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Abstract— We present a vision-based navigation and localiza-
tion system using two biologically-inspired scene underanding
models which are studied from human visual capabilities: (1
Gist model which captures the holistic characteristics andayout
of an image and (2) Saliency model which emulates the visual
attention of primates to identify conspicuous regions in tke
image. Here the localization system utilizes the gist featas
and salient regions to accurately localize the robot, whilghe
navigation system uses the salient regions to perform vislia
feedback control to direct its heading and go to a user-proded
goal location. We tested the system on our robot, Beobot2.0,
in an indoor and outdoor environment with a route length
of 36.67m (10,890 video frames) and 138.27m (28,971 frames)
respectively. On average, the robot is able to drive within $8cm
and 8.78cm (respectively) of the center of the lane.

. INTRODUCTION

Ability to go to specific locations in one’s environmentin a
timely manner is fundamental in creating a fully autonomous

mobile robotic system. To do so, a robot not only has to be

able to move about its environment, but it also has to idymifoerformed for a single predefined route, where robots do

) . . . not have to decide on where to turn when encountering an
its location. To solve this problem, available approaches

o ; tersection. This split in effort, is done for good reasdns
use proximity sensors such as Laser Range Finder (LRlif{at each individual oroblem is difficult by itself
cameras, encoders, and Global Positioning System (GP P y :

. o o . ‘Although robust vision localization that can operate in all
While robot navigation and localization have made smdegnvironment are not vet available. state of the art svstems ¢
indoors (using LRF [1], [2]) and on the road (like in DARPA y ' Y

Grand Challenge, relying on a combination of LRF, GPS anr&owllocalize in large areaslsuch as ci_ty street.s [5], [6pser
visual road recognition [3], [4]), systems that can perfor multiple seasons [7], and in many different indoor [8], [9],

well in the in-between settings such as a college camp[Tg‘,o] and o_utd_oor environments [1.1]’ [12], [13]. Howgver,
most localization systems are trained and tested while the

where a robot needs to travel both inside buildings (through, ™ . .
. bot's movement is controlled by a user. The problem with
hallways) and outside (between large structures), ark st T , . .
: . . - - —_manual driving is that the robot’s point of view comes from a
lagging behind. For these scenarios, vision, human primal

r . L
L . I L a,erfect control. When one wants to integrate the locabirati
perception, is ideal because of its versatility in recomga

. . .module with the rest of the system, including navigation,
variety of environments. However, because of the c:omr;lexn[he robot may need to recogniie views it hasgnot se?en For

of a camera image, vision also comes with many challenges ) . . .
L o . . ~example, the views from the same location with different
such as lighting conditions, perspective, and occlusions. . o S
. robot headings, can be strikingly dissimilar. One way to
Observe figure 1 for an example of a cluttered outdoor

: . L alleviate this issue is through the use of omni-directional
environment that our robot Beobot2.0 is operating in. cameras (as opposed to a regular straight-forward cameras)
In the current state of robotic research, vision-based nay- pp 9 g

igation and localization are usually dealt with separatel 14] as the images produced can be realigned.

For the most part, available literature concentrates more Otn the Onawgatlon ?,![de’ r;[herg arell “{,VO bag!c typesd (t)rf]
on one but not the other. Researchers who work on visiol o oo PN€ USES a fleach-and-replay paradigm, an €

localization manually control their robots to move abouw th other tries to recognize the direction of the road. In the

environment. On the other hand, visual navigation is uyuallformer [15], [16], [17], the robot first is manually driven

through a pre-specified path, while recording all the perttn
* equal authorship. information necessary to replay the route being taughtnThe
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Fig. 1. Beobot2.0 navigating in a cluttered environment.



