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How do we decide which objects in a visual scene are more interesting? While intuition may point toward high-level object
recognition and cognitive processes, here we investigate the contributions of a much simpler process, low-level visual
saliency. We used the LabelMe database (24,863 photographs with 74,454 manually outlined objects) to evaluate how often
interesting objects were among the few most salient locations predicted by a computational model of bottom-up attention. In
43% of all images the model’s predicted most salient location falls within a labeled region (chance 21%). Furthermore, in
76% of the images (chance 43%), one or more of the top three salient locations fell on an outlined object, with performance
leveling off after six predicted locations. The bottom-up attention model has neither notion of object nor notion of semantic
relevance. Hence, our results indicate that selecting interesting objects in a scene is largely constrained by low-level visual
properties rather than solely determined by higher cognitive processes.
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Introduction

Being able to identify interesting regions or objects in
our cluttered visual environment is key to animal survival,
be it to locate possible prey, mates, predators, navigation
landmarks, tools, or food. Yet, very little is known of the
computational neural mechanisms that underlie the behav-
ioral selection of interesting objects in our visual world. Is
it that we first have to attend to and select a number of
candidate visual locations, then recognize the identity as
well as a number of properties of each candidate, and
finally evaluate these against current behavioral goals,
intentions, and preferences, so as to decide whether that
object was interesting or not (Navalpakkam & Itti, 2005;
Rensink, 2000)? Here we show that the first phase of such
seemingly complicated and time-consuming putative
processVattentional selection based on intrinsic visual
saliencyValready is a strong predictor of which regions in
digital photographs were labeled by human observers as
potentially interesting objects.
Focal visual attention has long been known to be a

necessary first step in locating potentially interesting
elements in a scene (Itti & Koch, 2001; James, 1890).
Indeed, unless attention is first directed toward a partic-
ular scene element, much of its attributes and even
possibly its very existence will remain unnoticed, as has
been vividly demonstrated by studies of change blindness

and inattentional blindness (Mack & Rock, 1998;
O’Regan, Rensink, & Clark, 1999). Hence, we hypothe-
sized that regions or objects which human observers
would find more interesting should also attract attention,
that is, be visually salient (Itti, Koch, & Niebur, 1998;
Koch & Ullman, 1985). In this paper, we define interest-
ing objects or image regions as those which, among all
items present in a digital photograph, people choose to
label when given a fairly unconstrained image annotation
task (details below). The assumption that people would
choose to label interesting objects comes simply from the
fact that there is some motivation for people to label one
region (whether being an object or not) over another.
Early work interested in characterizing what may attract

attention toward potentially interesting objects in scenes
has suggested that changes in illumination on the retina is
a particularly effective cue (Franconeri, Hollingworth, &
Simons, 2005; Jonides & Yantis, 1988; Yantis & Jonides,
1996). Indeed, abrupt luminance changes are typically
observed when a new object appears in the scene; hence,
detecting such low-level physical changes using lumi-
nance-tuned visual neurons would often quite effectively
guide attention toward interesting novel objects (Kahneman,
Treisman, & Gibbs, 1992). Other research suggests that
sudden changes in color are also effective in attracting
attention (Snowden, 2002; Turatto & Galfano, 2001),
although this has been more largely debated (Folk &
Annett, 1994; Franconeri & Simons, 2003; Jonides &
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Yantis, 1988; Theeuwes, 1995). Other influences also are
tied to the behavioral task which an observer may be
engaged in, for example, a search task (Quinlan &
Humphreys, 1987; Treisman & Sato, 1990; Wolfe, Cave,
& Franzel, 1989). Indeed, the effectiveness of simple
bottom-up information, like color and illumination, in
attracting attention can be modulated by task influences to
yield complex search patterns (Desimone & Duncan, 1995;
Evans & Treisman, 2005; Theeuwes, 1994; Treisman &
Sato, 1990; Underwood & Foulsham, 2006; Wolfe, 1994).
However, the relative strength of contributions from
bottom-up information (e.g., salience) versus top-down
information (e.g., relevance to a task) in determining
what people find interesting remains largely unknown
(Henderson, 2003). Possibly, when no specific search
target, no search task, and no particular time or other
constraint are specified to an observer, bottom-up infor-
mation might play a predominant role in guiding attention
toward potential generically interesting targets (Itti, 2005).
Under such conditions (e.g., under free viewing), bottom-
up information could provide a strong indication of what
people might find interesting in a given scene.
We used a computational model to compute saliency

maps in digital photographs and to test the extent to which
saliency at a given image location indicates how interest-
ing that location may be to human observers. Previous
human eye-tracking studies have shown that saliency is a
strong predictor of attention and gaze allocation during

