robot vision navigation and local-
ization system (illustrated in figure 2) utilizes biologically
inspired features: gist [27] and salient regions [11] of an
image, obtained from a single straight-forward view camera
(as opposed to omni-directional). Both features are computed
in parallel, utilizing shared raw Visual Cortex visual features
from the color, intensity and orientation domain [28], [29].
Here we define gist as a holistic and concise feature vector
representation of a scene, acquired over very short amount
of time. Salient regions, on the other hand, are obtained
using the saliency model [28], [29] which identifies parts
of an image that readily capture the viewer’s attention. As
demonstrated by previous testings [11], the likelihood that
the same regions will pop out again when the robot revisits
particular locations is quite high. The actual matching is done

through SIFT keypoints extracted within each salient region.
It is important to note that matching keypoints within small
region windows instead of a whole image makes the process
much more efficient.

Our localization system [11], [30] estimates the robot’s
location in an environment represented by a topological
map. The map denotes paths as edges, and intersections
as nodes. We also define the term segment as an ordered
list of edges with one edge connected to the next to form
a continuous path (an example is the selected three-edge
segment, highlighted as a thicker green line, in the map in
figure 2). Geographically speaking, a segment is usually a
portion of a hallway, path, or road interrupted by a crossing
or a physical barrier at both ends for a natural delineation.
This grouping is motivated by the fact that views/layouts in
one path segment are coarsely similar. Because of this, the
system can use the gist vector to classify an input image to
a segment.

After the system estimates the robot’s segment location,
we then try to refine the coarse localization estimation by
matching the salient regions found in the input image with
the stored regions from our landmark database (obtained
during training). Note that this process is much slower than
segment estimation but produces a higher localization reso-
lution. At the end, both gist and salient region observations
are incorporated in a back-end probabilistic Monte Carlo
Localization to produce the most likely current location.

In our training procedure, we run the robot through the
environment once. There is no camera calibration nor manual
selection of the landmarks. In addition, the training procedure
[30] automatically clusters salient regions that portray the
same landmark. And, thus, a landmark, a real entity in the
environment, is established by a set of salient regions. In
a sense, the regions become evidences that the landmark
exists. Furthermore, these regions are stored in the order of
discovery. That is, we keep a temporal order of the regions as
seen when the robot traverses an environment. This becomes
important when we try to navigate using these landmarks.

As a result of the compact topological map representation
(figure 2), we do not localize the robot laterally on the lane
nor do we have an accurate knowledge of the robot’s heading
with respect to the road. However, for each database salient
region, we do not only record its geographical location, but
also register its image coordinates to perform navigation.
That is, we minimize the difference in image coordinates
between the input region and its corresponding database
region to bring and keep the robot at the “correct” position on
the lane (same position as during training). In the following
sub-section II-A, we describe the main contribution of this
paper, the navigation portion of the system and its interaction
with the localization component.

A. Navigation System

As shown in figure 2, localization and navigation run in
parallel in the system. When a new set of input salient regions
arrive, the localization module starts its landmark database
search (denoted as1a in the figure). At the same time, the

9
8

6

5

3 4

1

2

Localization

Navigation

Motion Planner

Path

Planner

Identified

Landmark

Tracker

Input

Goal Location

Input

Landmark

Tracker

Lateral

Difference

Estimator

1a

1b

Fig. 2. Diagram of the overall vision navigation and localization system. From an input image the system extracts low-level features consisting of
center-surround color, intensity, and orientation that are computed in separate channels. They are then further processed to produce gist features and salient
regions. We then compare them with previously obtained environment visual information to estimate the robots location. Furthermore the identified salient
regions are used to direct the robot’s heading, to navigate itself to its destination.

navigation module also tracks these regions (1b). By tracking
them, when the regions are positively identified at a later time
(usually database search finishes in the order of seconds),
even if the robot has moved during the search process, we can
still locate the salient regions in the image. When a tracked
region is lost or moves away from the robot’s field of view,
we simply tell the localizer to stop searching for a match.
Note that, while the search is in progress, the gist-based
segment estimation result, which is available instantaneously
on every frame, is used to maintain the location belief.

When the database search concludes, if there is at least one
matched region, the localization system informs the naviga-
tion system that these regions can be used for navigation.
The navigation system first transfers the regions tracked by
the input landmark tracker to the identified landmark tracker.
A second tracker is needed to free up the first one for
newer, yet to be identified landmarks from the current frame.
The identified landmark tracker keep track of the transferred
regions so that we can utilize them for visual navigation
cues for a period of time (until the newer landmarks are
recognized).

