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Abstract— We propose a novel approach to detect vanishing
points in images using a convolutional neural network (CNN)
trained on a newly collected Google street-view image dataset.
By utilizing the camera parameters and road direction data
from Google street view, we collected a total of 1,053,425 images
with inferred ground-truth vanishing points, along 23 world-
wide routes totaling 125,165 kilometers. We then formulate
vanishing point detection as a CNN classification problem using
an output layer with 225 discrete possible vanishing point loca-
tions. Experimental results show that our deep vanishing point
system outperforms the state-of-the-art algorithmic vanishing
point detector. We achieved 99% accuracy in recovering the
horizon line and 92% in locating the vanishing point within a
±5-degree range.

I. INTRODUCTION

The capability of an autonomous driving vehicle to detect
road boundary is crucial to determining the heading direction
and staying on the road (Fig. 1). Typical navigation tasks
relie on proximity sensors such as Laser Range Finders
(LRF) [1], [2] to capture the surrounding geometry infor-
mation. Current LRFs such as from Velodyne [3] are able to
measure depth in 360 degrees. They are the primary sensors
that have allowed Google’s Car [4] to travel autonomously
over 1 million miles. However, these sensors have challenges
to recognizing lane markings on the road without physical
geometry differences.

Road recognition methods can be categorized into two
types. The first is the color-based approach, which recovers
road boundaries by recognizing specific features such as
color histograms [5], [6], color contrast between road and
flanking areas [7], and road region candidates from color-
based segmentation [8]–[10]

The second type of road recognition technique finds the
road’s vanishing point first to determine heading. Vanishing
Point (VP) is the point where parallel road boundaries
converge. By identifying the vanishing point location in the
image, the system can further recover both road boundaries.
Traditional vanishing point detection usually relies on hand-
crafted edge sensitive features such as Gabor filters [11]–
[13], Gaussian filters [14], or Hough transform lines [15]–
[19]. In addition, typical filter-based VP detectors tend to
be slow because they use a voting scheme which may have
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Fig. 1. Autonomous car navigation in a highway environment. The system
needs to estimates the road heading as well as road boundary

up to O(n2) time complexity. As a remedy, [20] use sky
segmentation to first estimate the horizon line, to reduce the
voting area to the non-sky area. Moreover, [12], [21] use
only 4 gabor orientation channels {0◦, 45◦, 90◦, 135◦} and
selective voting to speed up the voting process. Although
traditional VP detection methods are able to estimate the
road with certain accuracy, hand-crafted features are usually
sensitive to spurious edges such as shadow boundaries.

Recently, deep learning [26] has dramatically improved
the state-of-the-art results in many machine learning do-
mains. Here we briefly review applications of deep archi-
tecture models with a focus on convolutional neural net-
works (CNNs) in the domains of computer vision, speech
recognition, and natural language processing. Convolutional
neural networks are composed of multiple processing layers,
trained end-to-end to automatically learn representations of
data with multi-level abstractions. In computer vision, CNNs
have achieved great success in image classification [27]–[29],
object detection [30], [31], image segmentation [32], [33],
activity recognition from videos [34], [35] and many others.
Two sensational advances are: in 2012, Krizhevsky et al. [27]
trained a 7-layer convolutional neural network on the large-
scale ImageNet [36] dataset to do image classification, and
achieved a top-5 test error rate of 15.3%, almost half the
error rate of the second best algorithm at the time. In 2014,
Karpathy et al. [34] collected a sports-1M video dataset with
487 classes of sports, and used CNN to learn spatio-temporal
information from video clips to classify videos into different
sports categories, again beating the state of the art by a large
margin.

In speech recognition, deep architectures have boosted the
results significantly [37], [38]. Similar to training CNNs
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TABLE I

OVERVIEW OF MOST AVAILABLE VANISHING POINT DATASET.