free viewing, both in static images (Parkhurst, Law, &
Niebur, 2002; Tatler, Baddeley, & Gilchrist, 2005;
Underwood & Foulsham, 2006) and in natural video
stimuli (Itti, 2005). However, it has not been shown, under
natural viewing conditions, whether a visual location that
is attracting the gaze is also being judged as interesting.
Intuitively, it is possible that attentional selection based on
low-level visual saliency may not be a good indicator of
which scene elements are in the end judged subjectively
interesting, as saliency may yield too many false positives.
That is, observers may be attracted to salient locations and
examine them, but may end up discarding an overwhelm-
ing majority of them as uninteresting, relying instead on
different mechanisms to isolate more subjectively interest-
ing locations. Testing the latter hypothesis requires
ground-truth data of which locations in images may be
more interesting to human observers.
Russell, Torralba, Murphy, and Freeman (2005) created

a research tool called LabelMe for people to annotate
objects in scenes (Figure 1). The scenes are submitted by
various contributors and depict many indoor and outdoor
locations. For instance, images include outdoor scenes of
cities around the world, office buildings, parking lots,
indoor offices and houses, country scenes, and many more.
Examples of scenes and associated object outlines from
the database are shown in Figure 1 and in (Russell et al.,
2005). As can be seen, the labeled objects in the scene
range from being in plain view and well lit to being partly

Figure 1. Example of scenes and associated objects outlines.
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occluded and low contrast or distorted. Anyone can
contribute new images to this shared repository. One can
also manually trace the outlines of scene elements using
simple computer-based tracing tools. Finally, one can
associate semantic labels with the outlined elements (e.g.,
a car, a dog). This database and associated tracing and
labeling tools are freely available on the World Wide
Web. The original purpose is to collect ground-truth data
about objects in complex natural scenes and to train
computational object recognition algorithms. Note that the
only given criteria for labeling are to make “nice labels”
(i.e., outlining whole objects somewhat precisely, as
opposed to just drawing a rectangular bounding box),
and contributors certainly are not instructed to find or to
label objects which are more salient. However, It can be
argued that a selection bias might exists to submit and to
label objects that are inherently salient compared with the
domain of all possible objectsVwhether such a saliency-
driven bias indeed exists is the main research question
posed by the present study. That is, by looking at a large
number of scenes, we attempt to find this bias and whether
it is contributed by top-down or bottom-up processes. In
addition, the images were viewed on various computers
with various display sizes and color properties. As a
result, this data set provides a good indication of what
people would find “generically interesting,” in the absence
of a particular task, in uncontrolled conditions, under no
time pressure, and outside the laboratory; obviously, the
flip side to this is that the data set is highly heterogeneous
and possibly very noisy, which might mask any of the
effects being investigated here. At the time of this writing,
there are 74,454 objects annotated by several human
annotators in 24,863 scenes. In this paper, we propose to
use this massive collective data set as an approximation to
deciphering which scene elements may be more generi-
cally interesting to a human observer: Presumably, the
scene elements which were outlined by the annotators
were more interesting than the many other scene elements
which were not outlined. The high heterogeneity and
inherently uncontrolled nature of this data set regarding
image types, resolution, annotators, image display con-
ditions, tracing tools used, etc., is such that any bias that
might be robust enough to be detected in the present study
could reasonably be expected to generalize to other data
sets.
Our main contribution is to test, using a very large scale

data set, whether scene elements that human observers
find more interesting and choose to outline in natural
scenes have distinguishing low-level visual properties that
differentiate them from other scene elements. Since we
define interesting objects as objects that people choose to
label, we hypothesize that one such distinguishing visual
property is low-level visual saliency, as approximated by
saliency map models (Itti et al., 1998). The assumption
that people would choose to label interesting objects
comes simply from the fact that there is some motivation
for people to label one region (whether being an object or

not) over another. A region might be labeled because it is
easy to do so because it is very unique in the scene (in
terms of bottom-up, top-down, or both), or the annotator
randomly chose this region for reasons unknown even to
him or her. Therefore, in this study we attempt to
determine whether which image regions end up being
labeled can be predicted using a model of bottom-up
saliency, so as to test whether some of the motivation to
label particular regions was due to bottom-up influences.
In the following sections, we describe the experimental
protocol and large-scale simulations and data analysis. We
summarize our findings in several ways, including count-
ing how many outlined objects are selected by the model
as attention scans the saliency map in order of decreasing
saliency values. Our findings have important implications
for the understanding of human vision as well as the
design of machine vision system. In particular, they
indicate that humans observers are neither entirely “free”
nor entirely unpredictable in their choice of which region
to label, as we show that they choose salient regions above
all else in a statistically highly significant manner. We
conclude that a simple low-level saliency map may serve
as quite a strong approximation of what humans find
interesting in visual scenes.

Methods

Subjects/participants

Not much is known about the participants except that
the data set contained labels by seventy eight distinct
individuals that account for 7,330 of the labels (30%),
while the rest of the labels are made by anonymous users.
It is difficult to precisely know the motivation of the
people who labeled objects in this data set. However, from
the nature of the LabelMe project, it could be inferred that
most images are labeled by computer science researchers
interested in vision. As a result, it could be further inferred
that the data set would contain objects and scenes that
would be difficult for various vision algorithms to
recognize.

