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Humans employ interacting bottom-up and top-down processes to significantly speed up search and rec-
ognition of particular targets. We describe a new model of attention guidance for efficient and scalable
first-stage search and recognition with many objects (117,174 images of 1147 objects were tested, and
40 satellite images). Performance for recognition is on par or better than SIFT and HMAX, while being,
respectively, 1500 and 279 times faster. The model is also used for top-down guided search, finding a
desired object in a 5� 5 search array within four attempts, and improving performance for finding
houses in satellite images.
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1. Introduction

Attempting to search for and recognize particular known ob-
jects in a scene can be extremely complex when one has to con-
sider all possible views an object can take. Humans employ
attention to try to limit the amount of information that needs to
be processed in order to speed up search and recognition (we
rarely look at the sky when searching for our car). Previous re-
search has shown that visual search tasks can be performed faster
when one knows the exact target in visual space, as opposed to
only a semantic description of the target (Wolfe, 1998). Therefore,
humans use cues from the target image to help facilitate search.
One can also consider implementing attention in the feature do-
main when searching through a large dataset for a particular ob-
ject. For example, if we wish to search for a green bottle, we
could bias the visual system so that green vertical edges would
be perceived faster than other features (since bottles are often up-
right). This would allow us to focus a more complex recognition
onto only the locations in the search scene that contain green ver-
tical edges, which would speed up the search significantly. Like-
wise, during recognition, that green vertical edge may be useful
to quickly narrow down onto a smaller set of possible recognition
candidates. The use of various features in this manner can help sift
through very large object datasets when attempting to recognize
objects (consider the large number of objects that an adult human
can identify). Lastly, it has been shown by Tsotsos (1991) that
knowing the features of a target reduces the complexity of visual
ll rights reserved.

@usc.edu (L. Itti).
search from NP complete to linear. These findings suggest that hu-
mans employ various heuristics to improve the tractability of per-
forming search and recognition. In this paper, we develop a model
which explores the use of biologically plausible attentional heuris-
tics to speed up search and recognition.

It is well known that the search and recognition behavior in hu-
mans can be explained through the combination of bottom-up
information from the incoming visual scene (Itti & Koch, 2001;
Theeuwes, 1995), and of top-down information from the visual
knowledge of the target and the scene (Moran & Desimone,
1985; Motter, 1994; Treue & Trujillo, 1999; Wolfe et al., 2004;
Krummenacher, Muller, Reimann, & Heller, 2001; Theeuwes,
1994; Hayhoe & Ballard, 2005). However, the exact interaction be-
tween the two processes still remains elusive, which has made it
difficult to develop machine vision systems exploiting both bot-
tom-up and top-down information.

There have been at least three major theories on mechanisms of
integration between bottom-up and top-down vision occurring in
the visual cortex. The first is Feature Integration Theory (Treisman
& Gelade, 1980; Treisman & Sato, 1990), in which several low-level
visual features are processed over the entire visual field in separate
neuronal maps (called feature maps), and then combined to form a
master map that guides attention. If the target can be defined by a
set of primitive feature maps (e.g., it has a distinct color, orientation,
intensity), then these maps can be biased using such top-down infor-
mation to elicit the target location. However, if the target is defined
only by some conjunctions of these primitive feature maps (e.g., a
unique combination of color and orientation), then a serial search
is required to find the target, since a unique signature of the target
cannot be obtained from the separate feature maps alone. In
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contrast, the Guided Search method proposed by Wolfe (1994) cre-
ates a master activation map where top-down knowledge is used
to weigh the relative contributions of bottom-up feature maps to
emphasize both features (e.g., a red color) and locations (e.g., the
top-left corner of the image) likely to characterize the target. The
model then uses the combination of these weighted maps to shift
attention towards the most promising locations. Lastly, the Biased
Competition Model proposed by Desimone and Duncan (1995) in-
volves competition between visual stimuli at each stage of process-
ing, which is influenced by top-down modulation. In this model,
attention biases the response of a local feature detector when two
stimuli are simultaneously exciting it (i.e., are presented within
the receptive field of the same visual neuron). The response is biased
in the direction of the attended feature in a different location. In all
these models, choosing the correct feature maps to use in visual
search, as well as deciding how exactly to influence these maps with
top-down information, is crucial to search performance.

