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Humans demonstrate a peculiar ability to detect complex targets in rapidly presented natural scenes. Recent studies
suggest that (nearly) no focal attention is required for overall performance in such tasks. Little is known, however, of how
detection performance varies from trial to trial and which stages in the processing hierarchy limit performance: bottom–up
visual processing (attentional selection and/or recognition) or top–down factors (e.g., decision-making, memory, or alertness
fluctuations)? To investigate the relative contribution of these factors, eight human observers performed an animal detection
task in natural scenes presented at 20 Hz. Trial-by-trial performance was highly consistent across observers, far exceeding
the prediction of independent errors. This consistency demonstrates that performance is not primarily limited by
idiosyncratic factors but by visual processing. Two statistical stimulus properties, contrast variation in the target image
and the information-theoretical measure of “surprise” in adjacent images, predict performance on a trial-by-trial basis. These
measures are tightly related to spatial attention, demonstrating that spatial attention and rapid target detection share
common mechanisms. To isolate the causal contribution of the surprise measure, eight additional observers performed the
animal detection task in sequences that were reordered versions of those all subjects had correctly recognized in the first
experiment. Reordering increased surprise before and/or after the target while keeping the target and distractors
themselves unchanged. Surprise enhancement impaired target detection in all observers. Consequently, and contrary to
several previously published findings, our results demonstrate that attentional limitations, rather than target recognition
alone, affect the detection of targets in rapidly presented visual sequences.

Keywords: psychophysics, modeling, attention, saliency, RSVP

Citation: Einhäuser, W., Mundhenk, T. N., Baldi, P., Koch, C., & Itti, L. (2007). A bottom–up model of spatial attention
predicts human error patterns in rapid scene recognition. Journal of Vision, 7(10):6, 1–13, http://journalofvision.org/7/10/6/,
doi:10.1167/7.10.6.

Introduction

Humans and other primates grasp the “gist” of a
complex natural scene even when presented for only a
few tens of milliseconds (Biederman, 1981; Evans &
Treisman, 2005; Fabre-Thorpe, Richard, & Thorpe, 1998;
Li, VanRullen, Koch, & Perona, 2002; Potter & Levy,
1969; Rousselet, Fabre-Thorpe, & Thorpe, 2002; Thorpe,
Fize, & Marlot, 1996; VanRullen & Thorpe, 2001).
Furthermore, observers can detect with above-chance

performance complex target items (such as an animal) in
rapidly presented image sequences (rapid serial visual
presentation [RSVP]; Evans & Treisman, 2005; Potter &
Levy, 1969). Such performance is typically seen as
evidence for a rapid, sensory-driven (“bottom–up”) mode
of processing, primarily driven by the visual stimulus.
This leads to the hypothesis that properties of the
stimulus, rather than observer-specific and possibly more
idiosyncratic top–down processes, may, to a large extent,
determine performance in RSVP. If so, what are these
statistical properties?
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It has been argued that rapid recognition requires little
or no focal spatial attention (Li et al., 2002; Rousselet
et al., 2002). According to this view, bottom–up attention
does not constitute the primary limit for rapid visual
processing, but rather, such a limit is found in a later
target recognition stage. Indeed, some aspects of overall
performance can be captured by models of object
recognition; for example, animals that appear farther away
are more difficult to detect on average (Serre, Oliva, &
Poggio, 2006). However, these studies typically use
isolated images followed by masking stimuli. Contrary
to these results, when using a stream of images, some of
which are targets and most of which act as distractors, one
finds two attentional phenomena that limit rapid process-
ing: When two identical items are presented in direct
succession, often only one is detected (“repetition blind-
ness”; Kanswisher, 1987), and when a second target item
is presented shortlyVbut not immediatelyVafter a first
one, its processing is also impaired (“attentional blink”;
Raymond, Shapiro, & Arnell, 1992). Although repetition
blindness and attentional blink are distinct phenomena
(Chun, 1997), models of such attentional impairments are
typically variants of an attentional gating model, as first
formalized by Reeves and Sperling (1986): In this view, a
salient item (e.g., a target) opens an “attentional gate” for
its and subsequent items’ access to visual short-term
memory. Failure to quickly reopen the gate impairs the
detection of the second target in attentional blink;
furthermore, integration of information according to order
and strength within an open gate epoch leads to the loss of
order information, a potential cause for repetition blind-
ness. In attentional blink, the saliency of an item to open a
gate arises from its property of being a target or
semantically related to the target (Barnard, Scott, Taylor,
May, & Knightley, 2004). Items that attract attention
because of their emotional content can also lead to an
attentional-blink-like recognition impairment, which
some, but not all, observers can overcome through
volitional control (Most, Chun, Widders, & Zald, 2005).
Similarly, odd items (e.g., the rare occurrence of a face in
a letter task or vice versa) can impair subsequent
processing (Marois, Todd, & Gilbert, 2003), as can items
that are visually similar to the target but appear at
peripheral locations (Folk, Leber, & Egeth, 2002). How-
ever, very little is known quantitatively of the neural
mechanisms by which some items may strongly capture
attention and create an attentional-blink-like effect.
We hypothesize that high stimulus-driven saliency can