Year Dataset Ref Domain
Scene
Class

Scene
Coverage

Total
Images

2003 York Urban Lane Segment [22] urban 2 small 102
2009 Kong’09 [11] outdoor 3 medium 1,003
2011 Eurasian Cities [23] urban 1 small 103
2012 PKU Campus [17] urban 1 small 200
2012 Chang’12 [12] urban 2 small 25,076
2014 Le’14 [24] urban 1 small 1,600
2015 TVPD [25] urban 2 small 102
2018 DeepVP-1M - outdoor 23 large 1,053,425

in vision, researchers [38] used large voice datasets to
train their CNN. Deep architectures have also been used to
solve various natural language processing tasks. Kim [39]
proposed to use a CNN to classify sentences, and Zhang and
LeCun [40] trained CNNs on various large-scale datasets to
understand text from scratch.

The success of deep neural models (e.g., CNNs) is par-
tially attributed to the availability of big datasets. In vision,
the ImageNet database [36] has 14,197,122 images, sports-
1M [34] has 1M sports videos; in speech, researchers used
hours of transcripted voice datasets to train DNNs/CNNs as
well; in language, the training data is even larger as we have
freely available online articles and documents. A sufficiently
large amount of training data with sufficient diversity is
necessary to effectively train complex deep architectures,
since these have very large numbers of degrees of freedom.

In light of the limitation of traditional detectors and of
the recent successes of deep neural networks, we propose to
leverage the power of deep learning models to automatically
learn a VP detector. Our novel contribution hence starts by
presenting a completely new approach to estimate vanishing
point adapted from deep learning. We train a deep model
end-to-end, which takes an image as input, and outputs its
vanishing point location. Compared to traditional algorithmic
methods, which go through several sequential steps to pre-
dict the vanishing point location, our deep vanishing point
algorithm is a fast, feed-forward neural network evaluation
that directly returns the VP. However, training deep network
models requires large-scale labeled datasets. To the best of
our knowledge, available labeled vanishing point datasets are
too small to properly train a deep network (Table I). This
motivates us to collect our own dataset with 1 million Google
street-view images with labeled vanishing point locations.
The dataset includes worldwide range of road appearance in
various lighting conditions. The dataset is the only one that
contains different cameras angles from each scene location.
We also present a method to auto-collect and label VP images
by utilizing Google Street View API, which enables future
dataset expansion. We make the dataset and source code
available publicly 1. We trained the convolutional neural
network on this largest VP dataset available to date, and,
as detailed below we achieved, by far, the best results ever
reported in vanishing point detection method.

1http://ilab.usc.edu/kai/deepvp

In the following section II, we describe our new VP
dataset. We present the network architecture in section III.
We report the testing results in section IV, and discuss the
findings in section V.

II. VANISHING POINT DATASET

Fig. 2. DeepVP Dataset collected from worldwide routes

A. New dataset for deep learning training

Current available image datasets to assist vanishing point
algorithm development and testing are shown in Table I.
Most are collected and hand labeled in urban area. The most
common one [11] contains 1,003 images from web image
search and desert road images.

Deep learning approaches typically require a much larger
amount of training examples. Existing VP datasets fall short
in the total number of images; even the largest existing
dataset [12] only contains 25,076 images from four continu-
ous video routes. Moreover, most of them are only collected
in a small area, where the scenes are too similar and lack
appearance variations. In addition, the collected VP images
are usually recorded from a front facing camera mounted on
a moving vehicle. This causes most of the VP location to be
near the center of the image. Such unbalanced training labels
may cause strong center bias and may decrease accuracy at
other image locations.

Here we collected a freely-distributed dataset, the
DeepVP-1M dataset, designed for large scale machine learn-
ing purposes. It contains 1,053,425 images with resolution
300x300 from 23 routes across 21 countries. The total length
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of the routes is 125,165 kilometers, which ensures wide
coverage of road appearance.