The navigation system calculates the image coordinate dif-
ference (we call this lateral difference) between the tracked
region and the matched database region (section II-A.2) as a
feedback to the motor controller. In addition, we also bias the
salient region matching (explained in section II-A.3) when
the robot is at the intersections so that it can correctly direct

itself to the goal location.
We start by explaining in details the salient region tracking

process in the following sub-section II-A.1.

1) Salient Region Tracker:Figure 3 illustrates the salient
region tracking procedure. The tracker utilizes a template
matching algorithm (OpenCV implementation with squared-
error distance) on conspicuity maps [28], [29] from the 7
Visual Cortex sub-channels used in saliency and gist com-
putation (see Figure 2; the sub-channels correspond to 4 edge
orientations, 2 color contrasts, and luminance contrast).For
each region, we perform template matching on each map (7
associated templates) before summing the resulting distance
map. The templates are initialized using 7x7 windows from
each conspicuity map, centered around the salient point of
the region. The conspicuity maps are 40x30 pixels in size,
downsampled from the original 160x120 input image size,
which is acceptable given that we are mostly tracking large
salient objects. We then weigh the summation based on the
distance from the previous time step for temporal filtering.
The coordinate of the minimum value is the predicted new
location.

In addition, in each frame, we update the templates for
robustness (lighting change, etc) using the following adaptive
equation:

Tt,i = .9 ∗ Tt−1,i + .1 ∗ Nt−1,i (1)

Fig. 3. Diagram for salient region tracking. The system usesconspicuity
maps from 7 sub-channels to perform template matching tracking. Before
selecting the predicted new location, the system weighs theresult with
respect to the proximity of the point in the previous time step. In addition,
we also adapt the templates overtime for tracking robustness.

Here, Tt−1,i is a region’s template for sub-channeli at
time t − 1, while Nt,i is a new region template around the
predicted location. Before the actual update, we added a
threshold to check if the resulting template would change
drastically; a sign that the tracking may be failing. If this
is the case, we do not update, hoping that the error is just
coincidental. However, if this occurs three times in a row,
we report that the tracking is lost.

This process has proven to be quite robust because, aside
from following regions that are already salient, the variety of
domains means that for a failure to occur, noise has to corrupt
many sub-channels. In addition, the noise is also minimized
because the saliency algorithm uses a biologically inspired
spatial competition for salience (winner-take-all) [28],[29],
where noisy sub-channels with too many peaks are subdued.
Also, the advantage of re-using conspicuity maps is that the
process is faster. But, more importantly, tracking requires no
recall of stored information, which allows the procedure to
be scalable in the size of the environment. In the current
implementation, the system is usually able to track a salient
region for up to 100 frames and the process only takes 2ms
per frame for each salient region. On each frame, we track
up to 10 regions: 5 for the ones already recognized (in the
identified landmark tracker), and 5 more that are currently
being matched (in the input landmark tracker).

Before we calculate the lateral difference from the
database match result, we perform a forward projection to
the current frame to take into account the duration of the
matching process. The search outputs a match between an
input region from many time steps ago and a region in a
database which most closely resembles it. However, since we
started the search, that region has undergone transformation
as the robot has moved and changed its pose. What we now
actually want is a database region that most closely resembles
the input region as it appears in the current time step.

Fortunately, in the database, each landmark is represented
by a set of views (regions), sorted temporally during training
as the robot moves through a path. Thus, the forward
projection process is basically a re-matching between the
tracked region at the current time frame and a region from

the matched database landmark that is usually only a few
indexes away from the original match. This procedure takes
about 10ms and is illustrated in figure 4.

Fig. 4. Forward projection procedure. A detected regionRi from time
T = ti (top left of the figure) is successfully matched to salient region
Lj,k, p frames later. This is the region that belongs to LandmarkLj with
index k (denoted in solid red at the right side of the figure), wherek is
one of the multiple views of the landmark recorded during training. At this
current timeT = ti+p, the regionRi has changed its appearance as the
robot moves (now denoted asRi+p on the bottom left side of the figure).
We project forward the matched regionRi by finding a corresponding match
for Ri+p in landmarkLj , in this case with regionLj,k+l (denoted in solid
green at the right side of the green) , which was found furtherin the path
during training.