impair the detection of subsequent targets. In the view of
attentional gating, the high-saliency item triggers gate
opening and therefore impairs subsequent detection.
Similarly, a highly salient item can compete with a target
if the target itself triggered gate opening. This predicts
that distractors of high bottom–up saliency can cause
attentional impairments in the detection of adjacent targets
in RSVP, akin to attentional blink or repetition blindness.
This implies that a model of spatial attention ought to

predict human error patterns, in a trial-by-trial manner, in
such RSVP sequences. Furthermore, we hypothesize that
target detection is primarily impaired by these attentional
limits rather than by target recognition itself. This
hypothesis predicts differential detection performance for
identical targets embedded in differently ordered RSVP
sequences.
To test these hypotheses, we measure human perform-

ance in a 20-Hz RSVP animal/no-animal detection task.
We first test whether observers’ success and error patterns
are idiosyncratic or stereotypical, that is, whether different
subjects tend to make their errors in the same sequences.
To test whether attentional mechanisms underlie consis-
tent performance, we use a model of Bayesian “surprise”
(Baldi, 2005; Itti & Baldi, 2005), which has previously
been shown to model the distribution of spatial attention
(Itti & Baldi, 2006), to predict human performance in the
RSVP task. To distinguish whether attention or recogni-
tion mechanisms primarily determine detection perfor-
mance, we use the model’s prediction to design a second
experiment: We reorder sequences, in which target
detection was successful, as to increase attention load by
placing distractors adjacent to the target that create higher
surprise according to the model. As this procedure keeps
target and distractor items themselves unchanged and only
modifies surprise, it tests the causal effect of surprise on
recognition performance. Using this setting, we demon-
strate that surprise causally impairs recognition perfor-
mance, and attentional limitations, therefore, are a major
cause of human errors in RSVP.

Methods

Observers

Eight volunteers from the Caltech community partici-
pated in each experiment (age range: Experiment 1,
18–26 years; Experiment 2, 18–23 years). All participants
had normal or corrected-to-normal vision and gave written
informed consent to participation. All procedures con-
formed to National and Institutional Guidelines for
experiments in human subjects and with the Declaration
of Helsinki.

Stimuli and setup

All stimuli (targets and distractors) were based on a data
set used previously for RSVP tasks (Evans & Treisman,
2005; Li et al., 2002), in the form provided on the Web
page of Li et al. (2002; http://visionlab.ece.uiuc.edu/
datasets.html). The target set consists of 1,323 pictures
of a variety of animals occurring at different scales, viewing
angles, and positions within the images, of which we
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randomly selected 500. The distractor set consists of 1,123
various outdoor scenes, none of which contains an animal.
(Observers were explicitly instructed that humans do not
constitute an “animal” in the context of the experiment.)
Stimuli were presented on a 19-in. computer screen of

resolution 1,024 � 768 at 120 Hz using MatLab (Math-
works, Natick, MA) and its Psychophysics Toolbox exten-
sion (Brainard, 1997; Pelli, 1997; http://psychtoolbox.org/).
Ambient light level was below 0.01 cd/m2, with peak
screen luminance at 29 cd/m2. A chin rest stabilized
viewing distance at 80 cm. Stimuli spanned 384 � 256
pixels, corresponding to 11- � 7- of visual angle.

Experiment 1

We created 1,000 image sequences of 20 frames each.
Of those sequences, 500 (“target-present” sequences)
contained a single target image (animal) between Frames 6
and 15, with 50 sequences having the target at Frame 6, 50 at
Frame 7, and so forth (Figure 1). The remaining 500
sequences did not contain animal images but only distractor
images. No target stimulus was used in more than one
sequence, and no distractor was used more than once in the
same sequence. The same sequences were used for all
observers, whereas the order of sequences was randomized
individually. In each trial, a single sequence was presented
at 20 Hz (1 s total duration). Each sequence was preceded
and followed by a black fixation cross on a gray rectangle
presented for 50 ms. Observers started each trial by a
button press and were allowed to take breaks as needed. In
each trial, we asked observers to respond “as accurately as
possible and as fast as possible without sacrificing
accuracy” after the end of the sequence, whether an animal
had been presented or not. Immediate feedback was
provided on the correctness of the decision.

Experiment 2

For Experiment 2, we selected the 122 target-present
sequences that were reported correctly by all eight
observers in Experiment 1 (“easy” sequences). As detailed
below, we rearranged the order of frames in each sequence
to increase the surprise of the frame preceding the target,

succeeding the target, or both, resulting in four conditions
per sequence (“original”, “pre”, “post”, and “both”). The
target frame remained in the same temporal location in all
conditions. In addition to those 488 (4 � 122) sequences,
we used 488 “target-absent” sequences, which we selected
at random from the 500 target-absent sequences. As in
Experiment 1, the order of sequences was randomized for
each individual subject. All instructions and setup were
also identical to those of Experiment 1.