Apparatus

The LabelMe database at the time of testing consisted a
total of 24,863 labeled scenes, of which 7,719 were
single-shot static scenes and 17,144 where images from
sequence (video) scenes. Image size varied from 130 �
120 to 4,423 � 3,504 pixels for the static scenes (M =
1,549.90, SD = 1,321.48 � M = 898.23, SD = 680.06) and
160 � 120 pixels to 1,024 � 768 (M = 681.28, SD =
156.90 � M = 458.72, SD = 106.09) for the sequence
scenes. Within all these scenes, 74,454 objects were
labeled, from 1 to 87 per image (M = 8.90, SD = 11.30).
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Each labeled object occupied between G0.01% and
99.82% of the total image area (M = 7.32, SD = 9.95),
and the union of all labeled objects in each image
occupied between G0.01% and 99.99% of the total image
area (M = 20.82, SD = 0.12). On average, about 20% of
each image was labeled. Sometimes object outlines over-
lapped within an image (e.g., a desk was outlined, and
also a computer on that desk), which slightly complicated
our analysis (see below). Lastly, the order in which people
chose to label the objects is captured in the data set. This
is later used as a measure of how salient the first labeled
objects were. Examples of scenes and associated object
outlines from the database are shown in Figure 1.

Design

To determine whether human observers labeled salient
objects in the LabelMe data set, a saliency map was
computed according to the algorithm proposed by Itti et al.
(Itti & Koch, 2000; Itti et al., 1998). The saliency map was
then inspected algorithmically in several ways to reveal
whether or not it had preferentially highlighted the labeled
objects over other objects. The results were then compared
to chance to indicate how difficult was the task of
selecting labeled objects in the data set.
The saliency map algorithm used in this study is

inspired from biological systems, where an image is
decomposed into several different feature maps at several
spatial scales. In the experiments performed below, the
feature map domains consisted of intensity, color oppo-
nency (red–green, blue–yellow), and four orientations
(0, 45, 90, 135). Within each feature map, a spatial
competition weighs the values of detectors in a data-driven
fashion based on their uniqueness in that map. That is, the
more different the response of a given local detector is
from its neighbors, the higher the weight assigned to that
detector’s output. The 42 feature maps (seven features at
six spatial scales) are then combined into a saliency map,
which indicates the saliency of each location in the image.
A winner-take-all neural network is then used to select the
location of highest saliency value and to set a region of
interest toward that location. Once the location has been
selected and attended to, an inhibition of return (IOR)
mechanism is used to inhibit that location in the saliency
map, such that the region of interest (ROI) will then shift to
the next most salient location. Implementation details of
this model have been described previously (Itti & Koch,
2000; Itti et al., 1998) and the algorithm is freely
distributed in source code at http://iLab.usc.edu/toolkit/.

Procedure

Each measure reported below was computed separately
for static scenes and for sequence scenes as well as for

both. In our analysis, we treated all images, including
sequences, as independent frames (no motion cues). As a
result, a bias toward similar frames in sequences can
develop. That is, if the saliency map found a labeled
region in one frame, it would presumably find that same
region in the next frame (due to the similarities between
frames). On the other hand, computing chance between
frames would find different regions. Therefore, by
examining the video sequences separately from the static
images, any biases toward similar frames can be found.

Hit analysis

Once the computed saliency map was available, the
location with the strongest activation was inspected to
determine whether it fell inside a human-labeled object or
not. Note that a hit was considered only when the center
of the predicted location was inside a labeled object and
not a region. This measure gave the hit rate, which
indicated the saliency map’s ability to locate a labeled
object within the first predicted location. The hit rate was
then compared to chance, which indicated the probability
that a labeled object would be chosen given a random
location. That is, if the scenes were fully labeled, then any
point chosen at random would be a hit, but if the scenes
were only partially labeled (which is the case for most
scenes in the LabelMe data set), then choosing a point at
random would have a low probability of hit. If one
assumes a uniform probability of picking a random
location anywhere in the image, chance probability of a
hit is hence given by the ratio of the area of the union of
all labeled regions to the area of the entire image. It is this
ratio which we computed for every image and which we
report. As a control, we confirmed that identical values (to
within 0.1%) were obtained by picking 100 uniformly
distributed random locations in each scene and testing at
each location whether or not it belonged to a labeled
object. In addition, a random map was created to obtain
the chance results for the multiple location experiments.
This process is explained later in the paper.