Previous models such as Feature Integration Theory (Treisman
& Gelade, 1980; Treisman & Sato, 1990), Guided Search (Wolfe,
1994), Biased Competition Model (Desimone & Duncan, 1995)
and Optimal Gains (Navalpakkam & Itti, 2006a, 2007) have largely
concentrated on biasing the feature maps in a global way to facil-
itate efficient search (Fig. 1). For example, changing gains (or
weights) over whole maps has been proposed and implemented
in Wolfe (1994), Navalpakkam and Itti (2006a) and Treue and Truj-
illo (1999). However, simply setting feature gains globally may not
always accelerate search for a target object, especially for maps
that code for features shared by the target and many distractors.
Furthermore, previous models have concentrated on determining
the values of these gains from the objects so as to guide search to-
wards them, but most have not shown how they can be used for
object recognition. In this work a common representational frame-
work is used for learning how to bias towards desired targets and
for recognizing these targets when they are found. Thus allowing
the same top-down signals or parameters used for attention bias-
ing, to also be used for recognition.
Fig. 1. Example search in previous models such as Feature Integration Theory (Treism
Competition Model (Desimone & Duncan, 1995) and Optimal Gains (Navalpakkam & Itti,
the weighted sum of various feature maps with varying scales (intensity, color, orient
achieved by changing the relative weights (w) between the feature maps. Right image sh
feature map into multiple sub-bands. Ultimately, both models fail to provide fine granu
One of the previous proposals to compute the gain or weight of
particular feature maps is to base the values on the signal to noise
ratio, defined as the ratio of a detector’s response to the target rel-
ative to a distractor. Namely, this approach proposed that the rel-
ative weights of feature maps should be modulated top-down in
proportion to each map’s ability to distinguish the target from
the distractors (Navalpakkam & Itti, 2006a; Navalpakkam & Itti,
2007). One shortcoming of such an approach is that, if the detec-
tors in a given feature map respond to both the target and the dis-
tractors equally, then no change in gain will take place (Fig. 2a),
which would not contribute to improvement of search speed.
Moreover, if a feature detector responds more strongly to a distrac-
tor object than to the target, a reduction in gain of this map would
occur, which could end up turning off this map completely. As a re-
sult, only the feature maps that can uniquely distinguish the object
being searched for are amplified. Nonetheless, if a target object
contains a weak red feature among strong red distractors, the weak
red signal could in principle be used to find the object by guiding
attention towards locations where feature detectors report low
red values. Even if the feature maps are divided into sub-bands
with finer granularity (Fig. 2a and b) as proposed in Navalpakkam
and Itti (2006b), one can always design search arrays in which one
band can code for both the target and distractors, leading to a
failed discrimination.

There have also been many contributions to object recognition
and search in the computer vision literature. These contributions
often concentrate on two aspects of the problem: developing
methods to extract features from images, and creating algorithms
to classify these features. Some of the research has also indepen-
dently been focused on searching for objects once particular fea-
tures have been learned. For example, simple template matching
(Gonzalez & Wintz, 1987; Horn, 1986; Pratt, 1991; MacLean &
Tsotsos, 2008) or back-projection approaches (Bradski, 1998;
Comaniciu & Meer, 1997) use some knowledge (a template or
histogram) to check every possible location in the image for a good
match. These techniques often fail when the object’s pose or
an & Gelade, 1980; Treisman & Sato, 1990), Guided Search (Wolfe, 1994), Biased
2006a, 2007). Left image shows the basic scheme of computing a saliency map from
ation, etc.). Biasing the saliency map towards a particular feature or scale can be
ows how greater granularity in biasing can be accomplished by splitting a particular
larity in biasing for specific features (see text for explanation).