the path (not throughout the environment) is required. Thitkirough SIFT keypoints extracted within each salient negio
is done by retracing a sequence of keyframes, keeping traltkis important to note that matching keypoints within small
of which frame the robot currently is at. When matchingegion windows instead of a whole image makes the process
between the current scene and keyframe fails, the systemuch more efficient.
has to re-synchronize itself. This can take extra time as Our localization system [11], [30] estimates the robot’s
rematching from the start of the series is required. location in an environment represented by a topological
On the other hand, road recognition systems, instead ofap. The map denotes paths as edges, and intersections
identifying landmarks, try to recognize the road’'s appreea as nodes. We also define the term segment as an ordered
as well as boundaries. Some systems rely on recognizifigt of edges with one edge connected to the next to form
road edges (based on the intensity of images, for examplg)continuous path (an example is the selected three-edge
that separate the road from its surroundings [20]. Others g®gment, highlighted as a thicker green line, in the map in
so by performing color and texture segmentation [21], [22figure 2). Geographically speaking, a segment is usually a
In addition, there are systems that combine both techniqupsertion of a hallway, path, or road interrupted by a crossing
[23], [24], [25] to extract the road region in the image.or a physical barrier at both ends for a natural delineation.
However, for these type of systems, the robot merely follow§his grouping is motivated by the fact that views/layouts in
the road and keeps itself within its boundaries, not knowingne path segment are coarsely similar. Because of this, the
where it will ultimately end up. system can use the gist vector to classify an input image to
If a system has both localization and navigation, we caa segment.
command it to go to any goal location in the environment After the system estimates the robot's segment location,
by using the former to compute a route and the latter tave then try to refine the coarse localization estimation by
execute movements. In addition, such an integrated systematching the salient regions found in the input image with
can internally share resources (visual features, for one) the stored regions from our landmark database (obtained
make the overall system run more effectively. However, thiduring training). Note that this process is much slower than
also poses a challenging problem of integrating complex subegment estimation but produces a higher localization-reso
systems. In spite of the difficulties, many vision localiaat lution. At the end, both gist and salient region observation
[26] and navigation [15] systems have discussed that it &re incorporated in a back-end probabilistic Monte Carlo
advantageous to combine localization and navigation. Out®calization to produce the most likely current location.
is such an implementation. In our training procedure, we run the robot through the
We present a mobile robot vision system that both loenvironment once. There is no camera calibration nor manual
calizes and navigates by extending our previous work afelection of the landmarks. In addition, the training pchae
Gist-Saliency localization [11]. Instead of just navigati [30] automatically clusters salient regions that portrag t
through a pre-specified path (like teach-and-replay), theame landmark. And, thus, a landmark, a real entity in the
robot can execute movements through any desired routesvironment, is established by a set of salient regions. In
in the environment (e.g., routes generated by a planneg.sense, the regions become evidences that the landmark
On the other hand, unlike teach-and-replay, a stand-aloegists. Furthermore, these regions are stored in the offder o
localization system allows the navigation system to not bdiscovery. That is, we keep a temporal order of the regions as
overly sensitive to the temporal order of input images. Weeen when the robot traverses an environment. This becomes
tested the system (reported in section Ill) in both indooimportant when we try to navigate using these landmarks.
and outdoor environments, each recorded multiple times to As a result of the compact topological map representation
validate our approach. (figure 2), we do not localize the robot laterally on the lane
nor do we have an accurate knowledge of the robot’s heading
Il. DESIGN AND IMPLEMENTATIONS with respect to the road. However, for each database salient
Our presented mobile robot vision navigation and localregion, we do not only record its geographical location, but
ization system (illustrated in figure 2) utilizes biologiga also register its image coordinates to perform navigation.
inspired features: gist [27] and salient regions [11] of afThat is, we minimize the difference in image coordinates
image, obtained from a single straight-forward view camerbetween the input region and its corresponding database
(as opposed to omni-directional). Both features are coetputregion to bring and keep the robot at the “correct” positian o
in parallel, utilizing shared raw Visual Cortex visual fesds the lane (same position as during training). In the follayvin
from the color, intensity and orientation domain [28], [29] sub-section II-A, we describe the main contribution of this
Here we define gist as a holistic and concise feature vectpaper, the navigation portion of the system and its inteact
representation of a scene, acquired over very short amouwsith the localization component.
of time. Salient regions, on the other hand, are obtained o
using the saliency model [28], [29] which identifies part¢ Navigation System
of an image that readily capture the viewer’s attention. As As shown in figure 2, localization and navigation run in
demonstrated by previous testings [11], the likelihood thaarallel in the system. When a new set of input salient regjion
the same regions will pop out again when the robot revisitarrive, the localization module starts its landmark daseba
particular locations is quite high. The actual matchingasel search (denoted ak: in the figure). At the same time, the
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Fig. 2. Diagram of the overall vision navigation and locafian system. From an input image the system extracts leel-leatures consisting of
center-surround color, intensity, and orientation that@mputed in separate channels. They are then furthergzettdo produce gist features and salient
regions. We then compare them with previously obtainedrenwient visual information to estimate the robots locatiearthermore the identified salient
regions are used to direct the robot’s heading, to naviga#df ito its destination.
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navigation module also tracks these regiong.(By tracking itself to the goal location.
them, when the regions are positively identified at a lateeti  We start by explaining in details the salient region tragkin
(usually database search finishes in the order of secondsjocess in the following sub-section 1I-A.1.
even if the robot has moved during the search process, we cany sajient Region TrackerEigure 3 illustrates the salient
still locate the salient regions in the image. When a trackeggion tracking procedure. The tracker utilizes a template
region is lost or moves away from the robot's field of view,yatching algorithm (OpenCV implementation with squared-
we simply teII_the localizer to stop searching for a matchgror distance) on conspicuity maps [28], [29] from the 7
Note that, while the search is in progress, the gist-bas&flsyal Cortex sub-channels used in saliency and gist com-
segment estimation result, which is available instantasigo tation (see Figure 2; the sub-channels correspond toe edg
on every frame, is used to maintain the location belief.  qrientations, 2 color contrasts, and luminance contrist).
When the database search concludes, if there is at least g, region, we perform template matching on each map (7
matched region, the localization system informs the naviggssociated templates) before summing the resulting distan
tion system that these regions can be used for navigatigap The templates are initialized using 7x7 windows from
The navigation system first transfers the regions tracked Ry conspicuity map, centered around the salient point of
the input landmark tracker to the identified landmark tracke,q region. The conspicuity maps are 40x30 pixels in size
A second tracker is needed to free up the first one fQjownsampled from the original 160x120 input image size,
newer, yet to be identified landmarks from the current framgynich is acceptable given that we are mostly tracking large
The identified landmark tracker keep track of the transterregjient objects. We then weigh the summation based on the
regions so that we can utilize them for visual navigatioyistance from the previous time step for temporal filtering.