Hit analysis with knowledge

It can be argued that a selection bias may exist to label
objects that are near the center of the image (the so called
center-bias; Tatler et al., 2005). To account for this
knowledge, a “bias image” of size 512 � 512 pixels was
computed as the sum of all the filled labeled objects across
all scenes (after rescaling every image to 512 � 512). The
result of this image can be seen in Figure 2. As can be
seen, a bias does exist for people to label objects that are
more on the left/center side of the image. This knowledge
was then used to bias both the random map and the
saliency map. A simple technique to draw random
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locations according to the distribution given by the bias
image is as follows: After normalizing the computed bias
image map to real values between 0 and 1, uniformly
random samples were drawn in a 3-dimensional space
[0..512[ � [0..512[ � [0.0..1.0[; a sample was then kept if
its value in the third dimension was below the value given
by the computed normalized bias image map at the
location of the sample. To apply the bias image map to
the saliency map, the result of the saliency map was
simply weighted by this bias image map. The hit rate from
these maps was computed separately and labeled as hit
rate with knowledge.

Label order hit analysis

Given the order of labeling, the number of hits for a
particular order was determined. That is, how often the
first salient location fell within the first outlined object,
second outlined object, etc. This gave a measure of
whether the model can also predict what people would
choose to label first. The underlying hypothesis is to test
whether people would choose to label the most salient
object first, then any other object.

Saliency analysis

To indicate the ability of the saliency map to determine
labeled objects, several measures were evaluated. The
ratio of the maximum saliency value within labeled
objects (target) versus the maximum saliency value within
unlabeled regions (background) was examined. Note that
this ratio is related to the hit rate computed above. If this
ratio is above 1.0 on a given image, then shifting the

region of interest to the maximum saliency value would
result in a hit. In addition, a similar ratio was examined, of
average saliency within labeled versus background
regions. The average saliency value of a labeled area
and unlabeled area was computed by taking the ratio
between the sum of saliency values within the region and
the number of pixels in that region. Note that comparing
the results of these analyses against chance is not fruitful.
This is due to the fact that the random map does not
contain regions. As a result, comparing the ratios between
the maximum and the minimum (or averages) of the
values in the labeled objects and background regions
yields a value very close to one. Therefore, plotting these
values on the same graph would only show a line at
position one and would not be useful for retrieving any
information.

Number of labeled objects found analysis

Results were also obtained to evaluate how well the
next most salient location indicated a labeled object, after
an inhibition of return was applied to the current most
salient object. The inhibition of return was simply a
Gaussian disk mask, which set all salient values under-
neath the mask toward zero, so that the next maximum
salient location would have to be outside the disk. Note
that the disk does not tile the image. This is due to the fact
that the saliency map does not highlight every region in
the image (some areas have zero saliency) due to some of
the global competition for salience operations. As a result,
these locations would never be found by the model. In
addition, note that the IOR disks can also overlap. This is
due to the fact that even though the region under the disk
was inhibited, the value on the parameter of the disk
might still be the next most salient location. As a result,
choosing that location and using an IOR would result in
half of the old IOR to be inhibited again, which would
cause the disks to overlap.
To account for various sizes of objects, two disk sizes

were examined, one with a radius of 1/4 the image width
and the other with a radius of 1/16 the image width. This
corresponds roughly to the mean object size (1/16) and
2 standard deviations from the mean (1/4). The process
was then to compute the saliency map, attend to the
location of maximum salience and determine whether it
was inside a labeled object or not, apply the IOR disk of
the particular radius at that location, and choose the next
most salient location to issue the next shift in the region
of interest. This process was repeated until 100 shifts of
ROI were made, or when the saliency map had an
extremely low maximum value (0.01 when the saliency
map was normalized to values between 0.00 and 10.00),
which was found to be the point at which subsequent
shifts of ROI would not produce new attended locations.
The number of shifts of ROI until a labeled object was
first hit was used as a measurement, as well as the

Figure 2. Bias image obtained by summing all pixels belonging to
labeled objects across all scenes.
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percentage of labeled objects found versus the number of
predicted locations within the whole scene.
To test for chance, the same process outlined above was

repeated but with a random map instead of the saliency
map. This was achieved by first creating an image with
unique values from 0 to image size and shuffling the
pixels in a randomized order. The maximum location in
this randomized map was then chosen, checked for a hit,
and inhibited with an IOR of size 1/4 or 1/16 the image
size. This gave the chance results for both the number of
objects found and the number of shifts of ROI needed to
find the first labeled object. An example of the IOR
process can be seen in Figure 3.

Statistical tests

To test the statistical significance of the hit rate results,
the binomial test was used to obtain a z score. This test
was used due to the binary nature of the data. Therefore,
the z score would indicate the probability of a hit in a
given trial. Since the number N of images is much grater
then 10, the normal approximation to the binomial
distribution was used.

z ¼ Xj pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N VPVð1j PÞ

p ; ð1Þ

where X is the hit rate that the saliency map obtained, p is
the hit rate obtained by chance, P is the probability of

hitting an object in a given image, and N is the number of
images.
The Welch’s t test (Welch, 1947) was also used to test

the statistical significance when the saliency map was
used to detect all of the objects in a given scene. This test
is similar in nature to the Student’s t test, but it considers
the fact that the two sets of data have different variances.

t ¼ X1 j X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2
1

N1
þ s 2

2

N2

q ; ð2Þ

where X1 and X2 are the mean of the saliency map results
and chance results, respectively, s1

