A New Robotics Platform for
Neuromorphic Vision: Beobots

D. Chung!, R. Hirata!, T. N. Mundhenk!, J. Ng!, R. J. Peters?, E. Pichon!,
A. Tsui®, T. Ventrice!, D. Walther?, P. Williams!, and L. Itti!

! University of Southern California, Computer Science Department
Los Angeles, California, 90089-2520, USA - http://iLab.usc.edu
% California Institute of Technology, Computation and Neural Systems program
Mail Code 139-74 - Pasadena, California 91125, USA - http://klab.caltech.edu
3 Art Center College of Design, Graduate Industrial Design Program
1700 Lida St. - Pasadena, California, 91103-1999, USA - http://www.artcenter.edu

Abstract. This paper is a technical description of a new mobile robotics
platform specifically designed for the implementation and testing of neu-
romorphic vision algorithms in unconstrained outdoors environments.
The platform is being developed by a team of undergraduate students
with graduate supervision and help. Its distinctive features include sig-
nificant computational power (four 1.1GHz CPUs with gigabit intercon-
nect), high-speed four-wheel-drive chassis, standard Linux operating sys-
tem, and a comprehensive toolkit of C++ vision classes. The robot is
designed with two major goals in mind: real-time operation of sophisti-
cated neuromorphic vision algorithms, and off-the-shelf components to
ensure rapid technological evolvability. A preliminary embedded neuro-
morphic vision architecture that includes attentional, gist/layout, object
recognition, and high-level decision subsystems is finally described.

1 Introduction

Animals demonstrate unparalleled abilities to interact with their natural visual
environment, a task which remains embarrassingly problematic to machines. Ob-
viously, vision is computationally expensive, with a million distinct nerve fibers
composing each optic nerve, and approximately half of the mammalian brain
dedicated more or less closely to vision [6]. Thus, for long, the poor real-time
performance of machine vision systems could be attributed to limitations in com-
puter processing power. With the recent availability of low-cost supercomputers,
such as so-called “Beowulf” clusters of standard interconnected personal com-
puters, however, this excuse is rapidly losing credibility. What could then be the
reason for the dramatic discrepancy between animal and machine vision? Too
often computer vision algorithms are designed with a specific goal and setting in
mind, e.g., detecting traffic signs by matching geometric and colorimetric models
of specific signs to image features [3]. Consequently, dedicated tuning or algorith-
mic alterations are typically required to accommodate for novel environments,
targets or tasks. For example, an algorithm to detect traffic signs from images

2 Daesu Chung et al.

acquired by a vehicle-mounted camera will typically not be trivially applicable
to the detection of military vehicles in overhead imagery.

Much progress has been made in the field of visual neuroscience, using tech-
niques such as single neuron electrophysiology, psychophysics and functional neu-
roimaging. Together, these experimental advances have set the basis for a deeper
understanding of biological vision. Computational modeling has also seen recent
advances, and fairly accurate software models of specific parts or properties of
the primate visual system are now available, which show great promise of unpar-
alleled robustness, versatility and adaptability. A common shortcoming of com-
putational neuroscience models, however, is that they are not readily applicable
to real images [6]. Neuromorphic engineering proposes to address this problem
by establishing a bridge between computational neuroscience and machine vi-
sion. An example of neuromorphic algorithm developed in our laboratory is our
model of bottom-up, saliency-based visual attention [8,6], which has demon-
strated strong ability at quickly locating not only traffic signs in 512x384 video
frames from a vehicle-mounted camera [7], but also — without any modification
or parameter tuning — artificial targets in psychophysical visual search arrays
[5], soda cans, emergency triangles [7], faces and people [10], military vehicles in
6144x4096 overhead imagery [4], and many other types of targets.

The new robotics platform described here is a test-bed aimed at demonstrat-
ing how neuromorphic algorithms may yield a fresh perspective upon tradition-
ally hard engineering problems, including computer vision, navigation, sensori-
motor coordination, and decision making under time pressure. This contrasts
with the motivation behind biorobots [14,11], which aim at physically and me-
chanically resembling animal systems. To exploit real-time video streams and
effectively base control on computationally-demanding neuromorphic vision al-
gorithms, our new robots combine a small Beowulf cluster to a low-cost but
agile four-wheel-drive robotics platform, together forming a “Beowulf-robot” or
Beobot.