cues for a period of time (until the newer landmarks argne coordinate of the minimum value is the predicted new
recognized). location.

The navigation system calculates the image coordinate dif- In addition, in each frame, we update the templates for

ference (we call this lateral difference) between the tedck b Co . S
t light h , et the foll aich
region and the matched database region (section II-A.2) a ¥ uuasti(rjlﬁ.ss (lighting change, etc) using the following &idap

feedback to the motor controller. In addition, we also biees t
salient region matching (explained in section 1I-A.3) when
the robot is at the intersections so that it can correctlgdir Tii = 9«Tiq;+ 1% Ny (1)



Conspicuity Maps Lost/Predicted Location the matched database landmark that is usually only a few
Orientation Channel f indexes away from the original match. This procedure takes
SAOL7 e about 10ms and is illustrated in figure 4.
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Fig. 3. Diagram for salient region tracking. The system usmsspicuity
maps from 7 sub-channels to perform template matching itrgcilBefore
selecting the predicted new location, the system weighsréselt with
respect to the proximity of the point in the previous timepste addition, \
we also adapt the templates overtime for tracking robustnes
T =tiyp

. Here, Tt_lvi_ls a re,glon,s templ?‘te for sub-channeht Fig. 4. Forward projection procedure. A detected regi®nfrom time
time ¢t — 1, while N, ; is a new region template around ther = ¢, (top left of the figure) is successfully matched to saliergion
predicted location. Before the actual update, we added g« p frames later. This is the region that belongs to Landmiaskwith
treshold to check if the resulting template would changB%, (106 sld 120 a U ng. s of e o), Wi
drastically; a sign that the tracking may be failing. If thiscurrent timeT = t;,, the regionR; has changed its appearance as the
is the case, we do not update, hoping that the error is jussibot moves (now denoted dg; 1, on the bottom left side of the figure).
coincidental. However, if this occurs three times in a rowfV(\)/ﬁe Igg:ﬁ;fgr‘:‘é%imi??giﬂf’sdg:g’f&i&yrlg?g;gjii?rzgzﬁggﬂ% ?Oel‘itgh
we report that the tracking is lost. green at the right side of the green) , which was found furthehe path

