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ABSTRACT

Most current foveation strategies are limited to foveating
sequences based on a direct measurement or an implicit as-
sumption of the gaze direction. Such approaches often fail
in unconstrained environments or when necessary equip-
ment is absent. Alternatively, a computational model of
visual attention may be used to predict visually salient lo-
cations. We describe such a neurobiological model of at-
tention and its specific application to foveated video com-
pression. The algorithm is demonstrated to be successful in
foveating to Regions Of human Interest in a variety of video
segments, including synthetic as well as natural scenes, and
also gives good compression ratios.

1. INTRODUCTION

One of the characteristics of humans is the ability to di-
rect their visual attention to specific objects (or locations)
of interest in a scene. Attention determines what people
see [16]. Naturally, the development of foveated vision sys-
tems depends on the ability to automatically predict the lo-
cations of regions of human interest, and to foveate onto
those regions. Several different approaches to predict areas
of maximal human interest in a scene have been proposed.
Privitera & Stark [13] use a computational algorithm based
on experimentally-determined scanpath data. Their idea is
to apply a list of Image Processing Algorithms (IPAs) to
get a sequence of algorithmically-defined regions of interest
(aROIs). The experimentally obtained human regions of in-
terest (hROIs) are compared to the aROIs by analyzing the
scanpaths arising from each IPA. A subgroup of the algo-
rithms that maximizes the similarity between the aROIs and
hROIs is selected and used to predict scanpaths. Moghad-
damand & Pentland [7] examine fixation selection based on
low level feature selection like contrast, edges, object simi-
larity. Doll et al. [19] draw from previous vision research to
predict a viewer’s ability to discriminate pattern and color
differences. A probability of fixation is estimated for each
object in the scene based on the object’s contrast, color, mo-
tion, and similarity to both the target and background. A
special feature of their implementation is a signal detection
theory routine to handle trade-offs between detections and

false alarms. Other algorithms that are tuned to detect spe-
cific objects like faces or human figures have also been pro-
posed.

Here we address two fundamental limitations of these
previous approaches: First, we use a neurobiological model
of attention [6] to select regions of interest in a manner that
is fully automatic yet yields good agreement with human
eye movement data in unconstrained environments [11],
while most previous approaches have been limited to con-
strained environments. Second, we extend the model such
as to not only yield one ROI in each frame, but possibly sev-
eral regions (multi-foveation) or even a continuous, graded
measure of interest. This measure is used to increasingly
degrade (blur) the image far away from ROIs, such as to in-
crease overall compression ratio. The entire system is tested
on a variety of outdoors, indoors and synthetic (game con-
sole) MPEG-1 video clips, and yields an additional com-
pression factor of 2-3 with degradations that are hardly no-
ticeable by human observers.

2. DETERMINATION OF FIXATION LOCATIONS

Low-level features are extracted from each input image us-
ing a set of linear filters tuned to specific features like color,
motion, orientations and intensity, like in [6]. This decom-
position is performed at nine spatial scales using Gaussian
pyramids. The output from the 72 channels is then com-
bined into a unique saliency map. The saliency map is fed
to a Winner-Take-All to find the locations of a fixed number
of perceptually salient objects in the scene (Fig. 1). This
is motivated by recent experiments suggesting that subjects
can allocate attention to 4-5 objects at the same time [14].

3. FOVEATION AND MPEG ENCODING

It is a challenging task to attempt to determine the single
most interesting location in a scene; indeed, human visual
attention is affected by factors such as culture, age, task at
hand and psychological state of the observer [16], so that
there is no good unique solution to the problem of finding
where an average observer would look. We aim to make the
quality perceived by the wide majority of the participants
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Figure 1: Overview of the model.

higher. Our first approach to this end is a multi-foveated
approach, in which more than one region of interest is com-
puted on each frame.

Currently, there is no unanimity as to whether attention
selects perceptual objects [5, 10, 18] or it just acts like a
spotlight that illuminates locations in space [12, 8]. So we
implement both object-based and location-based foveation.

The spatial frequency response for any region in the
retina can be modeled by scaling the foveal response with a
factor based on retinal eccentricity ª [17], such that [15]:

«­¬¯®±° ²´³µG¶¸· ¹ ¬Vº¼»U½i¾�¿ if À ªÁÀÃÂÅÄÇÆ�È­ÉÊ Æ Ë otherwise
(1)

where
« ¬

is the threshold frequency at eccentricity ª , ÌÎÍ
is the highest spatial frequency that can be resolved at the
fovea, and Ï is the blur factor (larger values yield larger
blurs). The value of ÌÐÍ is simply ÑÒËÒÓÕÔ­Ö [4]

Also, the highest frequency
«Ø×

that can be represented
faithfully by a digital monitor is:

«Ò×Ù®±ÚÜÛÞÝß ÑØË (2)



where Û is the width of the screen in pixels and Ý is the
viewing distance.