What will Beobots be capable of that existing robots cannot already achieve?
Most robots have under-emphasized the vision component that is our main focus,
and rely instead on dedicated sensors including laser range finders and sonars.
Much progress has been made in developing very impressive physically capable
robots (e.g., Honda humanoid). In addition, very sophisticated and powerful al-
gorithms are now available that make robots intelligent [15]. However, we believe
that some improvement still is possible in making robots more visually capable,
as current systems often rely on simplified, low-computation visual tricks which
greatly limit their autonomy.

Below we describe the basic hardware and software components of the Beobots,
as implemented in a working prototype. We further describe a preliminary soft-
ware system that builds upon these components, and implements a neuromor-
phic vision architecture that includes visual attention (modeled after processing
in the dorsal visual stream of the primate brain), localized object recognition
(modeled after processing in the primate ventral stream), rapid computation of
the gist/layout of the scene, and high-level decision for basic navigation.

Beobots 3

At the stage of development described, which is the successful creation of
a working Beobot prototype, the present paper is limited to a fairly technical
description of the various elementary hardware and software system. We hope,
however, that the overall approach described here may trigger some useful discus-
sion with respect to the feasibility of embedding neuromorphic vision algorithms
onto a robotics platform. For further insight on the type of new algorithms that
may become realizable with the availability of the Beobot platform, we refer the
reader to the article by Navalpakkam and Itti in this volume.

2 The Robotics Platform

In this section we briefly describe the hardware components of the Beobots,
as implemented in the prototype shown in Fig. 1. The development of a new
robotics platform is justified by the current unavailability of any reasonably-
priced commercial platform with processing power suitable for real-time neuro-
morphic vision. Guidelines for our design included:

— High-speed, agile chassis, at the cost of precision and ease of control;

— Standard off-the-shelf components that can easily be replaced or upgraded;
— Compatibility with open-source software and familiar development tools;

— Low cost of individual parts and of the complete assembly;

— Small size for ease of use and maneuverability.

It is important to note a few key differences between Beobots and existing,
similarly-looking robots. A primary goal for Beobots, which may or may not turn
out to be achievable, is autonomous operation in unconstrained environments.
This directly contrasts with remotely-operated robots where computation is per-
formed on a central server communicating with the robot via a radio link (e.g.,
Clodbuster robots [2]), with semi-autonomous robots which require overall guid-
ance from a human operator but can shape this guidance according to environ-
mental conditions (e.g., [9]), and with robots operating in constrained environ-
ments such as an artificial soccer field. The extent to which fully autonomous
operation will be achievable will most probably depend on task difficulty (e.g.,
going to the library to pick up books is more difficult than the first test task
described below, running around a track). However, it is our goal for Beobots to
avoid developing algorithms that are task-specific, and rather develop a number
of biologically-inspired computational modules. As mentioned in introduction,
the existing bottom-up attention module is an example of such component that
has been sccessfully applied to a very wide, unconstrained range of inputs.

2.1 Embedded Beowulf Cluster

The Beowulf in our Beobot prototype is a standard double dual-CPU embedded
Linux system with Gigabit Ethernet link between both dual-CPU boards. We
use 1.1 GHz Pentium-IIT (PIII) CPUs, which may be upgraded to faster models

4 Daesu Chung et al.

Fig. 1. Anatomy of a Beobot.
The machine uses standard off-
the-shelf components and in-
cludes a Linux 4-CPU Beowulf
cluster with Gigabit Ethernet
transport and a FireWire color
camera on a rugged 4-wheel-
drive chassis. It is normally
powered by camcorder batter-
ies (not shown) and protected
by a vacuum-formed shell (not
shown).

as available. The motherboards rest on a custom-built 3-layer mounting plat-
form, composed of a 5mm-thick laser-cut base plate made of bulletproof Lexan
material, a Smm-thick laser-cut rubber layer for firm yet shock-insulated resting
of the motherboards, and a lmm-thick laser-cut acrylic protective cover. Any
motherboard with the standard PICMG form factor can be installed onto the
CPU platform. We used two ROCKY-3742EVFG motherboards, as these inte-
grate all of the peripherals required for our application, including: Support for
dual Pentium-IIT CPUs, connector for solid-state (256 MB CompactFlash) hard-
disks, on-board sound for voice recognition and synthesis, on-board FireWire
port for video capture, on-board Gigabit Ethernet for interconnection between
both boards, and on-board 10/100 Ethernet for connection to host computers
during software development.