This process has proven to be quite robust because, asfgng training.
from following regions that are already salient, the variet
domains means that for a failure to occur, noise has to corrup 2) Lateral Difference EstimationTo estimate the lateral
many sub-channels. In addition, the noise is also minimizedifference between image coordinates of the database and
because the saliency algorithm uses a biologically ingpird"Put region we utilize the SIFT keypoints match-pairs from
spatial competition for salience (winner-take-all) [2@9],  all forward-projected matched salient regions. Here wepda
where noisy sub-channels with too many peaks are subdué{. lgorithm by [15] onto the salient regions. That is, iadte
Also, the advantage of re-using conspicuity maps is that tf Using a single whole image from a training run, we
process is faster. But, more importantly, tracking requite  US€ matched database regions that may come from different
recall of stored information, which allows the procedure tdime steps. Each keypoint pair (from each region) votes for
be scalable in the size of the environment. In the curre§@ndidate heading directions. We discard the verticaldioor
implementation, the system is usually able to track a saliefate difference, and are only concerned with the horizontal
region for up to 100 frames and the process only takes 2rf§Mponent as we assume that the robot stays on the ground
per frame for each salient region. On each frame, we tra@ all times.
up to 10 regions: 5 for the ones already recognized (in the The algorithm is stated below and is illustrated in figure 5.
identified landmark tracker), and 5 more that are currentij¥e consider three scenarios for three resulting headiegs (|
being matched (in the input landmark tracker). straight, right). We de_zfineXt as the_horizontgl coordinate

Before we calculate the lateral difference from thef the SIFT keypoint in a matched input region aig as
database match result, we perform a forward projection {§€ corresponding point of the landmark database region.
the current frame to take into account the duration of th) addition, we also set the origin to be at the center of
matching process. The search outputs a match between g image, denoted as broken lines in the middle of each
input region from many time steps ago and a region in §2S€ in the flggre (there are two cases for eaf:h Qf the three
database which most closely resembles it. However, since \§8enarios). This wayX, < 0 means the keypoint is to the
started the search, that region has undergone transfamat|€ft of the midline:
as the robot has moved and changed its pose. What we now if(X; > X4 and X; > 0), then turn right
actually want is a database region that most closely resmmbl o else if(X; < X4 and X; < 0), then turn left
the input region as it appears in the current time step. « else, go straight

Fortunately, in the database, each landmark is representedur robot, Beobot 2.0 [31], uses an electric wheelchair
by a set of views (regions), sorted temporally during tragni base and has a two-wheel differential drive. It is contblle
as the robot moves through a path. Thus, the forwardlly commanding a translational and rotational speed between
projection process is basically a re-matching between th&.0 and 1.0 (full speed backward to full speed forward, and
tracked region at the current time frame and a region frorull speed clockwise turn to full speed counter-clockwise
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Fig. 5. Diagram for the voting scheme of navigation alganithThere

are three scenarios where the robot either moves left,gktraor right.
For each scenario, there are two cases depending on the fsigiy,athe
corresponding point of the landmark database regionX ffis to the left
of the center of the image (the dashed line that goes thrduglotigin of
the image coordinate system), th&f; < 0. The same applies faK¢, the
horizontal coordinate of the keypoint in a matched inputaeglf X < X 4
and X; < 0, then turn left, else ifX; > X4 and X; > 0, then turn right.

the localizer sends out a new current location to make cbrrec
adjustments even when the robot loses its way.

In summary, the procedure goes as follows: after the go-to-
goal command is received from a user interface, the system
starts by recognizing at least one salient region to loealiz
Once the robot is successful in doing so, it plans its path
to the goal location. The navigation system then uses the
initially recognized salient regions to properly move ot
its goal. During this movement, the robot continuously try t
identify newer regions to follow, to advance its missionisTh
procedure repeats until the robot arrives at its destinatio

A snapshot of how the overall system generates robot
motion from a frame can be observed in figure 6.

[1l. TESTING AND RESULTS

We test the system using our robot, Beobot 2.0 [31]
(observe figure 1), which is 57cm in length and 60cm in

If neither, then go straight. width. The camera itself is about 117cm above the ground.