2 and s2
2 are the

variance of the saliency map results and chance, respec-
tively, and N1 = N2 is the number of images, and where
the degrees of freedom were calculated as

v ¼
s 2
1

N1
þ s 2

2

N2

� �2

s 4
1

N 2
1
ðN1j1Þ þ

s 4
2

N 2
2
ðN2j1Þ

: ð3Þ

Results

Hit analysis

Figure 4 shows the percentage of hits that the saliency
map was able to predict in the LabelMe data set. We

Figure 3. Example of the IOR process. Black circles indicate
locations chosen at random, while green indicates locations
chosen from the saliency map. In both cases, the inner red circle
indicates the first of those chosen locations. Note that the center
of one IOR disk is sometimes within the radius of another. This is
due to the Gaussian effect where the edges of the IOR are
inhibited by a lesser amount.

Figure 4. Percentage of hits in the LabelMe data set using the
saliency map (red), chance based on 100 random points (blue),
and chance based on the ratio between the label object area and
the image size (green). Error bars on the chance values are too
small to be visible. Note: ***z score 9 30, p = 0.001.
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found that the saliency map was highly significantly above
chance at preferentially attending to labeled objects.
Indeed, the hit rate, or percentage of images were the
location of maximum saliency and hence the first attended

location, was within a labeled object, was 43.29%,
40.07%, and 44.45% for all the scenes, the static scenes,
and the sequences, respectively. These values were about
twice above chance. The values of chance computed were
M = 20.82, SD = 0.08%, M = 25.46, SD = 0.07%, and M =
18.73, SD = 0.12% for all, static, and sequences,
respectively. A binomial test indicated that the hit rates
for the saliency map were statistically significantly above
chance with z = 87.27, p = 0.001, z = 30.74, p = 0.001, and
z = 86.32, p = 0.001, for all, static, and sequences,
respectively.

Hit analysis with knowledge

Figure 5 shows the percentage of hits which the
saliency map was able to predict in the LabelMe data set
with the knowledge of the overall object label bias image.
We found that the saliency map was again highly
significantly above chance at preferentially attending to
labeled objects. Indeed, the hit rate, or percentage of
images where the location of maximum saliency and
hence the first attendant location, was within a labeled
object, was 55.33% for all images, while chance was
computed as M = 26.40, SD = 2.65%. A binomial test
indicated that the hit rates for the saliency map were
statistically significantly above chance with z = 105.80,
p = 0.001. It is worth noting that even if we compare the

Figure 5. Percentage of hits in the LabelMe data set using the
saliency map (red) and chance based on 100 random points (blue)
with the knowledge of the biased image. Note: ***z score 9 30,
p = 0.001.

Figure 6. Ratio of the maximum saliency value within labeled regions (human-selected objects) to the maximum saliency value within
unlabeled regions (background). This value is plotted for all labeled scenes (left), just the static scenes (center) and the sequence scenes
(right). The doted line indicates the value of 1.0. In images with ratios above 1.0, the single most salient location over the entire image falls
within a labeled region; this was the case for over 40% of all images.
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unbiased version of the saliency map with the biased
randomized model, the results are still significantly above
chance. In particular, the saliency model still picks a
labeled object 43.29% of the time versus 26.40% for
biased-random, leading to a significant advantage for
saliency (binomial test z = 60.41, p = 0.001).
In sum, if a system just picked a location at random, it

would have an approximately 21% chance of hitting a
labeled object; using the saliency map to guide the choice
of location to that of maximum salience, however,
increased the ability to detect a labeled object to 43%,
or about twice the chance level. In addition, the knowl-
edge of where people will often label increases these
results to 55% versus a chance level of 26% (Figures 4
and 5).

Label order hit analysis

Figure 8 shows the percentage of the total hits as a
function of the order in which the objects were labeled by
the annotators. As can be seen, more hits where made to
the first-labeled and second-labeled objects than to any
other object. In particular, almost 30% of the hits where
made to the first object, and almost 10% of the hits were
to the second object. This indicates that people did tend to
label the most salient object first.

Saliency analysis

Figures 6 and 7 show the ratios of maximum and
average saliency inside versus outside the labeled regions,

Figure 7. Ratio of the average saliency value within labeled regions to the average saliency value within unlabeled regions for all labeled
scenes (left), static scenes (center), and sequence scenes (right). The doted line indicates the value of 1.0. In images with ratios above
1.0, the average salience within labeled objects is higher than the average salience of the background; this was the case for over 76% of
all images.