The Beowulf cluster drains a maximum of 30A at 5V and 2A at 12V, which
are provided by eight standard R/C battery packs (for an autonomy of ap-
proximately one hour) or eight high-capacity Lithium-Ion battery packs (for an
autonomy of approximately two hours).

Beobots 5

2.2 Mobile Platform

We have chosen to use a radio-controlled (R/C) vehicle as basis for the Beobots
(Fig. 1), although these have overall poor reputation in the robotics community:
indeed, they are optimized for speed and light weight, at the expense of accuracy
in control. Yet in many respects they resemble full-size vehicles, which humans
are able to control at high speed, without requiring laser range finders, wheel
encoders and other typical robotics artifacts.

The Traxxas E-Maxx platform (www.traxxas.com) was well suited as the
basis for Beobots. With dual high-torque electric motors, it can handle the ad-
ditional weight of the CPUs and batteries. With a top speed of 25 MPH and
an autonomy of 20 minutes on standard R/C NiMH battery packs, it is ideal
for fast, ballistic operation and control, similar to the control we exert while
driving real automobiles. The radio control is equipped with a high/low gear
shift switch, which we have used to instead switch between autonomous and
human radio-controlled modes (ideal for online learning). Thus, while the robot
usually operates autonomously, it is possible for a human operator to easily
override this behavior (e.g., in case of an imminent accident). A serial to pulse-
width-modulation module is used to control the servos (steering, speed con-
trol with brakes, and 2-speed gearbox) from the on-board computers (see, e.g.,
www.seetron.com/ssc.htm). A speed sensor linked to the drive train is being de-
veloped to obtain speed estimates based on the mechanisms found in standard
computer mice. The shocks have been stiffened and the tires filled with firm
foam such as not to collapse under the payload.

For ease of connection to a host computer and to various equipment, the
keyboard, mouse, video, USB, and Ethernet ports have all been deported to a
single connection panel at the back of the Beobot. This panel also includes an
external 15V/12A power connector, and a switch to select between external and
battery power. Software has been developed to connect a small LCD screen to one
of the serial ports of the robot, which will be mounted on the final protective shell
over the motherboards. The cluster can accept a variety of accessory equipment,
including GPS (connected to a serial port), wireless networking (through a USB
port), additional hard-disk drives (through the IDE ports), and virtually any
other standard PC peripheral that is supported by the Linux operating system.

3 The C++ Neuromorphic Vision Toolkit

The cluster runs a standard Linux distribution, which is simply installed from
CD-ROM onto the 256 MB CompactFlash solid-state disk of each motherboard.
For our prototype, we used the Mandrake 8.2 distribution, which automatically
detected and configured all on-board peripherals, except that an alternate Gi-
gabit Ethernet driver was necessary for proper operation. To allow rapid devel-
opment and testing of new neuromorphic vision algorithms, we are developing a
comprehensive toolkit of C++ classes.
The toolkit provides a number of core facilities, which include:

6 Daesu Chung et al.

— Reference-counted, copy-on-write memory allocation for large objects such
as images (so that various copies of an image share the same physical memory
until one of the copies attempts to modify that memory, at which point a
copy of the memory is first made);

— Template-based classes, so that objects such as images or image pyramids
can be instantiated with arbitrary pixel types (e.g., scalar byte or float pixels,
color double pixels, integrate-and-fire neuron pixels, etc);

— Automatic type promotion, so that operations among template classes auto-
matically avoid all overflows (e.g., multiplying an image of bytes by a float
coefficient results in an image of floats);

— Automatic range checking and clamping during demotion of types (e.g., as-
signing an image of floats to an image of bytes transparently converts and
clamps all pixel values to the 0..255 range);

— Smart reference-counted pointers, so that when the last pointer to an object
is destroyed, memory allocated for the pointee is automatically freed;

— A convenient logging facility to report debugging and other messages to
standard output, LCD screen or system logs.