B. Data collection method

Fig. 3. Discretized VP labels in a total of 15x15=225 labels

We propose a novel way to collect labeled vanishing point
images from Google Street View. Street View was chosen
because 1) it covers a wide range of road appearances, 2)
it has a panorama capability which can generate multiple
VP views from individual locations, 3) it provides camera
parameters such as pitch information to the estimate horizon
line, and 4) when using the image capture vehicle’s naviga-
tion direction, we can align VP center to the road heading
direction based on the navigation route. Furthermore, Google
Street View provides an API to fetch an image given GPS
coordinates (longitude and latitude) and camera parameters
(pitch, heading).

img = StreetV iewAPI(lon, lat, pitch, heading) (1)

C. Image Collection from a single GPS location

To predict VP coordinates in an image, we collect at every
location a set of images that covers different VPs from top
left to bottom right. We pan and tilt the camera view with step
5◦from -35◦to 35◦in the panorama scene, resulting in a total
of 15×15 = 225 images from a single GPS location (shown
in figure 3). Image data collected in this way guarantees that
the vanishing points are evenly distributed across the full
image, instead of center-biased.

D. Align road heading with image heading

While camera pitch, which is compensated for road in-
clination, can be directly translated into the VP’s Y-axis
coordinate (assuming that the road’s up or down curvature

Fig. 4. Compute angle difference between camera heading and road
heading

is small as is the case in most paved roads), estimating
the VP’s X-coordinate requires us to find angle difference
θ between camera heading and road direction heading, as
illustrated in Fig. 4. When we request a google navigation
direction from point A to B, google map returns a series
of polylines to represent each road segment. Along each
polyline, we can further break down to a group of waypoints
that indicate each GPS location in the same road segment.
Given two waypoint coordinates P1(lon,lat) and P2(lon,lat),
we then compute latitude and longitude difference (Ψ ,Φ)
to approximate the angle of the road with respect to camera
heading. This angle θ is the offset of the road heading.

Φ = log

(
tan

(
P2lat

2 + π
4

)
tan

(
P1lat

2 + π
4

)
)

(2)

Ψ = P2lon − P1lon (3)

θ = atan2(Ψ,Φ) (4)

Because the VP is likely to not be well defined at inter-
sections where the Google vehicle took a sharp turn, we here
only use waypoints well within the route segments, as the
segment boundaries often coincide with such turns.

E. Mapping camera angle to pixel coordinate

To overcome camera distortion and non-linearity, we
manually create a correspondence map from camera pitch
angle to image Y-axis, using a third-order polynomial, whose
parameters were derived from a small subset of manually-
anotated data.

y = aθ3 + bθ2 + cθ + d (5)

Similarly, we can apply the same principle to find the road
heading to x-axis mapping.
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Fig. 5. The CNN architecture used for vanishing point detection. We closely follow the architecture of AlexNet [27], only changing the filters of the last
two fully connected layers to 1024. The architecture in our notation form is: C96-P-C256-P-C384-C384-C256-P-F1024-F1024-O. Refer to text (section III
from description.

III. NETWORK ARCHITECTURE AND ITS ADAPTATION TO

VANISHING POINT DETECTION

In our scenario, we formulate vanishing point detection as
a CNN classification problem. First we discretize numerical
vanishing point coordinates into discrete labels. In a way,
vanishing point detection is transformed into a classification
problem: given a image, predicting the location of the
vanishing point is equivalent to predicting the discrete label
of its vanishing point. The predicted label is remapped to
numerical coordinates in the image, obtaining the vanishing
point location.

A. Network architecture

There are several prevalent CNN architectures, including
AlexNet, VGG, Inception and ResNet. Here, without loss
of generality, we use AlexNet [27]. AlexNet has achieved
astonishing performance in object and scene classification
[27], [41]. It is a linear chain feed-forward architecture with
images as input and class labels as output.

We use an AlexNet implementation in [42], which consists
of the input layer, 5 convolutional layers (Conv), 2 fully
connected layers (fc) and the top label layer. Concretely,
the first two layers are divided into 4 sub-layers: convo-
lution, local response normalization (LRN), rectified linear
units(ReLUs) and max-pooling. Layers 3 and 4 are composed
of convolution and ReLUs. Layer 5 consists of convolution,
followed by ReLUs and max-pooling. There are two fully
connected layers, fc6 and fc7, stacked on top of pool5, and
each of them is followed by ReLU non-linearity. The last
label layer is a fully connected layer with the number of
nodes equal to the number of discrete classes.