2) Lateral Difference Estimation:To estimate the lateral
difference between image coordinates of the database and
input region we utilize the SIFT keypoints match-pairs from
all forward-projected matched salient regions. Here we adapt
an algorithm by [15] onto the salient regions. That is, instead
of using a single whole image from a training run, we
use matched database regions that may come from different
time steps. Each keypoint pair (from each region) votes for
candidate heading directions. We discard the vertical coordi-
nate difference, and are only concerned with the horizontal
component as we assume that the robot stays on the ground
at all times.

The algorithm is stated below and is illustrated in figure 5.
We consider three scenarios for three resulting headings (left,
straight, right). We defineXt as the horizontal coordinate
of the SIFT keypoint in a matched input region andXd as
the corresponding point of the landmark database region.
In addition, we also set the origin to be at the center of
the image, denoted as broken lines in the middle of each
case in the figure (there are two cases for each of the three
scenarios). This way,Xd < 0 means the keypoint is to the
left of the midline:

• if(Xt > Xd andXt > 0), then turn right
• else if(Xt < Xd andXt < 0), then turn left
• else, go straight
Our robot, Beobot 2.0 [31], uses an electric wheelchair

base and has a two-wheel differential drive. It is controlled
by commanding a translational and rotational speed between
-1.0 and 1.0 (full speed backward to full speed forward, and
full speed clockwise turn to full speed counter-clockwise

Case1 Case1 Case1Case2 Case2 Case2

Le ft Stra igh t R ight

Fig. 5. Diagram for the voting scheme of navigation algorithm. There
are three scenarios where the robot either moves left, straight, or right.
For each scenario, there are two cases depending on the sign of Xd, the
corresponding point of the landmark database region. IfXd is to the left
of the center of the image (the dashed line that goes through the origin of
the image coordinate system), thenXd < 0. The same applies forXt, the
horizontal coordinate of the keypoint in a matched input region. If Xt < Xd

andXt < 0, then turn left, else ifXt > Xd andXt > 0, then turn right.
If neither, then go straight.

turn, respectively). We keep the translation at constant speed,
while the turn speed is proportional to the average horizontal
pixel difference. Note that the direction of turn is obtained
through the voting process above.

We find that our well-isolated salient regions make for
clean correspondences that, for the most part, overwhelm-
ingly agree with one of the three candidate directions.
This is because, by using a compact region (as opposed
to entire image like the original [15] algorithm), we avoid
matching other distracting portions of the image, which may
be occupied by dynamic obstacles, such as people.

3) Path Planning Biasing:What we have implemented so
far is to a policy that allows the robot to follow a continuous
portion of the route, along the edges of the topological map.
However, when the robot arrives at an intersection, there
may be multiple paths that stem out from it. The system
may encounter a situation where it simultaneously recognize
regions that are going to lead the robot to two or more
different directions. For example, regions from the segment
the robot is currently on may suggest it to continue to go
straight, while regions on an incident segment are going to
suggest it to make a turn. Here, we consider the task, the
assigned goal location, by consulting with the path planner.

The system first checks with the localization sub-system to
see whether it is approaching an intersection. If so, the path
planner then bias the localization system to first compare
input regions with database regions along the path to the
goal, before expanding the search. In addition, for subsequent
matches, we also prioritize comparison with database regions
that are further along the intersection turn. This way, the
robot is going to follow the same sequence of region matches
that are established during training, which is critical for
successful turning.

At the end, for failure recovery, whenever the robot cannot
recognize any salient region for a period of time (we set
for five seconds), it stops and spins in place to scan its
surrounding. Note that the path planner re-plans every time

the localizer sends out a new current location to make correct
adjustments even when the robot loses its way.

In summary, the procedure goes as follows: after the go-to-
goal command is received from a user interface, the system
starts by recognizing at least one salient region to localize.
Once the robot is successful in doing so, it plans its path
to the goal location. The navigation system then uses the
initially recognized salient regions to properly move closer to
its goal. During this movement, the robot continuously try to
identify newer regions to follow, to advance its mission. This
procedure repeats until the robot arrives at its destination.

A snapshot of how the overall system generates robot
motion from a frame can be observed in figure 6.

III. TESTING AND RESULTS

We test the system using our robot, Beobot 2.0 [31]
(observe figure 1), which is 57cm in length and 60cm in
width. The camera itself is about 117cm above the ground.
Beobot 2.0 has a computing cluster of eight 2.2GHz Core2
Duo processors. We use four computers for localization, one
for navigation, three for future use.