Fig. 2. An example of biasing using feature bands (a,b) and a likelihood model (c,d). In both cases the target (at spatial position 50 in a 1D slice of a feature map) has a feature
value of 125. (a) Shows how three sub-bands with mean feature responses at 50, 100, 150 and standard deviation of 10 will split the feature space. (b) Shows the ambiguity in
the response of sub-bands B and C when searching for the target, whereby each sub-band responds more vigorously to a distractor than to the target (sub-band A does not
respond at all to the target and is not shown). As a result, changing the weight of any one of them will not yield a higher response for the target. (c) Shows how knowing the
model of the target can give the granularity needed to find the target, while (d) shows the response from the learned model.
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illumination is changed. To speed up search, an attentional frame-
work proposed by Bonaiuto and Itti (2005) uses a bottom-up sal-
iency map to rapidly eliminate locations in scenes which are
unlikely to contain interesting objects. Although they reported fas-
ter results in their searches, the system lacked a method for
exploiting top-down knowledge about the search target’s features.
Obdrzalek and Matas (2005) have also proposed a method which
helps speed up the classification stage by organizing the classifier
into a binary tree to achieve a log(N) time complexity. Tagare, Toy-
ama, and Wang (2001) proposed a model in which an attentional
strategy was used to reduce overall computations by performing
fast but approximate image measurements. However, their com-
putations involved finding parts of objects and determining their
relationships in an approximate manner. In contrast, the contribu-
tion of the present paper is to provide a good feature set which can
be quickly classified with a simple classifier, as well as the ability
to use these feature sets to create a biased saliency map in order
to quickly find the object in the scene regardless of pose. The meth-
ods described above can then be used to perform a more thorough
evaluation of objects deemed by our system to be highly probable
candidates, after these candidates have been selected in a first
quick pass by our algorithm.

In this paper we draw inspiration from both the computer vi-
sion literature and models of the visual cortex and present a meth-
od based on a Bayesian framework to account for search and
recognition in a probabilistic manner. In particular, a new model
of combined attention and recognition is developed with dual
emphasis. First, top-down biasing towards desired features should
be readily available and, if possible, stronger than modulating the
relative gains of different visual features guiding search, as ex-
plored in the past (Wolfe, 1994; Navalpakkam & Itti, 2007). Second,
a common representational framework should be developed that
can be used both for biasing towards desired targets as well as
for speeding up recognition when these targets are found. We
name our algorithm SalBayes which denotes our system’s marriage
of both saliency and Bayesian modeling.

From a biological aspect, this paper aims to develop a new ap-
proach which considers profiles of detectors that are more likely
to respond to the target by shaping their tuning curve towards
the target individually. In particular, we consider a Bayesian frame-
work that uses the prior knowledge of the objects to help shape the
response of the detector profile in a dynamic manner. This ap-
proach achieves greater granularity in the discrimination ability
of the search without the added overhead and limitations of multi-
ple sub-bands. Additionally, the same information learned during
recognition is used to guide attention. This is achieved by learning
the likelihood probability density functions (PDFs) of salient fea-
tures of various objects and then using these likelihoods to com-
pute a probable location of objects during a search task.

The result of this work is a single computationally efficient sys-
tem which provides dual use. When given a location in an image,
the system will output a sorted list of objects and the associated
probabilities to the type of those object that can be found at the gi-
ven location. Alternatively, when given a description of an object,
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the system will produce a sorted list of locations and associated
probabilities that the given object can be found at a particular loca-
tion. From these results, other more comprehensive models (which
would presumably be slower) can operate on these lists to yield ro-
bust object recognition and search. Hence, we address the problem
of prioritizing search and recognition, narrowing down from long
and unordered to shorter and ordered lists of candidates, rather
than completely solving and outputting a single recognized object
label at a single location. We show how this is achieved by learning
the visual features of an object, which is used for recognition as
well as for efficient top-down-guided search. In testing against
large standard databases (Amsterdam Library of Object Images
(ALOI) (Geusebroek, Burghouts, & Smeulders, 2005), Columbia Ob-
ject Image Library (COIL) (Nene, Nayar, & Murase, 1996), and SOIL-
47 (Burianek, Ahmadyfard, & Kittle, 2001)), we find that this ap-
proach delivers robust machine vision performance, comparable
and much faster than other more sophisticated, computationally
intensive, and state-of-the-art machine vision systems (HMAX,
SIFT) for recognition, while additionally providing a common
framework for search and recognition.