Figure 8. Percentage of hits out of the total hits versus the order in
which objects were labeled by the annotators. This graph shows
often the first salient location fell within the first-labeled object,
second-labeled object, etc.
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as a function of percentage of scenes. The ratio of
maximum inside versus outside saliency (i.e., maximum
target saliency to maximum background saliency) was
above unity for over 40% of the images, while the ratio of
average inside versus outside saliency was above unity in
more than 76% of the images (exact numbers vary slightly
depending on image subset, see Figures 6 and 7).
In both figures, we observed similar results for static

and sequence scenes, which was interesting as the
LabelMe database contains substantially more sequence
images than static images. Hence, our conclusions drawn
from the entire data set are generally applicable to static
scenes, sequence scenes, and both combined.
It is also interesting to examine the area under the curve

when the ratio is above unity in Figure 6, which indicates
that attending to the location of maximum saliency would
result in a hit. This area is about 40% for static scenes and
sequences scene as well as for both and corresponds to the
data shown in Figure 4. In addition, Figure 6 shows a flat
horizontal region very close to unity for about 20–30% of
the images. This flat region indicates that in these images
the saliency map was very close to achieving a hit but
possibly fell short by one of more pixels from the outline.
This shortcoming is mainly due to the IOR process and
the way a region is considered a hit (one pixel accuracy).

Therefore, if we look at the average saliency around that
region and compare that with the outside area (Figure 7),
we can see that over 76% of the images corresponded well
with the saliency map. Therefore, if a small improvement
to the method of choosing a hit is made (looking at a
neighborhood of pixels for instance, or at multiple
locations), then this would significantly raise the hit rate.

Number of labeled objects found analysis

Figure 9 shows the number of attended locations taken
to reach a labeled object. These numbers were obtained
for IOR sizes of 1/4 and 1/16 the image width. In a small
fraction of the scenes (about 10% with an IOR of 1/16), a
labeled object was never found. However, within two
shifts of ROI, the saliency map was able to find a labeled
region in more than 50% of the scenes and within three
shifts in more than 71% of the scenes with an IOR of 1/16
(over 76% with an IOR of 1/4, with chance being 43%). In
particular, the percentage of scenes in which one or more
labeled objects were hit within three shifts of ROI with an
IOR of 1/16 was 71%, 65%, and 73% for all the scenes,
static scenes, and sequences, respectively. These values
were significantly above chance. The values of chance

Figure 9. Number of attended locations taken to reach a labeled object versus the number of scenes for saliency-guided attention (red)
and random attended locations (green). Only up to 25 predicted locations are shown here for display purposes (our simulations allowed
for up to 100 locations). Results for two inhibition-of-return sizes are shown, with radius equal to 1/4 (solid line) the image width and 1/16
(dashed line) the image width. Results are plotted for all labeled scenes (left), just the static scenes (middle), and the sequences (right).
Saliency-guided attention hit a labeled object quicker than random attention in most scenes, but the asymptotical gain in the number of
hits when executing more shifts of ROI was also shallower (see text for further details).
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computed were 40%, 40%, and 39% for all, static, and
sequences, respectively. A binomial test indicated that the
hit rates for the saliency map were statistically signifi-
cantly above chance with z = 99.44, p = 0.001, z = 44.88,
p = 0.001, and z = 89.65, p = 0.001 for all, static, and
sequences, respectively.
Figure 10 shows the percentages of objects found when

the saliency map was allowed to make up to 100 predicted
locations. The figure shows that within the first 5
predicted locations (with an IOR of 1/4) the saliency
map found more than M = 60.07%, SD = 0.26% of all
labeled objects in all the scenes, more than M = 72.25%,
SD = 0.29% in the sequences scenes, and over M =
33.01%, SD = 0.38% in the static scenes. The values of
chance computed were M = 35.21%, SD = 0.26%, M =
42.11%, SD = 0.33%, and M = 19.89%, SD = 0.32% for
all, sequences, and static scenes, respectively. A
Welch’s t test indicated that these values are statistically
significantly above chance with t(49,723) = 67.99, p =
0.001, t(33,729) = 68.23, p = 0.001, and t(15,000) = 28.18,
p = 0.001 for all, static, and sequences, respectively.
Furthermore, within the first 5 predicted locations, the

number of found objects was not completely dependent on
the size of the IOR, although more objects where found at
a faster rate (fewer shifts of ROI) when the IOR had a size
of 1/4 the image width. However, after the 5th predicted

location, the number of objects found became highly
dependent on the IOR size. As a result, an IOR size of 1/16
was able to find more objects, increasing the object
detection rate by 1%.

Example scenes

Figure 11 shows a sample of a scene and its saliency
map. In this scene, the saliency map was able to correctly
find a labeled object within the first predicted location
(indicated by a green circle). Furthermore, the saliency
map found the labeled fire hydrant, a small portion of the
mailbox, and the top window as salient regions as well.
Figure 12 shows an example for when the saliency map

resulted in a miss from the first predicted location.
However, after triggering the IOR, the saliency map was
able to correctly locate the labeled region on the second
predicted location. This image is an example of a
sequence, where the person was labeled multiple times
in subsequent images. Therefore, if the saliency map finds
the labeled region in one image, it will most likely find it
in subsequent images as well.
Lastly, Figure 13 shows a compete miss due to a large

sized IOR. From the first predicted location, the saliency
map chose the center (unlabeled) computer as a salient

Figure 10. Percentage of objects found in the scenes versus the number of predicted locations (shifts of ROI) taken to find these objects
for saliency-guided attention (red) and random attention (green). This was done using a disk-shaped inhibition of return with a radius
equal to 1/4 (solid line) the image width or 1/16 (dashed line) the image width. Results are plotted for all the labeled scenes (left), just the
static scenes (middle), and the sequences (right). Saliency-guided attention found a greater number of labeled objects quicker than
random attention, but the asymptotical gain in the number of objects found when executing more attended locations was also shallower
(see text for further details).
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region (indicated by the green dot). However, after
triggering an IOR of 1/4 the size of the image width,
most of the labeled regions was inhibited. This meant that
the labeled regions would never be found again.