Behavioral analysis
Prediction for independent observers

Any statistical measure that does not take idiosyncratic
information into account can maximally predict perfor-
mance patterns that are consistent across different observers.
At the other extreme, for any given target-present sequence,
an observer’s probability to correctly report the target would
be independent of the properties of the sequence and, thus, of
the other observers. If this were the case and all n observers
had the same probability phit to correctly report the target,
the probability Phit(k) that k observers correctly report a
given sequence would be given by the binomial probability

distribution Phit(k) =
n
k

� �
phit
k (1 j phit)

(njk). BecauseV

due to the “yes/no” experimental designVan individual’s
response depends on his or her criterion to trade off misses
versus false alarms, phit will, in general, take different
values for different observers. Denoting the probability that
an observer j correctly reports a target by phit,j and
assuming errors to be independent across observers, the
probability of a sequence to be reported correctly by
exactly k out of n observers is given by

Phit kð Þ ¼
X
VZ4n

k

Y
jZV

phit; j
Y
jZV

��
pmiss; j

¼
X
VZ4n

k

Y
jZV

phit; j
Y
jZV

��
1j phit; j
� �

;

ð1Þ

where 4k
n denotes the set of all k-element subsets of

{1, I, n}, V is one particular subset, and V
��

is the
complement of V with respect to {1, I, n}. (Obviously,

Figure 1. Stimuli and paradigm. Sample sequence. An observer starts a trial with a key press. In target-present sequences, the target
(animal) can occur between the 6th and the 15th frame, that is, between 250 and 850 ms after trial onset.
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this expression collapses to the binomial distribution if all
phit, j were equal.) As we directly measure phit, j as the
fraction of correct responses in target-present trials for
each individual, we can explicitly compute the prediction
Phit(k) for the assumption of independent observers.
Multiplying Phit(k) with the number of trials (500) results
in the prediction depicted in gray in Figure 3.

Contrast variation

As a static correlate of spatial attention, we measured
contrast as typically used in saliency-map algorithms
(Itti & Koch, 2000) and eye-movement studies of natural
scenes (Reinagel & Zador, 1999): For each 16 � 16 patch
of the stimulus, we define luminance contrast as the
standard deviation of pixel luminance values within this
patch. The standard deviation over the resulting 384
patches (384/16 � 256/16) then provides a global scalar
measure of contrast variation within a single image.

Surprise

Our definition of surprise relies on a recently proposed
Bayesian definition (Baldi, 2005). It quantifies how
observing new data (here, each successive image) affects
the internal beliefs that a Bayesian observer may have
over a set of hypotheses or models of the world. Data
observations that leave the observers’ beliefs unaffected
carry no surprise and, hence, elicit no response from this
model, whereas data observations that cause the observers
to significantly revise their beliefs elicit surprise. When
applied to predicting the deployment of spatial attention,
an early visual form of surprise may be computed over the
instantaneous responses of low-level visual feature detec-
tors analyzing an image. This low-level surprise deter-
mines that an image patch becomes surprising when its
appearance changes abruptly and causes an internal
reevaluation of beliefs about the nature of the visual
stimulus depicted by the image patch (Baldi, 2005, and
below). Regions in video sequences determined to be
surprising at such low level by this theory and by the
associated computational model have been previously
shown to significantly attract human gaze, well above
chance (Itti & Baldi, 2006). Here, we processed the image
sequences through the model, yielding one topographic
“surprise map” for each image in the sequence. This map
encodes, for every location in the image, a prediction of
how surprising the visual appearance of this location is
likely to be to a human observer and, from the
aforementioned human gaze tracking results, how likely
the location is to capture the attention of the observer.
The implementation of the model used here has been

previously described (Baldi, 2005; Itti & Baldi, 2005,
2006) and is publicly available on the World Wide Web

(http://ilab.usc.edu/). Briefly, surprise is computed in small
image patches over the entire image, along several feature
dimensions (color, intensity, orientation, etc.) and at several
spatial and temporal scales. At every image patch, a set of
beliefs about the visual properties of the world at the
corresponding visual location is iteratively established over
time. In the current implementation, these beliefs are over
low-level hypotheses about the visual world: for example,
how much green color or horizontal orientation may be
contained in the physical stimulus that gave rise to the
observed image patch. The model then uses Bayes’
theorem as the basic engine for transitioning from a prior
probability distribution fPðMÞgMZM over a set of hypoth-
eses or models M in a model space M to a posterior
distribution fPðMkDÞgMZM after each data observation D:

OMZM; P MkDð Þ ¼ P DkMð Þ
P Dð Þ P Mð Þ: ð2Þ

In this framework, the new data observation D (here, an
image) carries no surprise if it leaves the observer’s
beliefs unaffected, that is, if the posterior is identical to
the prior; conversely, D is surprising if the posterior
distribution resulting from observing D significantly
differs from the prior distribution. Therefore, we formally
measure surprise by quantifying the distance (or dissim-
ilarity) between the posterior and prior distributions. This
is best done using the relative entropy or Kullback–
Leibler (KL) divergence (Kullback, 1959). Thus, surprise
is defined by the average of the log-odd ratio:

S D;Mð Þ ¼ KL P MkDð Þ;P Mð Þð Þ

¼
Z
M

P MkDð ÞlogP MkDð Þ
P Mð Þ dM

ð3Þ

taken with respect to the posterior distribution over the
model space M (Baldi, 2005). In the present study, we
analyze the average of the surprise values obtained over
all the image patches in the visual field, that is, one scalar
summary surprise value for each image.
Intuitively, surprise as implemented in our computa-

tional model may be viewed as an extension to the
concept of saliency but computed simultaneously over
space and time at several scales and including an
adaptation quality. A spatial oddball (e.g., a red item in
an array of green items) or a temporal oddball (e.g., a red
item in a sequence of green items) will typically elicit
surprise when first presented to the observer. However,
because the observer is constantly learning through Bayes’
rule and using every data observation to adjust its internal
beliefs about the world, surprise elicited by repeated
presentations of such oddballs decreases with every
presentation (Baldi, 2005). A striking example of this is
provided by the observation that white snow, as one would
observe on a malfunctioning television set and where every
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successive frame is entirely unpredictable, is only surprising
at its onset but quickly becomes boring as the observer
adjusts its internal beliefs toward favoring a random pixel
model (Itti & Baldi, 2005). While, in many simple
situations, surprise correlates with statistical uniqueness or
“unlikelihood” (i.e., how much of an outlier are the
observed data given a learned distribution of previously
observed data values, or, equivalently, how informative are
the data in Shannon’s sense given that learned distribution
of values), one should be aware that, in a number of cases,
the two notions can make opposite predictions: A rare
target is not necessarily surprising, as exemplified by white
snow where every snow image is unique and extremely
rare, and a surprising stimulus is not always an oddball
(Itti & Baldi, 2006). This discrepancy stems from the fact
that surprise essentially is a measure of the evolving state
of the observer in response to successive data observations,
rather than solely of the statistics of the observed data. In
previous experiments, we found that surprise significantly
better predicts the deployment of human gaze over natural
video stimuli than either standard saliency or an outlier-
based metric (Itti & Baldi, 2006).

Surprise modification in Experiment 2

For Experiment 2, we generated new sequences from the
122 target-present sequences that were correctly reported
by all observers (easy sequences) in Experiment 1. For
each sequence, we randomly reordered the five distractors
prior to and following the target while keeping the target in
place. Because the target frame can come as early as Frame
6 and as late as Frame 15, we were limited to a scope of
five frames, to ensure similar treatment of all sequences.
The same random reordering was tried on each of the easy
conditions. That is, we created a template of 100 different
random reorderings so that reordering and testing were
identical throughout the 122 easy sequences. Of those, we
picked the one with highest surprise before (“pre”) and
after (“post”) the target and the one with highest average
surprise before and after the target (“both”): Each of the
100 new random sequences for each of the 122 easy
sequences was measured for average surprise for each
frame. A difficulty score was assigned to each random
sequence based on the difference in surprise between the
target image frame and the flankers in the condition. Thus,
the most difficult “pre” condition would be seen if the
image just prior to the target was as surprising as possible
compared with the target image itself. It should be noted that
this method does not guarantee that sequences picked as
“hardest” were the hardest possible; they were the hardest of
the 100 random sequences tried. As such, we do not assert
that the set is optimal, but it is sufficient. The generated
sequences were used together with the original sequences,
yielding 488 target-present sequences for Experiment 2. We
randomly selected 488 of the 500 target-absent sequences
of Experiment 1 to be used in Experiment 2.

Results

Experiment 1VSurprise and contrast
variation correlate to performance
Basic behavioral data

In the first experiment, we presented 1,000 sequences,
each containing 20 frames of natural scenes, to eight
human observers at a presentation rate of 20Hz (Figure 1). In
half of the sequences, exactly one of the pictures (between
Frames 6 and 15) depicted one or more nonhuman animal
(s), and observers had to report after each sequence whether
or not an animal had been presented. To assess interob-
server consistency, we used the same 1,000 image
sequences in all observers, with the order of sequences
randomized for each observer. All observers performed this
task above chance level of 50% correct (minimum observer
performance: 62.2% correct), but observers were far from
perfect (maximum observer performance: 73.3% correct).
All but one observer (M.M.) employed a conservative
criterion (Figures 2A–2H), that is, exhibited more misses
(reporting no target when a target was present) than false
alarms (reporting a target when none was present). This
trend is reflected in the average performance: In 77.4% of
target-absent trials, observers correctly reported the absence
of a target (Figure 2I, left), whereas only 59.9% of the
targets presented were correctly reported (“hits”). Because
we were primarily concerned with sequence statistics
relative to target frames, we only analyzed the target-present
trials further. Partly owing to our criterion-dependent yes/no
design (as compared to forced choice), we observed

Figure 2. Performance. Pie diagrams for recognition performance
of the eight individual subjects (A–H) and mean over all subjects
(I). Target-absent trials are shown to the left, whereas target-
present trials are shown to the right. Correct responses (correct
rejects and hits) are plotted in green, whereas incorrect responses
(false alarms and misses) are plotted in red.
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substantial interindividual variability in hit rates (correct
responses in target-present trials), ranging from 48.0%
(T.N., Figure 2F) to 72.4% (M.M., Figure 2D). This
variability and the generally high error rates allowed us to
have sufficient error trials for statistical analysis.