In the following section we describe the model and its compo-
nents. We start with the simple problem of object classification,
and of defining a representation that can be learned from example
views of objects. We then explore how this representation can also
be used to provide efficient visual search for the learned objects.
Section 3 describes the testing methodologies, datasets and results,
while Section 4 provides discussion of the model and results.
2. Methods

The model proposed in this paper draws its inspiration from
Bayesian theory as well as from the bottom-up attention model pro-
posed by Itti et al. (Itti, Koch, & Niebur, 1998; Itti & Koch, 2000). By
learning the statistical variations in features of various objects, the
model is able to perform an efficient visual search for a given target
object, as well as classify target and distractor objects. At its core, the
model learns the probability of an object’s visual appearance having
a range of values within a particular feature map. In a visual search
task, the model influences the various feature maps by computing
the probability of a given target object for each detector within a fea-
ture map. As a result, locations in the maps with the highest proba-
bility will be searched first, as they indicate likely positions for the
target object. Both the prior and likelihood probabilities can be
learned from training views of the object and the context. As we will
see, a chief advantage of this approach is in its simplicity and speed,
which make it an ideal candidate for a front-end system that quickly
narrows search down to a few likely candidates which can then be
investigated in more detail by more sophisticated and time-consum-
ing recognition algorithms.
2.1. Object representation

To uniquely describe the appearance of an object, a number of
feature maps are computed from the biologically inspired bot-
tom-up saliency model proposed by Itti et al. (Itti et al., 1998; Itti
& Koch, 2000). The saliency map represents statistically unique
locations in an image after being decomposed into different feature
maps at several spatial scales. That is, the saliency map attempts to
detect anomalies, or outliers in the image within various feature
spaces. In this paper the feature map domains consist of intensity,
color opponency (red–green, blue–yellow) and four orientations
(0�, 45�, 90�, 135�). These particular feature maps were selected
based on the implementation proposed by Itti et al. (1998) which
derived its inspiration from a review of which elementary visual
features contribute to visual saliency in natural scenes (Wolfe
et al., 2004). In the absence of top-down modulations a normaliza-
tion operator, N(.), within each feature map weighs the values of
detectors in a data-driven fashion based on their uniqueness in
that map. That is, the more different the response of a given detec-
tor is from its neighbors and globally, the higher the weight as-
signed to that detector’s output. This normalization operator can
also be thought of as providing spatial competition between neigh-
boring pixels. The normalizing operator is computed as follows (Itti
et al., 1998):

1. Normalize the values in the map to a fixed range [0 . . . ,M], in
order to eliminate modality-dependent amplitude differences;

2. Find the location of the maps global maximum M and compute
the average �m of all its other local maxima; and

3. Globally multiply the map by ðM � �mÞ2

The 42 feature maps (seven features at six spatial scales) are
then combined into a saliency map, which indicates the saliency
of each location in the image. Implementation details of this model
have been described previously (Itti et al., 1998; Itti & Koch, 2000)
and the algorithm is freely distributed in source code at http://iLa-
b.usc.edu/toolkit/.

To characterize the target, the most salient features from each
of the 42 feature maps are sampled within a given fovea size (or
patch size) centered on the object. Note that this location does
not need to be the center of the object, nor does the object need
to be segmented. The only requirement is that the object should
overlap with the fovea location. The spatial competition will help
provide a consistent location from which to sample when the ob-
ject undergoes various transformations (illumination direction,
rotation, etc.). Selecting the most salient location to learn from also
helps in searching for the object. For example, if we know that we
are looking for a red dot on the object, then it’s worth searching for
a red dot.