Discussion

In this study, we investigated whether the subjective
choice of which objects in complex natural scenes may be
judged more interesting, as defined by being worthy of
being manually outlined, could be predicted by a simple

model of low-level visual saliency. We found that indeed
hot-spots in the saliency map tended to predict the
locations of interesting objects, significantly above
chance.
Although highly above chance level, the 43% hit rate

when making a single attention shift to the location of

Figure 12. Example of a sequence scene where the first saliency-
guided attention resulted in a miss, but the second was able to hit
the labeled object. Image size: 720 � 480 pixels. IOR radius
(green circle): 45 pixels (1/16 of the image width).

Figure 11. Example of a static scene and its saliency map with a labeled object found in the first saliency-guided shift of ROI (to the
maximum saliency value over the entire image). Image size: 2,592 � 1,944 pixels. IOR radius (green circle): 162 pixels (1/16 of the image
width).

Figure 13. Example of a static scene where the first saliency-
guided shift of ROI was a miss and it additionally inhibited four
labeled objects due to a large IOR. Image size: 330 � 272 pixels.
IOR radius (green circle): 160 (1/4 of the image width). Hence,
these four objects will not be found since our implementation
includes a perfect IOR with no decay for the purposes of this study.
Images like this one explain why the asymptotes in Figures 9 and
10 do not necessarily tend towards 100% for saliency-guided
predictions.
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maximum saliency over the entire image is far from
100%, which would indicate that the most salient location
was always considered so interesting as to deserve being
labeled. This is well expected since the saliency map only
computes bottom-up information and has no notion of
what an object is. As a result, humans might use other
strategies that involve top-down processing to label
objects, along with bottom-up information. For example,
is has been shown that context information can be a good
predictor of were people would look when searching for
specific objects (Oliva & Schyns, 1997; Oliva & Torralba,
2001; Torralba, Oliva, Castelhano, & Henderson, 2006).
However, in the LabelMe data set, users have not been
given a search task and are free to label anything they
want. This could have partly removed the influence of
contextual information. There still could have been some
context information due to the fact that people would
expect certain objects to exist in a particular scene, which
might bias them toward these objects. In addition, other
factors could have effected the selection of one object
from another. For example, a less complex object might
be labeled because it is easier to outline as opposed to a
more complex object that might be more salient (e.g., a
dull ball vs. a salient human), or an object might be
labeled because of a more sophisticated measure of
subjective interest (e.g., deriving from object recognition
or higher-level mental processes). However, our further
results looking at several successive shifts of ROI indicate
that by just considering the top three most salient
locations, one would hit at least one labeled object in
76% of all images. This is a remarkable figure given the
simplicity of the saliency mechanism implemented here.
Although we have here focused on within-image

selection bias (which objects were outlined), it is also
possible that an image-level selection bias exists, in that
subjects may have preferred to submit, for example, well-
lit and in-focus images over darker and out-of-focus ones.
It is useful to note that our measure of salience is
normalized within each image in our analyses; that is,
whether an image has overall low or high contrast, is crisp
or blurry, or is noiseless or noisy, our saliency map will
regardless rank-order locations within that image accord-
ing to their relative salience. Likewise, annotators will
select some of the objects in the image and annotate them.
Here we have tested whether there is something that can
be said about the objects that were selected compared to
those that were not. It is an exciting question for future
research to test whether some image-level selection bias
might also exist in the LabelMe and in other data sets.
This could be for example investigated by comparing the
distribution of absolute peak salience values in all
LabelMe images to those in a broader representative and
unbiased sample of all images of the world. Obviously, a
difficulty here is in gathering said representative sample of
images (e.g., using cameras placed at randomly drawn
GPS coordinates and mounted on randomly controlled
motorized pan/tilt heads).