Building on these core elements and concepts, the basic facilities provided by
a set of generic C++ classes in the toolkit include:

— Low-level graphic elements such as 2D point, RGB pixel, rectangle, etc;

— A template Image class that defines a copy-on-write 2D array (of data
type chosen through the C++ template mechanism) and provides numerous
low-level image processing functions, such as convolution, rescaling, arith-
metic operations, decimation & interpolation, various normalizations, draw-
ing primitives, miscellaneous functions such as speckle noise, 3D warping,
flooding, edge detection, 3/4 chamfer distance transforms, and finally neu-
romorphic operations including center-surround and retinal filtering;

— A template Image Pyramid class which implements dyadic pyramids of var-
ious data types (defined as template argument) and for various pyramid
schemes [1], including Gaussian, Laplacian, Gabor, and Template Matching;

— Classes for storage, retrieval and display of Images in various file formats;

— Several classes specific to our model of bottom-up, saliency-based visual
attention, including a Visual Cortex class (contains a run-time-selectable
collection of pyramids, including for color, intensity, orientation and flicker
information), a Saliency Map class (2D array of leaky integrate & fire neu-
rons), a Winner-Take-All class (distributed neuronal maximum detector), an
InferoTemporal class (with run-time selectable object recognition scheme, in-
cluding backpropagation and HMAX [13]), a Brain class (contains a retina,
visual cortex, saliency map, winner-take-all and a few other objects);

— Several classes specific to our model of contour integration in the primate
brain, which simulates intricate patterns of connections between neurons
visually responsive to various visual locations;

— A Jet class (vector of responses from neurons with various tuning properties
but at a same location in the visual field), used by our ImageSpring model
that rapidly segments a rough layout from an incoming scene;

Beobots 7

— Classes to capture video frames through PCI, USB and FireWire interfaces,
and to capture audio (including decoded radio-control signals);

— Classes to read/write configuration files and to manage internal program
options (from configuration files or command-line arguments);

— A set of fast multi-threaded interprocess communication classes which allow
quick transfer of images and other data from one CPU to another, using
either TCP/IP or shared memory. These include a Beowulf class that auto-
matically sets up interconnections between different computers on a network,
and transparently handles sending and receiving of messages;

— Several accessory and Beobot-specific classes, such as Timer, XML parser,
interface to LCD screen, and interface to servomechanisms.

Building on these core facilities, a number of additional classes and executable
programs have been developed, to process movie sequences over a Beowulf clus-
ter, to control the Beobots, and to implement various models of attention, con-
tour integration, object recognition, scene layout computation, high-level scene
interpretation, etc.

4 Results

A preliminary application is being developed for testing of the Beobots with
a simple task: drive as fast as possible along the USC Olympic running track,
avoiding obstacles such as joggers. The architecture used for this purpose shares
some similarity to Rensink’s triadic architecture of human vision [12], relying
on: a rapid computation of scene layout, to localize the track; low-level visual
processing that guides visual attention bottom-up, to locate obstacles; localized
object recognition to identify obstacles and other salient scene elements being at-
tended to; high-level decision based on a working memory of recent percepts and
actions; and interfacing with the robot’s electromechanical actuators (Fig. 2).

The application is being developed and refined with encouraging results.
While layout and saliency are robustly computed in most situations, object
recognition often is more problematic, especially when background clutter is
present. Nevertheless, this simple application is a working example of how dis-
tributed neuromorphic architectures may be developed on Beobots using our
C++ vision toolkit, for real-time outdoors operation.

5 Discussion and Outlook

With the successful development of a prototype Beobot for a total cost be-
low $5,000, we have shown how standard off-the-shelf PC and R/C components
could be assembled to yield a robotics platform suitable to the real-time opera-
tion of neuromorphic vision algorithms. While evolvability typically is a major
issue in robotics design, Beobots can be upgraded in minutes to faster CPUs,
faster or better PICMG motherboards, new USB, FireWire, serial, IDE or other

8 Daesu Chung et al.

Input Frame

Fig. 2. A prototype distributed neuro-
morphic vision application developed for
the Beobots. A very rough layout of each
incoming frame is computed, and the
road is located as the largest region in
the lower half of the image. In parallel,
low-level computation of early visual fea-
tures (color opponencies, intensity con-
trast, oriented edges, and motion tran-
sients) is distributed over the four CPUs
of the Beobot. A non-linear combina-
tion of the resulting feature maps yields
the topographic saliency map (brighter
* regions indicate more salient locations).
. . The saliency map guides focal visual at-
* Recognlzed Objeas tention, which selgcts objects from the
image in order of decreasing saliency.
e Man Each selected object is passed to an ob-
ject recognition module which attempts
identification, with variable success de-
pending on background clutter. Based
on the current and past layouts, saliency
maps, sets of recognized objects, and on
the goal assigned to the robot, a rule-
based agent determines the next action.
This action is finally communicated to
the motor components of the robots, af-
ter some smoothing and possible radio-
control override.