The motivation behind sampling from the most salient location
within each submap around the object is to select features that
would uniquely describe the object, but would still remain invari-
ant to transformations in illumination, rotation, translation, etc.
This can then provide a very efficient search mechanism when
attempting to narrow down possible objects during recognition.
The argument follows that a salient location in an object would re-
main invariant to transformations since it is very unique to the ob-
ject. For example, the model not only learns that the object has a
particular strong color value, but also that it has a particular strong
intensity, and particular orientations. Therefore, not only the con-
junctions of various feature maps can yield a position that is highly
salient, but also feature values within each feature map at these
strong locations.

The method of only selecting particular key locations to de-
scribe objects and scenes, rather than considering the entire pixel
array, has also been successfully used by the SIFT algorithm (Lowe,
2004) and has been studied by Mikolajczyk, Leibe, and Schiele
(2005). However, this paper uses the saliency map described above
which is a much more elaborate method of determining the key-
point locations in order to provide a more robust feature set for
recognition. Note that only the single most salient location in each
feature map is used to build the descriptor vector. This results in
very quick recognition rates, since adding more locations would re-
quire a more complex model to account for spatial locations within
them. In particular, the goal of the model is to code probable loca-
tions and or hypotheses of particular objects, but not determine
them specifically. Therefore, we would want to use as few features
with a few complexities in order to speed up initial recognition and
search. Other, more complex models (which would require more
time to compute), would then be used on these locations in order
to specifically determine the object.

http://iLab.usc.edu/toolkit
http://iLab.usc.edu/toolkit
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Nevertheless, since the features are sampled from multiple
scales, some spatial information is encoded in the feature vector
but is not tightly localized. This is a result of sampling from the
various scale-space pyramids. Consequently, features extracted
from a single salient corner of a rectangle will yield a different sig-
nature (vector of features) than a signature obtained from a square.
This is due to the fact that a rectangle will occupy a different num-
ber of cells within the image, and thus will show up in a different
pyramid level. Additionally, a more complex model (with multiple
features and locations) can be considered but would result in less
efficient recognition or search (especially when the spatial distri-
butions of the features are included). For a similar approach to rec-
ognition with a more complex model (see Shokoufandeh, Marsic, &
Dickinson, 1998).

During training, the object model descriptor is built by comput-
ing the likelihood probability distributions of the 42 features
resulting from each feature map. This PDF is modeled using a
Gaussian distribution for each individual feature type, where both
the mean and variance are learned. That is, the algorithm learns 42
separate univariate Gaussian distribution for each object. The
choice of this distribution is due to the simplicity and efficiency
in obtaining the parameters mean ðlÞ and variance ðr2Þ in an
on-line method from training images. Additionally, these likeli-
hoods are used later for searching for the object. However, other
distributions can be used such as super-Gaussians, mixtures of
Gaussians, particle filters, or discrete histograms (Scott, 1992).

Given a region of interest patch q with N pixels from a particular
location (this location will correspond to the image being trained
with) from within a given feature map (from the 42 feature maps
computed above), the spatial competition method N(.) (the non-
linear normalization method described above) is applied to this
patch to form a new set of patch values q0. A feature vector F is then
built using the value of q from the location at which q0 has a max-
imum response. This value then forms the jth component of the
feature vector F, and is denoted Fj. In other words we select the
center-surround feature that has the highest value in the spatial
competition layer (the most unique feature in that map).

Fj ¼ q½argmaxðq0iÞi¼1;...;N� 8j 2 F ð1Þ

where i represents the pixel position within the patch, Fj is the par-
ticular feature value from feature map j and F is the set of feature
maps.

The Normal distribution is then used to estimate the likelihood,
pðFjjhjÞ, of observing feature Fj given a particular object class
parameter for this feature hj. For example, if j is the index of the
vertical Gabor detector channel, then Fj would represent the re-
sponse of that channel at it’s most ’unique’ location, as determined
by N(.). hj would then represent the learned mean and variance of
the vertical Gabor responses for object h.