Combining (1) with (2) we obtain:«áàâ®äãæåGç¼è�«­¬êéd« ×Õë
(3)

By the sampling theorem, the smallest size pixel that can
be resolved at an eccentricity ª is given by:

ì ® ËíÆ Ä«áà (4)

For the location-based foveation scheme, the eccentricity
for any particular point is calculated using:

ª ® tan î »Üïñðóòôðöõáï
Û÷Ý (5)

where
ð ®øèiù¼éUú ë

and
ðôõ ®øèiù õ étú õ ë are the coordinates

of the most salient location. In the more complex case of
object-based foveation, the eccentricity value for a pixel at
position û è]ùüéUú ë can be calculated using the chamfer trans-
form of [2] or the exact Euclidean distance transform due to
[1]. If the shortest distance between point û è]ùüéUú ë and an
object is ý èiù¼éUú ë , the eccentricity is calculated using:

ª ® tan î » ý è]ùüéUú ëÛ÷Ý (6)

In the case of foveation with a single ROI, the size of each
pixel in the final image is calculated using equation (4). The
pixel is then smoothed in a circle of radius ì Ô­þ by taking an
average of all the pixels with a Gaussian weight:

ÿ è]ùüéUú ë ®�� � õ�����
�	� î õ����
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(7)
where

ÿ èiùüétú ë
is the resulting pixel value at

èiù¼éUú ë
, and

� è]ùüétú ë is the source image pixel value at
è]ùüétú ë

.
A fast implementation of eccentricity-dependent blur can

also be obtained using a Gaussian pyramid [3], which
achieves foveation by interpolating across the levels of a
Gaussian pyramid.

If there are & foveas, then there are effectively & foveated
output images. The pixel value in the final foveated image
is then given by:' è]ùüétú ë ® ã)(+*

�-,/. »10 ·�·�· 0 243
è65 � ÿ � èiù¼éUú ëtë (8)

where
5 � is the saliency value at the

�87-9
location normalized

to the maximum value,
ÿ � èiù¼éUú ë is the pixel value in the

�87-9
foveated image at

è]ùüétú ë
calculated using (7) or by using a

Gaussian pyramid, and

' è]ùüétú ë
is the pixel value in the final

foveated image at position
èiù¼éUú ë

.

However, this calculation in quite heavy on the resources.
Instead, one can use:: ® ãæåGç

�-,/. »10 ·�·�· 0 243
è65 � ý � èiù¼éUú ë�ë (9)' è]ùüétú ë ® ÿ<; èiù¼éUú ë

(10)

where the symbols are as before.
One of the side effects of multi-foveation is to smooth out

the ’beauty jumps.’ Frames are temporally averaged so that
the foveal shifts appear smooth. A binomially weighted av-
erage of the distance maps due to frames in a cache buffer
and a look-ahead buffer is used in calculating the eccentric-
ity and applying the foveation filter:
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where
= � is the

�%7-9
output frame,

'

 is the

��7-9
foveated

frame, A 
 is the weight of the
�B7-9

frame and C and D are
the widths of left and right ends of the cache window mea-
sured from the current output frame.

4. RESULTS

The algorithm has been tested with a variety of indoors, out-
doors and synthetic video clips (captured from game con-
sole outputs). Overall, the regions of interest picked by the
algorithm make sense to human observers, to the point that
it is often difficult to notice the parafoveal blur, as one typ-
ically fixates to one of the most salient locations computed
by the algorithm.

Fig. 2 shows the compression ratios obtained using our
algorithm on a single movie clip. Each graph was plotted
keeping the number of foveation points constant. Compres-
sion ratios of about 1.8 could be achieved without signif-
icant deterioration of quality as perceived by normal ob-
servers. As can be seen, compression for the object-based
foveation were lower than those obtained for the location-
based algorithm.

5. CONCLUSION AND FUTURE WORK

Although our algorithm works well with most scenes tested
so far, it is not without limitations. For one, the algorithm
does not take into account the fact that brain computations
are in object-centered frame of reference. Second, we are
only beginning to include task-oriented top-down influences
into our model. Our algorithm would have to include object
recognition and task-based biasing, as proposed in [9].

Further testing and validation of the algorithm will in-
volve recording of eye movements from human observers
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Fig 2(a):  Compression ratios for location/object based foveation algorithms

without averaging.

Fig 2(b):  Compression ratios for location based foveation with averaging.

Figure 2: Experimental results

watching the video clips of interest. A particularly interest-
ing issue in this context will be to determine whether our al-
gorithm may be used in an iterative closed loop aimed at de-
termining the optimal amount of blur that may be tolerated:
Indeed, too much extra-foveal degradation should yield ar-
tifacts that would be perceived as salient by observers, and
thus should also be picked up by the model if run a second
time, on the foveated clip.
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