To be concise, we use abbreviations Ck, ReLU , Fk,
P , D, O to represent a convolutional layer with k filters,
an ReLU non-linearity layer, a fully connected layer with
k filters, a pooling layer, a dropout layer, and an output
layer. Since ReLU non-linearity layer is followed by every

convolutional/fully-connected layer, we further omit it for
simpler and cleaner architecture representation, in this way,
the AlexNet is represented as: C96−P−C256−P−C384−
C384−C256−P −F4096−F4096−O. In the following
text, we use our notation for architecture representations.

B. vanishing point detection

We closely follow the original AlexNet architecture, only
changing the number of filters on the last two fully connected
layers to 1024. To be specific, we use this architecture for
vanishing point detection: C96− P −C256− P −C384−
C384 − C256 − P − F1024 − F1024 − O. By reducing
the number of filters, the capacity of the CNN is reduced
accordingly, which may result in a decrease in prediction
accuracy. However, in our case, we only have 225 discrete
vanishing point labels, and experimental results show that it
is sufficient to maintain the prediction accuracy, but with
much fewer parameters to learn. In total, we have 50M
parameters, compared with 220M in the original AlexNet.

IV. EXPERIMENTS

A. Dataset setup

We collected Google Street View images from 23 different
routes. Along each route, we use images collected along the
first 3/4 of the route as training data, and the remaining 1/4
route as test data. Under this partition, images in test are
never seen during training.

We end up with 790,069 training images and 263,356
test images. Each image is associated with 1 (out of 225)
discretized vanishing point label.

B. CNN setup

We train AlexNet to predict the discretized vanishing
point after initializing the parameters with random Gaussian
weights. Dropout layers following two fully connected layers
use dropout rate of 0.5. We do not peform data augmentation
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Fig. 6. Route-wise vanishing point detection accuracy of two algorithms. As seen the DeepVP algorithm consistently wins the Gabor VP method over all
routes, with significantly accuracy improvements. This is the clear demonstration of the superiority of DeepVP over the traditional arithmetic algorithms.

during training since our dataset is already sufficiently large
to allow us to achieve the best known results.

To optimize settings, we use the typical softmax loss
function as the objective, and run stochastic gradient descent
(SGD) to minimize the loss objective, with batch size set to
128. We set the starting learning rate to 0.01. The network
is trained for 20 epochs, approximately 129K iterations. The
learning rate is reduced by a factor of 10 after each 10,000
iteration. We train AlexNet using the publicly available Mat-
ConvNet [42] toolkit on an Intel 6-Core i7-5930K 3.5GHZ
computer with a Nvidia Tesla K40 GPU.

C. Quantitative Comparison

We evaluate out new Deep VP method prediction on a
total of 263,356 test images, and compare it to Chang’s
method [12] implemented in C++, as a representative Gabor
VP method which has already been shown to perform better
than [11] and [5].

Table II shows that Deep VP has a clearly improved
overall accuracy (92.09%) compared to Gabor VP (47.99%).
Deep VP is extremely accurate (99.25%) in estimating the
horizon line (X-axis accuracy in Table II. We believe this is
because the X-axis ground truth labels are directly mapped
from camera pitch, which has minimal uncertainty. In com-
parison, the Y-axis accuracy (92.38%), which estimates the
road heading, requires an extra angle offset estimation (θ),
which may decrease precision.

In computation time comparison, DeepVP is 28 times
faster than Gabor VP in terms of conventional CPU speed.
This is due to DeepVP not requiring a complex voting
scheme like Gabor VP. Furthermore, DeepVP can efficiently
utilize a GPU to compute its result, further increasing its
speed by ∼ 63×.