We select two different sites, an indoor and an out-
door environment, for testing. The first is the hallways
of 27.13x27.13m HNB building, with a corridor width of
1.83m. The path forms a square with 90 degree angles
when turning from one segment to another (observe the map
in figure 6). The second one is the 69.49x18.29m outdoor
engineering quad (Equad), where there are buildings as well
as trees, with a pathway width of 3m. Snapshots of each
environment are shown in figure 7.

Despite the fact that, in our testing environments, we
only map one option on each junction, the path planner still
perform its job of selecting that option. Note that picking the
right junction to proceed to the goal trivial using shortest-
path in the graph-based topological map. On the other hand,
the actual turning execution on the chosen junction is much
more difficult.

Fig. 7. Scene examples of the HNB and Equad environment.

For each environment, we run the robot through all paths
once for training. We then run the robot five times indoors
and three times outdoors for the testing phase. During testing,
we record the trajectory of the robot odometry and its
localization belief. We set the ground truth of the robot
location by using manually calibrated odometry reading. The
baseline for an ideal navigation itself is the center of the path.

The results for both sites are shown in table I, which
specifies the sites’ dimensions and length of traversal. In

S2 S3 S4

SEG1

SEG3

SEG4SEG2

S1

Fig. 6. A snapshot of the localization and navigation system. The input (top left) image contains the salient region windows. Green windows mean
a database match, while reds are not found. Below the input image, to the left, is the segment estimation computed from gist features. There are four
segments in the environment. Here the actual segment 4 is classified as second most likely (to segment 1) by the system. To the right of the segment
estimation result are the matched salient regions drawn at the original detected image coordinate. Next to the input image is the robot state projected onto
the map: cyan points are the location particles (hypotheses) generated by the Monte Carlo Localization algorithm, the yellow points are the locations of
the matched database salient region, the green circle (the center of the blue circle) is the most likely location. The radius of the blue circle is equivalent
to 3m. The robot believes that it is 4 meters from the intersection, which is correct within 20cm. On the navigation side (underneath the map), the robot
is turning to the left as decided by the keypoint votes.

TABLE I

NAVIGATION AND LOCALIZATION SYSTEM PERFORMANCERESULTS

Site Site Traversal Nav. Loc.
Dimensions Length Error Error

HNB 27.13 x 27.13m 36.67m 3.68cm 1.15m
Equad 69.49 x 18.29m 138.27m 8.78cm 5.31m

addition,nav. error and loc. error refer to the navigational
error (deviation from center of the path) and localization
error (global robot location discrepancy), respectively.

For the first site, HNB, the result is graphed in figure 8. For
both the top and bottom plots, the x-axis denotes the ground
truth location of the robot, 0 being the starting location.
Here, the robot runs for 36.67m. The y-axis for the top plot
indicates the localization error (in meter, longitudinally along
the path) as the robot moves forward, while the y-axis for
the bottom plot reports the lateral deviation from the center
of the hallway (also in meter, transversally to the path). We
divide (using vertical lines) and label the route into segments.

Note that during the segment transition, the navigation error
shoots up as makes its turn. In addition, when the robot
arrives at the next segment, it then proceed to recenter itself.

As shown in the graph as well as by observation,
Beobot2.0 is able to traverse the route, on average, within
3.68cm of lateral deviation from the center of the hallway,
without hitting the wall, which we believe is the more impor-
tant fact. The longitudinal localization error itself averages
to 1.15m. Fortunately the longitudinal error, in most all
occasions, do not misplace the robot to a different segment.
It merely places the robot ahead or behind the actual location
in the route. The reason for why there is so much difference
(a factor of 30) between the localization and the lateral
deviation error, is because the way the landmarks are viewed
with a forward-facing camera. That is, the system is very
sensitive to transverse translation, but not as sensitive to
longitudinal translation.

The results for testing in the outdoor site, Equad, is shown
in figure 9, using the same format as the previous graph
for HNB. Beobot2.0 is able to navigate with 8.78cm of
lateral deviation from the center of path, on average. The

0 5 10 15 20 25 30 35 40
0

1

2

3

Localization Error

distance (m)

e
rr

o
r

(m
)

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

Navigation Error

distance (m)

e
rr

o
r

(m
)

Segment 1

Segment 4

Segment 2 Segment 3

Segment 1 Segment 4Segment 2 Segment 3

Fig. 8. Result for the indoor HNB testing. Graph labels are described in
the text.

localization error itself averages to 5.31m over a route with
a total length of 138.27m. Given that the length of the route
is 3.77 times that of the indoor data, both localization as well
as the lateral deviation error do not increase uncontrollably.
For outdoor navigation, the lateral deviation errors obtained
here are acceptable as the lanes (3m wide) in the environment
are about two times wider.