Subjects’ performance is not idiosyncratic

Are error patterns consistent across observers? That is,
do different individuals fail or succeed for the same precise
image sequences? If so, can we find statistical properties of
sequences that predict whether observers fail or succeed to
detect a target? If we assume that all subjects commit
independent errors, we can represent, a priori, whether or
not an observer j correctly detects the target in any given
target-present sequence by a probability phit, j, which
depends on the individual criterion of the observer. The
probability that the target in a given sequence is detected
by all observers would then be the product of all phit, j.
Given the individually measured values of phit, j of our
eight observers, we obtained a predicted probability of
1.6% for all observers being correct for a sequence.
Hence, if observers were independent in their errors, we
would expect that in about 8 (1.6% � 500) target-present
image sequences, all observers would correctly detect the
target (Figure 3, gray). In fact, in 122 of the 500 target-
present sequences (24.4%), all eight subjects found the
target (Figure 3, black) 15 times higher than expected by
chance when subjects make independent errors. Similarly,
there were more sequences for which all observers failed
to detect the target (29) than the independent observer
assumption would predict (0.3). Figure 3 depicts the

independence prediction (see the Methods section) for
all possible numbers of correct observers together with the
data: Toward the extremes (0, 1, and 2 or 7 and 8 correct
observers), the data vastly exceed the independence
prediction (and consequently undershoots it for intermedi-
ate values as the integral must sum to the total number of
trialsV500Vin both cases). This demonstrates that
observers were not independent in their error patterns.
There are sequences that were easier and there are
sequences that were harder than others for all observers.
Hence, it is unlikely that high-level processes alone, for
example, generic limitations of memory or fluctuating levels
of alertness (concentration), are responsible for observer
errors, as errors due to these high-level processes would have
no reason to be correlated among observers. Instead, our
results indicate that there is something common about
individual sequences that makes them inherently more easy
or more difficult to process.

Contrast variation in target frame is correlated to
performance

We hypothesize that attentional mechanisms contribute
to target detection performance in RSVP, that is, render a
target easy or hard to detect. Luminance contrast is one of
the simplest image properties correlated with fixation
probability in natural scenes (Reinagel & Zador, 1999).
Luminance contrast is also exploited by saliency-map
models to predict gaze allocation (Itti & Koch, 2000),
which suggests that a high variation of contrast in the
target frame should allow certain features to quickly
capture attention, akin to stimulus-driven (bottom–up)
“pop-out” of targets defined by elementary features
(Treisman & Gelade, 1980). We found the measure of
local contrast variation across each target image (see the
Methods section) to be significantly increased for the
target frame in easy sequences (those in which all observers
correctly detected the target) compared to the target frame in
all other sequences (p = .0003, t test), as well as compared
to the target frame in hard sequences (those in which no
subject correctly detected the target, p = .001, Figure 4A).
In addition, we observed a small but significant correlation
between contrast variation in the target frame and the
number of observers correctly reporting the target (r = .14,
p = .002). These data demonstrate that easily detectable
targets differVon averageVfrom others in at least one
static measure typically associated with spatial attention,
their contrast variation.

“Surprising” events before and after the target masks
its detection

Although the described correlation of contrast variation
to detection may be suggestive of an attentional mecha-
nism modulating detection performance, a property of the
target frame itself, in principle, cannot distinguish
between attentional and recognition mechanisms. In

Figure 3. Errors are not independent across observers and
sequences. Black bars: Number of target-present sequences
correctly reported by any given number of subjects (0–8). Gray
bars: prediction, if all subjects were independent from each other.
For example, the same 50 image sequences (out of 500) were
correctly identified by four observers to contain an animal. If we
assume that each observer makes his or her own pattern of
errors, we predict 110 such sequences. The data are clearly
incompatible with the independence assumption.
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contrast, if properties of adjacent frames, not correlated to
target properties, affect target detection, this would be
evidence that attentional mechanisms (and not recognition
mechanisms) mediate target detection performance.
Hence, we tested under which circumstances temporally
adjacent items effectively mask the target, impairing its
detection. We hypothesized that if attention were drawn
toward the item immediately preceding or succeeding the
target, target detection would be impaired. As spatial
attention in image sequences is recruited to locations that
exhibit high Bayesian surprise (Itti & Baldi, 2005), this
hypothesis predicts that high surprise in frames adjacent to
the target will impair its detection. Hence, we tested
whether low-level visual surprise is increased in frames
adjacent to the target. We found that mean surprise was
significantly higher for the 29 “hard” sequences (Figure 5A)
than for the 122 easy sequences (Figure 5B), in the frames
before (p = .02, t test, Figure 4B) and after (p = .02,
Figure 4C) the target frame, but not for the target itself
(p = .88, Figure 4D). Furthermore, surprise was not
correlated to contrast variation in the target frame, neither
for the preceding (r = .01, p = .76), the succeeding (r = .03,
p = .56), nor the target frames (r = .0006, p = .99). Hence,
the effects of surprise did not result from any correlation to

contrast variation in the target frame. This implied that
increased surprise, before or after the target, itself is
involved in impairing target detection. In summary,
Experiment 1 demonstrated that error patterns in RSVP
are consistent across individuals and can be predicted by at
least two independent statistical measures of attention:
contrast variation of the target and surprise of adjacent
items. Target images with higher contrast variation were
more often detected, while frames exhibiting higher
surprise adjacent to a target frame effectively masked the
target and impaired detection. Hence, target detection
performance is significantly correlated with simple meas-
ures of statistical image properties thought to mediate
spatial attention; in Experiment 2, we test whether the
correlation observed for the surprise measure reflects a
causal effect of low-level visual surprise on target
detection.