The final model ðhÞ is then a set of n parameters ðhjÞ, each com-
posed of a mean ðlÞ and a variance ðr2Þ for each individual feature
map. This gives the ability to simply compute the model parame-
ters ðhÞ mean ðlÞ and variance ðr2Þ from the training views of
the object within each feature map, and to use a Gaussian distribu-
tion to estimate the likelihood.

pðFjjhjÞ / NðFj;lj;rjÞ ¼
1

rj

ffiffiffiffiffiffiffi
2p
p e�ðFj�ljÞ

2=2r2
j ð2Þ

When learning from only a single view, the standard deviation ðrÞ is
initially set to a fixed value of 0.001, which was chosen arbitrarily
(this number should be small so that the particular feature detector
will provide some discrimination). This gives the classifier a rough
estimate of the classification of the object with only one training
view of the object, while fully computing the variance requires
more than one training view.
2.2. Object classification

To classify particular features obtained from the feature maps, a
naive Bayesian network is used. The choice of a naive Bayesian net-
work in the model was made to reduce the amount of computations
necessary for classification, as this type of network assumes statisti-
cal independence between feature values. Since some of the features
are derived from different scales in the image, our features are actu-
ally guaranteed to be statistically dependent. However, it has been
shown that even if the features are statistically dependent upon
one another, computing the full network often only increases accu-
racy by a small amount, whereas the computations necessary to
achieve this small improvement are large (Rish, 2001). As further
evidenced in Vasconcelos and Vasconcelos (2009), for image classi-
fication, modeling the joint distribution between pairwise features
provides often only a marginal performance boost.

Once a set of features (F) is collected from a given salient loca-
tion within the feature maps (as described above), the classifica-
tion is performed using Bayes formula:

pðhijFÞ ¼
pðFjhiÞpðhiÞ

pðFÞ ð3Þ

To make a decision as to the type of classification assigned to an ob-
ject, i can be iterated over all known objects and the object with the
greatest posterior can be chosen as the best match. This method is
known as Maximum a Posteriori (MAP). However, the goal of the
model is to act as a fast front-end to slower, more accurate object
recognition systems, and so we instead output a list of objects
and match likelihoods sorted by the probability that each object
matches the requested location. In our experiments, the prior is ta-
ken to be 1/C, where C is the number of classes. This results in each
class being equally probable to observe (uninformed prior). How-
ever, changing the prior in response to outside knowledge, could
yield better classification rates if within a given scene the probabil-
ity of a particular object appearing can be determined.

Since the probability of the evidence can be viewed as a normal-
izing constant (used to ensure that probabilities all add up to
unity), it can be dropped from the equation. This is because the
comparison of the posterior is between classes, and only the great-
est one is selected and not its particular value (the scale of the va-
lue is insignificant). Furthermore, the assumption that features are
statistically independent from one another simplifies the calcula-
tion to just multiplying the likelihoods together to come up with
a decision, as opposed to calculating the full joint distribution be-
tween the features.

pðhijFÞ ¼ argmaxi pðhÞ
Yn

j¼1

pðFjjhijÞ
 !

ð4Þ

Additionally, taking the product of many probabilities, some of
which may be very small, can give rise to numerical instability. As
a result, an underflow often occurs in a straightforward implemen-
tation of Eq. (3) when using more than a few features. A solution to
this problem is to take the log of the likelihood which will convert
the probabilities from being less than one to negative numbers
greater than one. This also greatly simplifies the computations in
our practical implementation, as likelihood products are trans-
formed into likelihood summations. Also, the decision to select a
suitable classification is not affected, since only the maximum of
these values is considered. As a result of these various techniques,
Eq. (3) can be described by the following formula:

pðhijFÞ ¼ argmaxi pðhÞ
Xn

j¼1

logðpðFjjhijÞÞ
 !

