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Abstract - A 2-layer neural network was applied to 
determine the LV in radionuclide ventriculography. 
Alter learning by back-propagation, the 
correlations between computed pictures and 
learning data-set outputs, and between learning 
data-set outputs and other pictures were excellent 
(rz0.92 and r=0.83 respectively). 

I - INTRODUCI'ION 

Nuclear medicine has always been precursory in the image 
processing field because of the intrinsic features of the 
pictures. Hence, we planned to apply a 2-layer perceptron to 
detect the left ventricle (LV) in radionuclide ventriculography. 
The goal of this paper is to present the results of our device, 
which final aim is to determine automatically the Left 
Ventricular Ejection Fraction (LVEF) and the time-activity 
curve being clinical parameters of cardiac function. 

11 - NEURAL NETWORK S T R U m  

The neural network consists of two layers designed by an 
intermediate and an output layer. Each layer has 1024 neurons 
and each neuron has 1024 weights and a bias (which is not an 
output of the previous layer) as inputs. The transfer function 
of each neuron is a sigmoid. The output of each neuron is the 
sum of the weighed inputs added to the bias, modulated by 
the transfer function. Each neuron is connected with all 
neurons of the previous layer. 

111 - LEARNING OF THE WEIGHTS OF NEURAL, 
NETWORK BY THE BACK-PROPAGATION METHOD 

1 - Learning Data-Set 

We studied 15 series of 16 pictures, describing the total 
cardiac cycle, from which the diastolic picture was extracted. 
The original idea was to present 64 x 64 pixels rough 
radionuclide pictures as learning data-set inputs (each pixel 
corresponding to an input). However, because of the 
architecture of our network, the number of connections was 
far too big (2 x 4096 x 40%) for the-power of the used 
computer (IBM RS 6OOO - 320). Hence we reduced the 
network height by keeping a 32 x 32 pixels area focused on 
the LV. The pictures had been previously smoothed with a 
temporal filter (arithmetic average of pixels from 3 successive 
pictures). and with a spatial filter (classic 9 points filter). The 
output pictures were obtained after an expert h d  defined the 
LV area. The pixels belonging to this region kept their 
activity level, all others were put to 0. So, our learning data- 
set included 15 input and 15 output pictures. 
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Table 1 
Notations used in section I - 2 

input i intermediate j output k 
learningdata g 9: 
weight Wij W& 
bias bj Bk 
computation tj=&(Wij i+bj) Tk=Zj(WjkSi+bj) 

errors e; ElC 
Sj  = f(tj) sk = 

2 - The Back-Propagation Method 

Among the numerous learning algorithms that have been 
proposed for complex connectionist networks, Back- 
Propagation (BP) is probably the most widespread. BP was 
proposed by Rumelhart et al in 1986[1], but this method had 
been developed earlier by several independant groups [ 2 4 .  In 
this section, the method is briefly described, but the equations 
are adapted to our problem (all notations are in table 1). 

For each output neuron, the error is computed from the 
difference between the value calculated during the forward 
propagation, and the wished value, which is a learning data- 
set output. The correction to make has of course to be 
proportional to the difference already cited, but also to the 
derivative of the transfer function at this place (l), to take 
into account the slope of this transfer function. 

The weight of the considered neuron is adjusted by 
substracting a value Awij proportionnal to the error from the 
current weight (2). By doing this, the higher the output of the 
jth neuron is, the more important the correction is. 

AWjk = Ek Sj 

For the weights of the intermediate layer, we wanted the 
correction to attenuate the neurons most likely to induce the 
output errors (3). 

ej = f (5) & wjk Ek (3) 

The local error is proportional to the derivative of the 
transfer function and to the weighed sum of the output errors. 
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Then we adjust the weight with (4) 

The output error should decrease gradually after each 
successive iteration, because of the adjustment of the weights 
and the bias. The arrest condition should be an error level, 
considered as acceptable. or a predefhed number of iterations 
(in OUT case 2010). The end test was performed after a global 
data-set run. The picture presentation order being a very 
important parameter for the speed of the algorithm 
convergence, a pseudo-aleatory computing was carried out to 
design the order. 

IV - RESULTS 

1 : Algorithm Convergence 

Figure 1 materialises the evolution of the mean error. This 
parameter is the sum of the half square errors (difference 
between computed and wished values) which are computed for 
each output layer neuron. Subsequently, it is divided by the 
number of iterations. The global feature of the curve shows 
that the decrease is very fast until the 50th iteration. The 
decrease is much slower, afterwards. 

2 : Network Eficiency 

After each backward phase, we added a forward propagation 
to simulate the normal use of the neural network. The 
computed errors for 3 different pictures, belonging to the 
learning data-set, are shown on Figm 2. 

The curves correspond to the biggest LV, mean LV and 
smallest LV, respectively. The most important characteristic 
is the large oscillations for the extrem LV sizes. 
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Figure 1 : Mean Error Evolution During Learning 
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Figure 2 : Evolution of the efficiency of the 
neural network 

Based on the data of figure 1, one could presume 100 
iterations to be enough. But the pursuit of the learning is 
useful for the LVs which are far from the mean. At last, this 
figure gives us an other condition for ending the learning. 
Indeed, it could be very darnmageable if the learning stops 
when the errors of the biggest and smallest LVs are maximal. 

We must add an other test to evaIuate correctly the 
efficiency of our neural network, for there is no quality 
control on the LV detection from a picture which does not 
belong to our learning data-set. The correlation was computed 
from the number of pixels belonging to the LV and keeping 
their activity level +/- 10 %. The results show -0.92 with 
learning data-set pictures and falls to r=0.83 with these latter 
added to 30 new pictures. 

V - CONCLUSION 

Our neural network seems to work properly. However, the 
efficiency is not proved, if the center of the LV does not 
correspond to the center of the picture. A Kohonen network 
should give better results. 
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