Beobot 2.0 has a computing cluster of eight 2.2GHz Core2

Duo processors. We use four computers for localization, one
turn, respectively). We keep the translation at constae¢dp for navigation, three for future use.

while the turn speed is proportional to the average horedont \we select two different sites, an indoor and an out-
pixel difference. Note that the direction of turn is obtaine door environment, for testing. The first is the hallways
through the voting process above. of 27.13x27.13m HNB building, with a corridor width of
We find that our well-isolated salient regions make fon 83m. The path forms a square with 90 degree angles
clean correspondences that, for the most part, overwhelfhen turning from one segment to another (observe the map
ingly agree with one of the three candidate directionsn figure 6). The second one is the 69.49x18.29m outdoor
This is because, by using a compact region (as opposefigineering quad (Equad), where there are buildings as well
to entire image like the original [15] algorithm), we avoidas trees, with a pathway width of 3m. Snapshots of each
matching other distracting portions of the image, which magnvironment are shown in figure 7.
be occupied by dynamic obstacles, such as people. Despite the fact that, in our testing environments, we
3) Path Planning BiasingWhat we have implemented so only map one option on each junction, the path planner still
far is to a policy that allows the robot to follow a continuousperform its job of selecting that option. Note that pickihg t
portion of the route, along the edges of the topological mapight junction to proceed to the goal trivial using shortest
However, when the robot arrives at an intersection, thefgath in the graph-based topological map. On the other hand,

may be multiple paths that stem out from it. The systenthe actual turning execution on the chosen junction is much
may encounter a situation where it simultaneously reca&yniznore difficult.

regions that are going to lead the robot to two or more
different directions. For example, regions from the segmer
the robot is currently on may suggest it to continue to g¢ |
straight, while regions on an incident segment are going t
suggest it to make a turn. Here, we consider the task, t
assigned goal location, by consulting with the path planne
The system first checks with the localization sub-system t#=
see whether it is approaching an intersection. If so, thh par""
planner then bias the localization system to first compar€ -
input regions with database regions along the path to the
goal, before expanding the search. In addition, for subesetqu
matches, we also prioritize comparison with database nsgio For each environment, we run the robot through all paths
that are further along the intersection turn. This way, thence for training. We then run the robot five times indoors
robot is going to follow the same sequence of region matchesd three times outdoors for the testing phase. Duringggsti
that are established during training, which is critical forwe record the trajectory of the robot odometry and its
successful turning. localization belief. We set the ground truth of the robot
At the end, for failure recovery, whenever the robot canndbcation by using manually calibrated odometry readinge Th
recognize any salient region for a period of time (we sdbaseline for an ideal navigation itself is the center of ththp
for five seconds), it stops and spins in place to scan its The results for both sites are shown in table I, which
surrounding. Note that the path planner re-plans every tinspecifies the sites’ dimensions and length of traversal. In

Fig. 7.

Scene examples of the HNB and Equad environment.
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Fig. 6. A snapshot of the localization and navigation syst&ime input (top left) image contains the salient region wind. Green windows mean

a database match, while reds are not found. Below the inpagénto the left, is the segment estimation computed fromfg&ures. There are four

segments in the environment. Here the actual segment 4 ssifid@l as second most likely (to segment 1) by the systemh&aight of the segment

estimation result are the matched salient regions drawheabtiginal detected image coordinate. Next to the inpuiginia the robot state projected onto
the map: cyan points are the location particles (hypothegeserated by the Monte Carlo Localization algorithm, tlelow points are the locations of

the matched database salient region, the green circle éercof the blue circle) is the most likely location. Theiwsdof the blue circle is equivalent

to 3m. The robot believes that it is 4 meters from the inteéigecwhich is correct within 20cm. On the navigation sidedarneath the map), the robot
is turning to the left as decided by the keypoint votes.