Experiment 2—Increasing surprise renders
easy sequences hard

In a second experiment, we tested whether the observed
effect of surprise on target detection is causal and
independent of static image properties. To this end, we
used predictions from the surprise measure to reorder the
distractor frames in the 122 sequences in which all
subjects had successfully detected the target. For each of
these easy sequences, we generated four different con-
ditions (see the Methods section) by reshuffling distractor
images while maintaining the target image: the order in
Experiment 1 (“original,” Figure 5B), an order that
exhibited increased surprise before the target (“pre”,
Figure 5C), after the target (“post”, Figure 5D), or both
before and after the target (“both”, Figure 5E). In all
cases, the target frame remained at the same temporal
location and the same 19 distractors were used. Eight
volunteers participated in Experiment 2, none of whom
had participated in Experiment 1 or in any other experi-
ment using the same set of stimuli. In all of these
individuals (Figures 6A–6H), the hit rate for the original
sequences was higher than for any of the surprise-
modified conditions, indicating that increased surprise
indeed causally impaired target detection. The “pre” and
“post” conditions fell between original and “both” in all
observers with no consistent difference between the “pre”

Figure 4. Contrast variation and surprise predict easy from hard
sequences. Easy sequences (all eight observers correctly
detected the target) differ from hard sequences (none of the
observers detected the target) in the contrast variation of the
target frame (A) and in the surprise of the frames preceding
(B) and succeeding (C) the target frame but not in the surprise of
the target frame itself (D). All panels depict M T SEM over
sequences for the 29 hard (left, black bar) and the 122 easy
(right, gray bar) sequences. Significance markers refer to t tests
(*p G .05, **p G .01).

Figure 5. Sample sequences. (A) Ten examples of hard sequen-
ces, that is, those for which no observer reported the target. (B) Ten
examples out of 122 easy sequences. (C–E) Reordered versions of
sequences of Panel B: (C) “pre” condition, (D) “post” condition,
(E) “both” condition. For all sequences, only the three frames
adjacent to the target frame are depicted. Resolution of images was
reduced for the figure. All sequences and corresponding results
for all observers are available at http://n.ethz.ch/~einhaeuw/
download/ (jovSuppl.tar.gz).
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and “post” conditions: Five observers had higher hit rates
in “pre”, and two had higher hit rates in “post”. Perfor-
mance in the “both” condition was worse than in any other
condition for each individual, indicating that increasing
surprise before and after the target causes a more effective
impairment than either alone.
While the consistency of effects in eight out of eight

subjectsVperformance is best in the original sequences,
worse for “pre” and “post”, and worst for “both”Vhad

already been a strong indication that increased surprise
adjacent to a target frame causally impairs target
detection, we also analyzed the mean hit rates across
subjects. As expected, analysis of variance revealed that
there was a significant main effect of condition on hit
rates, F(3, 28) = 12.7, p = 2 � 10j5 (Figure 6I). Post hoc
t tests revealed highly significant differences between the
original and all the other conditions (p = .008 to “pre”,
p = 2 � 10j4 to “post”, and p = 7 � 10j5 to “both”) as
well as a significant difference between “pre” and “both”
(p = .01). No significant effect was found between “post”
and “both” (p = .09) and between “pre” and “post”
(p = .18). Because we were interested in the relative
effect of manipulating surprise rather than the absolute
performance, we normalized each observer’s perfor-
mance to his or her performance for the original sequences
(Figure 6K). Mean normalized performance for the “pre”,
“post”, and “both” conditions was significantly different
from the nominal 100% of the original (one-sample t tests:
p = 7 � 10j4, p = 8 � 10j6, and p = 3 � 10j5, respect-
ively). Significant differences were also found for all
pairwise t-test comparisons between conditions: between
“pre” and “both” (p = 7 � 10j4), between “post” and
“both” (p = .01), and between “pre” and “post” (p = .04).
In summary, for all individuals, increasing surprise before
and/or after the target frame impaired performance. This
impairment was stronger if surprise was increased both
before and after the target than for either modification
alone. These data demonstrate that surprising events
significantly impaired the detection of target items that
had been readily detected when identical distractors were
presented in a different order. Hence, low-level visual
surpriseVor some dynamic measure closely related to
itVcausally modulates the human ability to detect tempo-
rally adjacent items. Because only the spatiotemporal
context, and not the targets themselves, was different
between conditions, we conclude that an attentional
mechanism (surprise) causally modulates target detection.
Consequently, our findings demonstrate that target detec-
tion in RSVP streams is not dependent on target recognition
alone but, to a large extent, on attentional mechanisms.