D. Independent Routes Comparison

In figure 6, we compute the Euclidean distance between
the labeled ground truth and a method’s prediction result

TABLE II

COMPARISON OF RESULTS WITH HAND-CRAFTED FEATURE APPROACH

methods Deep VP Gabor VP [12]

X-axis Accuracy(±5◦) 99.25% 59.24%
Y-axis Accuracy(±5◦) 92.38% 72.78%
Overall Accuracy(±5◦) 92.09% 47.99%

CPU time(s) 0.56 15.73
GPU time(s) 0.0089 -

for each route. The results show that the DeepVP method is
more accurate than Gabor VP in all routes. Total L2 distance
error from DeepVP is 9.83 pixels compared to Gabor VP’s
37.67 pixels.

E. VP Coordinate Comparison

Fig. 7. The location-dependent accuracy of vanishing point estimation
by two algorithms. As seen, the Gabor VP algorithm is biased, since it
achieves better prediction accuracy when the ground-truth VPs are near
the image center, while the prediction accuracy of DeepVP is relatively
location-insensitive.

Fig. 7 evaluates the L2 distance error on each vanishing
point coordinate. It shows that ground truth locations affect
the traditional Gabor VP method significantly. Gabor VP has
better accuracy when the vanishing point is near the middle
region slightly below the image center, indicated in blue in
Fig. 7. As we examine each prediction result, we find that
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Fig. 9. Visualization of receptive fields of filters at different layers. Top: top 25 images with the strongest activations for filters at a few layer (pool1,
pool2, conv3, and pool5); Bottom: 25 image patches from the corresponding images on the 1st row, that excite the filter the most.
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Fig. 8. Effect of network capacity on VP detection accuracy. We show
empirically that when the number of neurons in the last two fully connected
layers is as large as the number of the output layer labels, the CNN achieves
as good a performance as a larger capacity network.

if the ground truth location is too high in the image, the
Gabor VP method is affected by the shadows and markings
on the road. If the ground truth location is too low, there
is not enough road region in the image for Gabor VP to
operate reliably. This increases the prediction error in Fig. 7,
indicated in red. On the other hand, DeepVP is more stable
in all regions. That is because our dataset has training labels
equally distributed among all locations. The system not only
relies on edge-sensitive features but more balanced dataset.

All the results were obtained under the architecture C96−

P − C256 − P − C384 − C384 − C256 − P − F1024 −
F1024 − O, which has 1024 neurons in each of the last
two fully connected layers. Here we further investigate how
network capacity affects VP prediction accuracy. We shrink
the number of neurons in the last two fully connected layers
by a factor of 2 gradually, train the network using the same
training data, and plot the prediction accuracies in Fig. 8.
As long as the number of neurons approaches or exceeds
the number of output labels, 225 in our case, the prediction
accuracies plateau.

F. Visualization

We use all test images as input, compute their activation
responses for each filter on each layer, and show the top 25
images (Fig. 9, top) with the strongest activations for each
filter and the corresponding image patch (Fig. 9, bottom)
within the image which excites the filter most. Fig. 9
shows (1) receptive field size increases as the layer goes
deeper; (2) meaningful sub-structures of scenes are learned
automatically, e.g., Gabor-like edges in pool1 and horizon
lines in pool2.

V. CONCLUSIONS

In this paper, we present an innovative vanishing point esti-
mation method based on deep convolutional neural networks.
Our results show that DeepVP outperforms the state-of-the-
art algorithmic vanishing point method. DeepVP is capable
of predicting vanishing point location in a wide range of
environments with highly efficient performance. Also note
that we collected the largest vanishing point dataset to date,
with over 1 million images, to provide more comprehensive
training, testing, and development for future vanishing point
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Fig. 10. Examplar images from different sites: as seen our dataset collection procedure makes the vanishing points evenly distribute across the full image.
This partially explains that our deepVP system is more location-insensitive, and less center-biased.

algorithms. Using the same a novel way to automatically
collect the dataset and ground truth labels, more domain-
specific datasets can also be added for different navigation
application.
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