The lateral deviation error increases mainly because the
localization module cannot find salient regions for a longer
period of time, which makes the robot lose its navigation
cues. This usually occurred when localization was failing
(note the spikes in the localization error graph). We attribute
this to the added difficulties in recognizing landmarks out-
doors, where lighting conditions are not constant. Note that
we train and test the system on separate days. On the other
hand, our system has a very low likelihood of false positive
identification as it has a high threshold for matching the
landmarks. That is, in the event where the robot’s location
is misplaced, the navigation system will not produce false
cues to follow. This allows the system to stop, recover, and
proceed forward. There are, however, times where we have
to stop the robot because it has swerved off the pathway
considerably and gets dangerously close to a ditch or about
to hit a pole or a bench.

IV. DISCUSSION AND CONCLUSIONS

In this paper we present a robot vision navigation and
localization system. It uses salient regions to both localize
the robot as well as to direct its heading. By having both
mobile capabilities, our system can perform a user-specified
command to go to a goal location. This is an extension
to most available systems, which are either just a vision
localization system (with the movement controlled by a
user) or a vision navigation system (which can only perform
navigation from pre-specified starting and ending locations).

For the most part, the robot is able to navigate using
landmarks that are identified by the localizer. However, this is
also a source of problem in that if the robot fails to recognize

0 20 40 60 80 100 120 140
0

10

20

30

Localization Error

distance (m)

e
rr

o
r

(m
)

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

Navigation Error

distance (m)

e
rr

o
r

(m
)

Seg. 2 Segment 3Segment 1

Seg. 2 Segment 3Segment 1

Fig. 9. Result for the outdoor Equad environment. Graph labels are
described in the text.

a landmark, it cannot navigate. The next step to improve
the system is to have robot visually navigate itself without
localization during those times. We suggest two different
vision techniques. One is road recognition to identify the
direction of the path, or whether there is an intersection.
The second is a form of 3D structure understanding (using
structure from motion [32], or single image [33], [34]). This
is especially useful to detect walls and obstacles.

V. ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of NSF,
General Motors, ARO, DARPA, and the Okawa Foundation.

The authors affirm that the views expressed herein are
solely their own, and do not represent the views of the United
States government or any agency thereof.

REFERENCES

[1] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte-carlo
localization for mobile robots,”Artificial Intelligence, vol. 128, no.
1-2, pp. 99–141, 2000.

[2] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM
2.0: An improved particle filtering algorithm for simultaneous lo-
calization and mapping that provably converges,” inProceedings of
the Sixteenth International Joint Conference on ArtificialIntelligence
(IJCAI). Acapulco, Mexico: IJCAI, 2003.

[3] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau,
C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband, C.Dupont,
L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niek-
erk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger,
A. Kaehler, A. Nefian, and P. Mahoney, “Stanley, the robot that won
the darpa grand challenge.”Journal of Field Robotics, vol. 36, pp. 1
– 43, 2007.

[4] M. Montemerlo, S. Thrun, H. Dahlkamp, D. Stavens, and S. Stro-
hband, “Winning the darpa grand challenge with an ai robot,”in AAAI
Conference On Artificial Intelligence, vol. 1, 2006, pp. 982 – 987.

[5] M. Cummins and P. Newman, “Fab-map: Probabilistic localization and
mapping in the space of appearance,”Int. J. Rob. Res., vol. 27, no. 6,
pp. 647–665, 2008.

[6] G. Schindler, M. Brown, and R. Szeliski, “City-scale location recog-
nition,” in Computer Vision and Pattern Recognition, IEEE Computer
Society Conference on, vol. 0. Los Alamitos, CA, USA: IEEE
Computer Society, 2007, pp. 1–7.

[7] C. Valgren and A. J. Lilienthal, “Incremental spectral clustering and
seasons: Appearance-based localization in outdoor environments,” in
ICRA, Pasadena, CA, 2008.

[8] A. Pronobis, B. Caputo, P. Jensfelt, and H. Christensen,“A discrimi-
native approach to robust visual place recognition,” inIROS, 2006.

[9] A. Ramisa, A. Tapus, R. L. de Mantaras, and R. Toledo, “Mobile robot
localization using panoramic vision and combination of local feature
region detectors,” inICRA, Pasadena, CA, May 2008, pp. 538–543.

[10] S. Frintrop, P. Jensfelt, and H. Christensen, “Attention landmark
selection for visual slam,” inIROS, Beijing, October 2006.