Discussion

In this study, we show that performance in an RSVP
task is predicted by statistical properties of the stimulus
sequence. In particular, contrast variation in the target
frame and the information-theoretical measure of surprise
in adjacent frames are correlated to performance.
Increased surprise of flanking images impairs performance
for targets that were readily detected when a different
temporal order of distractors elicited less surprise in
frames adjacent to the target. Hence, attentional mecha-
nisms, to a large extent, determine human performance in
a rapid detection task.

Figure 6. Surprise makes easy sequences hard. Each panel from
left to right: Detection performance (hits) on original sequences
(easy sequences of Experiment 1), on the same sequences
reordered to have increased surprise in the frame preceding the
target (“pre”), succeeding the target (“post”), or both; correct
rejects in target-absent trials. Individual subjects (A–H), M T SEM
across all subjects (I), and normalized performance (K). The y-axis
has been truncated at 50% for all plots.
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We deliberately chose a database that has been widely
used in rapid scene recognition experiments (Evans &
Treisman, 2005; Li et al., 2002). Because these studies did
not find anything specific to detecting the category of
“animals” (e.g., compared to vehicles), we join a large
body of previous studies in employing an animal/no-
animal detection task (Evans & Treisman, 2005; Fabre-
Thorpe et al., 1998; Li et al., 2002; Rousselet et al., 2002;
Thorpe et al., 1996; VanRullen & Thorpe, 2001). Because
our study, furthermore, does not test for differences
between targets and nontargets per se but focuses on
performance differences between different targets or
between different adjacent distractors, it seems very
unlikely that the choice of this common task and data
set affects our results. For a sound analysis of error
patterns, we needed observers to perform below ceiling.
Because previous RSVP studies found high performance
for animal detection at rates up to 13.3 Hz (Evans &
Treisman, 2005), we chose an even higher rate (20 Hz).
As expected, performance was far below ceiling (100%),
but all subjects performed the overall task above chance
(50%). Because most observers employed a conservative
criterion for trading off false alarms versus misses, we
nevertheless obtained a sufficient number of error trials
(on average, 40% of all target-present trials). Given this,
the interobserver consistency is even more remarkable
than if there were only very few hard trials interspersed
among otherwise very easy trials. We chose a yes/no
protocol rather than a forced-choice design. Although
forced-choice designs are preferable in many situations, in
which results should not depend on individual criteria,
they would be suboptimal in the present context: Assume
we would show two sequences, in one of which there is an
animal and there is none in the other, and subjects had to
make a forced decision, the question then is which is
which? In this scenario, even if the target-present
sequence were so hard that no observer could detect the
target, we would expect half of the observers to pick this
sequence. Consequently, this possible forced-choice
design (and similarly other forced-choice detection
designs) would complicate comparing the same sequence
across different observers, which is key to this study.
Hence, for the purpose of this study, a yes/no design was
preferable. As a final note on the design, it should be
emphasized that our study deals with target detection,
rather than identification. Because a previous study on the
same data set (Evans & Treisman, 2005) showed that
attentional demands between these two tasks differ, it
might be interesting for further research to also investigate
(subcategorical) target identification.
The measures that we found to predict RSVP performance

are widely used for modeling spatial attention (Baldi, 2005;
Itti & Baldi, 2005, 2006; Itti & Koch, 2000). Under most
experimental conditions, luminance contrast is correlated to
fixation probability in natural scenes (Einhäuser & König,
2003; Mannan, Ruddock, & Wooding, 1996; Reinagel &
Zador, 1999; Tatler, Baddeley, & Gilchrist, 2005), and

fixations constitute a close correlate of spatial attention in
natural viewing (Rizzolatti, Riggio, Dascola, & Umilta,
1987). In turn, spatial attention modulates the gain of visual
neurons as if the attended stimulus’ luminance contrast had
increased (Reynolds & Desimone, 2003). Our measure of
contrast variation describes a second-order contrast prop-
erty, which has also been suggested to effectively drive
spatial attention (Einhäuser & König, 2003; Parkhurst &
Niebur, 2004). While we do not claim that contrast
variation is the only static feature that distinguishes easy
from hard targets, its correlation to detection performance
remains striking in the light of its role in bottom–up-driven
spatial attention.
Like contrast and contrast variation, the measure of