Quick Layout

Decision

peripherals, any faster or more powerful R/C chassis that uses standard R/C
servomechanisms, new Linux distributions, and new application software.

Blueprints for the custom-designed components of the Beobots (CPU mount-
ing platform, protective shell, and battery power conversion module) are being
made available through our web site at http://iLab.usc.edu/beobots/. The
source code for the C++ toolkit is already available through CVS access and at
http://ilab.usc.edu/toolkit/. A discussion forum around this project and
other neuromorphic models is also available through this web page.

A number of enhancements are being studied, including alternate models
of localized objet recognition, voice recognition and synthesis, and algorithms
for high-level scene understanding, navigation and planning. Although all soft-
ware components currently are synchronized by the video rate of 30 frames/s, a
smarter scheduler is also being studied to balance the computational load across
the four CPUs, and allow subsystems running at different time scales to contin-
uously exploit all computing resources. This would, for instance, allow the robot

Beobots 9

to perform object recognition asynchronously from the computation of salience
and other low-level visual processing.

In summary, our approach directly follows the recent revolution brought
to the high-performance computing community by Beowulf clusters, replacing
costly and slowly-evolving custom CPUs and bus architectures by low-cost as-
semblies of mass-produced, rapidly-updated PC components. Based on our first
prototype, we believe that the Beobot approach has potential for making the
implementation of sophisticated neuromorphic algorithms onto robots a reality.
The challenge which lies ahead will now be to adapt more general neuromorphic
vision algorithms (such as, e.g., Navalpakkam and Itti, this volume) for real-time
operation on the Beobots.

Acknowledgments: This work is supported the National Science Foundation,
the National Eye Institute, the National Imagery and Mapping Agency, the Zum-
berge Research and Innovation Fund and the Charles Lee Powell Foundation.

References

1. P J Burt and E H Adelson. IEEE Trans on Communications, 31:532-540, 1983.

2. A Das, R Fierro, V Kumar, J Southall, J Spletzer and C Taylor, In Proc IEEE
Int. Conf. on Robotics and Automation, Seoul, Korea, pp. 1714-1719, 2001.

3. A de la Escalera, L E Moreno, M A Salichs, and J M Armingol. IEEE Trans Ind

Elec, 44(6):848-859, 1997.

L. Itti, C. Gold, and C. Koch. Optical Engineering, 40(9):1784-1793, Sep 2001.

L. Itti and C. Koch. Vision Research, 40(10-12):1489-1506, May 2000.

L. Itti and C. Koch. Nature Reviews Neuroscience, 2(3):194-203, Mar 2001.

L. Itti and C. Koch. Journal of Electronic Imaging, 10(1):161-169, Jan 2001.

L. Itti, C. Koch, and E. Niebur. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 20(11):1254-1259, Nov 1998.

9. L Matthies, Y Xiong, R Hogg, D Zhu, A Rankin, B Kennedy, M Hebert, R Maclach-
lan, C Won, T Frost, G Sukhatme, M McHenry and S Goldberg. In Proc. of the
6th International Conference on Intelligent Autonomous Systems, Venice, Italy, Jul
2000.

10. F. Miau and L. Itti. In Proc. IEEE Engineering in Medicine and Biology Society
(EMBS), Istanbul, Turkey, Oct 2001.

11. G. M. Nelson and R. D. Quinn. In Proceedings - IEEFE International Conference
on Robotics and Automation, volume 1, pages 157-162, 1998.

12. R. A. Rensink. Vision Res, 40(10-12):1469-1487, 2000.

13. M Riesenhuber and T Poggio. Nat Neurosci, 2(11):1019-1025, Nov 1999.

14. B. Webb. Behavioral and Brain Sciences, 24(6), 2001.

15. B Werger and M J Mataric. Annals of Mathematics and Artificial Intelligence,
31(1-4):173-198, 2001.

® N> o