[11] C. Siagian and L. Itti, “Biologically inspired mobile robot vision
localization,” IEEE Transactions on Robotics, vol. 25, no. 4, pp. 861–
873, July 2009.

[12] P. Newman, G. Sibley, M. Smith, M. Cummins, A. Harrison,C. Mei,
I. Posner, R. Shade, D. Schroeter, L. Murphy, W. Churchill, D. Cole,
and I. Reid, “Navigating, recognizing and describing urbanspaces
with vision and lasers,”International Journal of Robotics Research,
vol. 28, pp. 1406 – 1433, November 2009.

[13] A. Angeli, D. Filliat, S. Doncieux, and J.-A. Meyer, “A fast and
incremental method for loop-closure detection using bags of visual
words,” 2008.

[14] A. Murillo, J. Guerrero, and C. Sagues, “Surf features for efficient
robot localization with omnidirectional images,” inRobotics and
Automation, 2007 IEEE International Conference on, April 2007, pp.
3901–3907.

[15] Z. Chen and S. T. Birchfield, “Qualitative vision-basedpath follow-
ing,” IEEE Transactions on Robotics, vol. 25, no. 3, pp. 749 – 754,
June 2009.

[16] S. Segvic, A. Remazeilles, A. Diosi, and F. Chaumette, “A mapping
and localization framework for scalable appearance-basednavigation,”
Computer Vision and Image Understanding, vol. 113, no. 2, pp. 172–
187, February 2009.

[17] M. D. E. Royer, M. Lhuillier and J. M. Lavest, “Monocularvision for
mobile robot localization and autonomous navigation,”International
Journal of Computer Vision, vol. 74, no. 3, pp. 237–260, January 2007.

[18] J. Shi and C. Tomasi, “Good features to track,” inIEEE Conference
on Computer Vision and Pattern Recognition, 1994, pp. 593–600.

[19] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
Intl. Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[20] F. Paetzold and U. Franke, “Road recognition in urban environment,”
in IEEE Conference on Intelligent Transportation Systems, Stuttgart,
1998.

[21] C. Rasmussen, Y. Lu, and M. Kocamaz, “Appearance contrast for fast,
robust trail-following,” in IROS, St. Louis, Missouri, USA, 2009.

[22] M. Blas, M. Agrawal, A. Sundaresan, and K. Konolige, “Fast
color/texture segmentation for outdoor robots,” inIROS, Nice, France,
2008.

[23] C. Guo and S. Mita, “Stereovision-based road boundary detection
for intelligent vehicles in challenging scenarios,” inIROS, St. Louis,
Missouri, USA, 2009.

[24] Y. He, H. Wang, and B. Zhang, “Color-based road detection in urban
traffic scenes,”IEEE Transactions on Intelligent Transport System,
vol. 5, no. 4, pp. 309 – 318, 2004.

[25] M. Lutzeler and S. Baten, “Road recognition for a tracked vehicle,”
Proc. SPIE Enhanced and Synthetic Vision, pp. 171 – 180, 2000.

[26] A. Murillo, J. Guerrero, and C. Sagues, “Improving topological maps
for safer and robust navigation,” inIROS, St. Louis, MO, USA,
October 2009, pp. 3609–3614.

[27] C. Siagian and L. Itti, “Rapid biologically-inspired scene classification
using features shared with visual attention,”IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 29, no. 2, pp. 300–
312, Feb 2007.

[28] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual
attention for rapid scene analysis,”IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 20, no. 11, pp. 1254–1259,
Nov 1998.

[29] L. Itti, “Models of bottom-up and top-down visual attention,” Ph.D.
dissertation, Pasadena, California, Jan 2000.

[30] C. Siagian and L. Itti, “Storing and recalling information for vision
localization,” in IEEE International Conference on Robotics and
Automation (ICRA), Pasadena, California, May 2008.

[31] C. Siagian, C. K. Chang, R. Voorhies, and L. Itti, “Beobot 2.0: Cluster
architecture for mobile robotics,”Journal of Field Robotics, 2010, in
submission.

[32] N. Snavely, S. M. Seitz, and R. Szeliski, “Skeletal setsfor efficient
structure from motion,” inIEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2008.

[33] A. Saxena, M. Sun, and A. Y. Ng, “Make3d: Learning 3-d scene
structure from a single still image,”IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), vol. 31, no. 5, pp. 824 –
840, 2008.

[34] D. Hoiem, A. Stein, A. Efros, and M. Hebert, “Recoveringocclusion
boundaries from a single image,” inICCV, 2007.