Some of the objects that were outlined but were not
considered salient by the system were objects which can
be considered having high-order saliency. High-order
saliency simply means objects that are salient in a space
which is not properly captured by the simple low-level
visual features (orientations, brightness, color) imple-
mented in our model. This space often contains objects
which are not salient for their features but for their
meaning. For example, some scenes contained labeled
people, heads of people, or animals. These entities,
however, did not have any salient feature according to
our model, like a bright colored shirt. However, since
people or animals have a meaning to other people beyond
their features, they were labeled as objects of interest.
Whether there is a simple neural correlate to such higher-
order salience remains an open research question that
pertains to deciphering which features may be able to
effectively guide human attention (for a review on this
topic, see Wolfe and Horowitz, 2004). In addition, objects
which were out of place in the scenes were also often
considered of interest and labeled, like a dog in an indoor
party scene (for related findings, see Henderson &
Hollingworth, 2003). Since the current saliency model
does not consider these high-order features, it was not able
to detect them. Future work should be considered into
coding and detecting salient features in high-order space
(see, e.g., Lee, Buxton, & Feng, 2005).
In the standard saliency model, an inhibition of return

(IOR) is used to prevent the most salient location from
being chosen again as the next predicted location. This is
often implemented by suppressing the activation within a
given neighborhood of the currently attended location.
As a result, the next maximum location outside this
neighborhood can be chosen. In the present work, the
saliency map was inhibited based on a fixed-size disk
with a radius of 1/4 and 1/16 the image width. This
radius should approximately match the size of the
objects that the saliency map is trying to locate. If one
expects the saliency map to contain many small objects,
then that value should be small, whereas when one
expects mainly large objects, that value should be larger
to speed up the search. Our results show that within
three predicted locations, the saliency map yields over
76% hit rate. That is, within three predicted location, the
saliency map finds a labeled object 76% of the time
without having any notion of what an object is. Addi-
tionally, in Figure 10 we see that within the sixth
predicted location, the saliency map starts to reach its
limitations in finding objects. Furthermore, the system
performs asymptotically better with sequences than with
static scenes. Close examination of the scenes revealed
that the sequence scenes typically contained labeled
objects that were well separated (e.g., see Figure 12),
while the static scenes contained labeled objects that more
often were overlapping. Therefore, in the static scenes,
after issuing an inhibition of return, the saliency map
might have inhibited objects that were nearby (e.g., see
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Figure 13), which then would never be found. This in part
explains why asymptotical performance is better when the
inhibition of return size is smaller (1/16 of the image
width) since fewer such spurious inhibitions then occur.
Ultimately, after choosing a location, a more sophisticated
method should be used to identify the object and to inhibit
only that object and not everything within a fixed radius of
the attended location. This would be expected to result in
more objects being found by the saliency-based approach
since it would not accidentally inhibit objects. In addition,
a dynamically sized IOR could be used to increase the
speed of finding objects as well as the number of objects.
From the results above, one can determine that presence

of low-level features along with some evaluation of their
uniqueness in the visual field, as computed by the saliency
model, are one of the reasons why human subjects would
consider a visual location as interesting to look at.
However, such elementary visual properties of scene
locations only prime subjects toward attending to salient
locations and toward subsequently extracting more infor-
mation at these locations. There is still further processing
required at these location to evaluate what these objects
are and remember them, as demonstrated for example by
the inattentional blindness phenomenon (Mack & Rock,
1998; Rees, Russell, Frith, & Driver, 1999; Simons &
Chabris, 1999). This is also true for the LabelMe images
evaluated in this paper. The various individuals who
labeled the images did not have time constraints in their
task and hence could first look at every location they liked
and then decide which ones to label. Furthermore, their
task was to label as many objects in the images as
possible, which had nothing to do with saliency or
attention. Nevertheless, our results demonstrate that as
most people labeled only objects that they thought were of
interest, this in turn led them to label objects that they had
fixated as predicted simply by their salient properties.
We therefore conclude that the saliency map is a strong

indicator of what people chose to label in complex natural
scenes. In particular, the saliency map showed a 43%
chance of finding a labeled object within the first predicted
location and over 76% chance within the third predicted
location. This means that even though choosing objects to
label might seem like a “free” decision (that is, predom-
inantly relying on higher-order mental abilities to evaluate
and choose objects), humans are largely bound by bottom-
up processing that influences their higher decision.
However, top-down processing does play a role in which
region we would choose to label, but only within the
salient regions and not from the whole scene. This can be
seen in Figure 11, where the user had a number of choices
in labeling the scenes, but chose to label only salient
locations (like the car). As a result, the saliency map can
be used to provide a good indication of what people would
deem worthy in a particular scene.
The conclusions derived from our study can be

generalized to other data sets and tasks and can help
solve some of the most challenging problems in computer

vision and the visual sciences, in particular, the binding
problem and the efficiency problem in object detection.
Since the bottom-up saliency processing can yield to only
a single region, the biding problem is simplified due to
limited features (belonging to one object) that go to
further processing. This then provides an automatic
feature binding at low levels. For example, if a red square
is deemed salient and is currently under the region of
interest, then the edges of the square can be dynamically
bound with the color of the square. The success of the
feature bindings follows from the assumption that salient
regions would contain multiple salient features (like edges
and colors) that can be bound together for object
recognition. In addition, efficient search can be performed
on images since only a few regions needs to be
considered. As a result, this information can be used for
object detection and object recognition algorithms,
robotics, navigation, and many other applications.
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