TABLE |

Note that during the segment transition, the navigatioarerr
NAVIGATION AND LOCALIZATION SYSTEM PERFORMANCERESULTS

shoots up as makes its turn. In addition, when the robot

Site Site | Traversal Nav. | Loc. arrives at the next segment, it then proceed to recentéf: itse
Dimensions| Length Error | Error As shown in the graph as well as by observation,

HNB 1| 27.13 x 27.13m| 36.67m| 3.68cm| 1.15m Beobot2.0 is able to traverse the route, on average, within

Equad || 69.49 x 18.29m| 138.27m| 8.78cm | 5.31m 3.68cm of lateral deviation from the center of the hallway,

without hitting the wall, which we believe is the more impor-
tant fact. The longitudinal localization error itself aages
to 1.15m. Fortunately the longitudinal error, in most all
addition, nav. error and loc. error refer to the navigational occasions, do not misplace the robot to a different segment.
error (deviation from center of the path) and localization merely places the robot ahead or behind the actual latatio
error (global robot location discrepancy), respectively.  in the route. The reason for why there is so much difference
For the first site, HNB, the result is graphed in figure 8. Foa factor of 30) between the localization and the lateral
both the top and bottom plots, the x-axis denotes the groumlgviation error, is because the way the landmarks are viewed
truth location of the robot, 0 being the starting locationwith a forward-facing camera. That is, the system is very
Here, the robot runs for 36.67m. The y-axis for the top plotensitive to transverse translation, but not as sensitive t
indicates the localization error (in meter, longitudigallong longitudinal translation.
the path) as the robot moves forward, while the y-axis for The results for testing in the outdoor site, Equad, is shown
the bottom plot reports the lateral deviation from the centan figure 9, using the same format as the previous graph
of the hallway (also in meter, transversally to the path). Wéor HNB. Beobot2.0 is able to navigate with 8.78cm of
divide (using vertical lines) and label the route into segtae lateral deviation from the center of path, on average. The



Localization Error Localization Error

3 T
Segment 1

T T T 30 T T T T T T
Segment 1 1Seg.2 | Segment 3

Segment 2 Segment 3

error (m)

Segment 4
0 .
0 5 10 15 20 25 30 35 40 0 20 40 60 80 100 120 140
distance (m) distance (m)
Navigation Error Navigation Error

0.4 T T T T T T T 0.8 n ‘\

Segment 1 Segment 2 Segment 3 Segment 4
9 9 9 9 Segment 1 Seg.2 Segment 3

I
|
1
|
I
1
02 !
|

error (m)

0.1

i
0 5 10 15 20 25 30 35 40 0 20 40 60 80 100 120 140
distance (m) distance (m)

Fig. 8. Result for the indoor HNB testing. Graph labels arscdbed in  Fig. 9.  Result for the outdoor Equad environment. Graph I&alzee
the text. described in the text.

localization error itself averages to 5.31m over a routdiwita landmark, it cannot navigate. The next step to improve
a total length of 138.27m. Given that the length of the routghe system is to have robot visually navigate itself without
is 3.77 times that of the indoor data, both localization al welocalization during those times. We suggest two different
as the lateral deviation error do not increase uncontrigllab vision techniques. One is road recognition to identify the
For outdoor navigation, the lateral deviation errors ot#di direction of the path, or whether there is an intersection.
here are acceptable as the lanes (3m wide) in the environm@iife second is a form of 3D structure understanding (using
are about two times wider. structure from motion [32], or single image [33], [34]). Ehi
The lateral deviation error increases mainly because the especially useful to detect walls and obstacles.
localization module cannot find salient regions for a longer
period of time, which makes the robot lose its navigation V. ACKNOWLEDGMENTS
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hand, our system has a very low likelihood of false positiv

identification as it has a high threshold for matching the
landmarks. That is, in the event where the robot’s location
is misplaced, the navigation system will not produce false1] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust rescarlo
cues to follow. This allows the system to stop, recover, and B‘;a"zat'gg_fﬂ 1'“3833 robots,Artificial Intelligence: vol. 128, no.
proceed forward. There are, however, times where we hav 1 M. ’I\A%?{temerlo,'s. Thrun, D. Koller, and B. Wegbreit, “E&5AM
to stop the robot because it has swerved off the pathway 2.0: An improved particle filtering algorithm for simultames lo-

considerably and gets dangerously close to a ditch or about ¢alization and mapping that provably converges,"Aroceedings of
the Sixteenth International Joint Conference on Artifidiatelligence
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