surprise was originally introduced to model the sensory-
driven (bottom–up) guidance of spatial attention, in
particular for dynamic stimuli (Baldi, 2005; Itti & Baldi,
2005, 2006). While the exact mechanisms by which
surprise impairs target detection remain to be revealed, it
seems likely that surprising events “parasitically” capture
attention and thereby block resources that would be
needed for the target either to be detected or to be
consolidated into visual short-term memory. Such an
occupation of resources is typically assumed in models
of attentional blink, in which processing of a second target
occurring shortly after a first one is impaired (Raymond
et al., 1992). In contrast to attentional blink, surprising
events also impair detection of the following item rather
than sparing this direct successor. In this respect, our
observations are more reminiscent of another attentional
impairment, repetition blindness (Kanwisher, 1987),
which is related to attentional blink, but distinct from it
(Chun, 1997). Nevertheless, some previously described
higher level attentional-blink-like phenomena do not
exhibit such “lag-1 sparing,” most notably cross-modal
attentional impairments (Jolicoeur, 1999). Rather than
dealing with the specific situations of attentional blink or
repetition blindness, which require the repetition of a
particular exemplar or close succession of items sticking
out by experimental design (being defined as target), we
here model attentional impairment that is caused by
specific statistical properties of generic distractor items.
Our results are consistent with an attentional gating model
(Reeves & Sperling, 1986), variants of which underlie
most accounts of attentional impairments. In this view, a
surprising event preceding the target opens the attentional
gate and enters the same processing epoch as the target, a
surprising event succeeding the target slips in the epoch
opened by the target. In both cases, the “surprising”
distractor competes with the target for access to visual
short-term memory. A distractor of sufficiently strong
surprise overcomes the target’s top–down salience (as
being a target) and impairs its report. Even if alternative
explanations to this gating model may exist, the fact that a
model of spatial attention predicts RSVP performance
clearly demonstrates an involvement of attentional limi-
tations. As surprise impairs the detection of otherwise
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readily detectable targets, the limitation of attention
resources, rather than target recognition mechanisms
alone, is likely to be the primary source for detection
errors in RSVP.
By design, our surprise model in its current implemen-

tation only accounts for stimulus-driven (bottom–up)
factors on attention while neglecting task-related (top–
down) components. Including task-related factors in the
model will be an interesting issue for future research: One
may, for example, include the instruction to ignore a
specific item by biasing the prior distribution accordingly.
Furthermore, surprise captures a subject’s low-level
response to observed stimulus statistics but does not, at
this stage, explicitly model the semantic content of an
image. Most et al. (2005) show that emotional images
(e.g., a murder scene) impair recognition of subsequent
items akin to the attentional blink between two target
items. Only some observers can overcome this impairment
through attentional strategies, whereas those with high
“harm avoidance” cannot do so. This indicates that such
“semantic surprise” is not only task dependent but also
personality dependent. Marois et al. (2003) demonstrated
that odd items in an RSVP sequence impair subsequent
recognition and dubbed this phenomenon “surprise blind-
ness.” In their experiments, the oddity (face vs. letter) is at
least also semantic. This semantic difference is likely to
be correlated to statistical differences between odd item
and sequence items. Consequently, our model would most
likely also correctly predict the observed performance
impairment in response to these statistical differences.
Intriguingly, even without knowledge of semantics or task
demands, our model predicts attentional impairments of
recognition. Extensions of our model that include instruc-
tions and scene semantics are, however, conceivable and
likely to further improve our model’s predictions.
Our results show that attentional resources are needed

for rapid detection of animals in sequences of natural
scenes. This is in conflict with earlier studies, which
demonstrated that rapid recognition could be performed in
the “near” absence of attention (Li et al., 2002; Rousselet
et al., 2002). The most important difference between these
studies and ours is with regard to how attentional load is
generated. Both aforementioned studies use dual-task
paradigms: Observers perform concurrent recognition at
different spatial locations. In contrast, we here use
sequences of stimuli at the same location. Recent prelimi-
nary data on famous face recognition indicate a difference
between attentional impairments in RSVP sequences as
compared to dual-task paradigms (Reddy, VanRullen,
Koch, & Perona, unpublished observations). One explan-
ation states that, in dual-task paradigms, some residual
attention remains at the “unattended” location, as spatial
attention, to some extent, can be divided between multiple
locations (Kramer & Hahn, 1995; McMains & Somers,
2004). However, Li et al. (2002) have carefully controlled
for this possibility, which renders such an explanation
unlikely. It is nevertheless possible that the mechanisms

underlying spatial attention and attentional limitations in
rapidly presented sequences do not overlap in full. In
particular, in dual-task paradigms, attention is pinned top–
down onto specific locations in the visual field, which are
determined by the task design. In contrast, in an RSVP
paradigm, covert spatial attention is free to move within
the extent of the image stream. Our data suggest that,
indeed, bottom–up saliency/surprise, typically associated
with rapid shifts of spatial attention, significantly impacts
RSVP recognition performance. Integrating task-related
factors into our surprise model will be an interesting
aspect of future research and might also help to unveil the
differences of dual-task and RSVP paradigms.
As humans by far outperform contemporary artificial

systems in scene recognition, several computational
approaches try to exploit human-like strategies. Recent
successful approaches include global features, that is,
features that do not require prior image segmentation
(Oliva & Torralba, 2006), as well as texture-based models
(Renninger & Malik, 2004). Unlike in these previous
computational studies, the main aim of our investigation
was not to optimize performance of such a recognition
system. Rather, we model human error patterns in an
experimental setting in which a high presentation rate
ensures comparably low performance. Besides the insight in
physiological mechanisms, our findings may aid machine-
assisted human operation, in applications of high visual
throughput, such as surveillance, luggage screening, or
imagery analysis1 (Clapper, 2004). Even if such applica-
tions usually operate at lower presentation rates, compara-
ble to the 3–5 Hz of saccadic eye movements, and therefore
at considerably lower error rates, understanding human
error patterns is crucial, as the consequences of even a
single missed target might come at an extremely high cost.
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