ð5Þ

The enhanced version of the saliency map with the Bayesian net-
work used for object recognition can be seen visually in Fig. 3.



Fig. 3. The added Bayesian network to the saliency model for object recognition. Red indicates added components and data paths. The toy soldier at the input image is
selected for learning/classification indicated by a green circle. The maximum feature location in each center-surround feature map is used to train or classify the Bayesian
network for the selected object (indicated by the probability map on the left side). Each feature map builds a probability distribution of the most salient location in that map,
shown in red. The rest of the architecture is as previously described.
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2.3. Biasing learned features for efficient object search in a Bayesian
framework

Once the parameters of a particular object are known, they can
be used to search for the object in an efficient manner. This is
accomplished by biasing the feature maps to influence the saliency
map so that the object that is being searched for becomes more
salient, which can result in a faster search times simply by sorting
by salience. For example, if our bottom-up saliency computations
considered bright locations as salient, then darker locations would
often be considered last as possible targets. However, if our object
was dark in color, then biasing the saliency computations to choose
darker locations as salient should improve search time, which
would result in the biased saliency highlighting darker locations
first.

The saliency map is biased by using the knowledge of the target
parameters, and applying them to the set of feature detectors that
are computed. Particularly, the parameters of our target are used to
look for a particular mean and a variance within a given feature
map. These parameters can be thought of as an envelope limiting
the feature map response. In other words, the feature map would
have its activation shaped by the likelihood of the particular fea-
ture value belonging to the object. Although our system could be
thought of as only considering one sub-band, that sub-band can
be dynamically shaped (regarding its position along the feature
spectrum, and its specificity or width), thus providing an interest-
ing alternative to using several fixed sub-bands. The result in the
feature map then gives the probability of our object being coded
by a particular feature detector. The maximum location within
the feature map would then give an indication of the possible tar-
get location (Fig. 2c,d). The biasing process (applying the likelihood
model to the feature map) is repeated within each feature map and
the combination of all the feature maps’ information is used to cre-
ate a saliency map where the maximum indicates the most proba-
ble location of our target. The enhanced version of the saliency
map with the Bayesian network used for finding objects can be
seen in Fig. 4.

The various feature maps in the saliency map are biased in the fol-
lowing way: First the feature maps are computed by creating an im-
age pyramid of each feature type and taking the difference between
the pyramids to form center-surround responses at various scales as
proposed in the original saliency algorithm (Itti et al., 1998; Itti &
Koch, 2000). There are 42 such maps labeled F1 � � � F42 (four orienta-
tions, one intensity, one blue–yellow, and one red–green all at six
different scales). Note that spatial competition is not computed on
these feature maps and just the raw center-surround values are
used. However, it is important to remember that the spatial compe-
tition was used when extracting the feature values during the train-
ing phase. From the learned parameters of a particular object h the
parameters (lj and rj) corresponding to a particular feature map Fj

are used to calculate the probability of a particular detector belong-
ing to the target pðFjjhjÞ in feature map j. This is done across the n dif-
ferent feature maps. The maps are then multiplied together (instead
of the sum which was used in the original model) to yield the final
saliency map. Therefore, the resulting saliency map calculates the
probability of a location containing a given target ðpðFjhÞÞ. Again,
to avoid numerical instability and to speed up computation, the
log of the probability is used.

logðpðFjhÞÞ ¼ logð
Yn

j¼1

pðFj; hjÞÞ /
Xn

j¼1

logðNðFj;lj;rjÞÞ ð6Þ



Fig. 4. The added Bayesian network to the saliency model for object recognition. Red indicates added components and data paths. The input image is passed for processing
(without the selected object which is indicated in this image for clarity) by the saliency computations in the normal way. After the center-surround operations, the parameters of
the object are used to find the probability of a detector indicating the position of the object in each submap (depicted as 3D graphs in the figure). All the submaps are then
multiplied together to form the saliency map (note that in the implementation the multiplications are converted to additions by the used of the log operation).
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N is the normal function and F is the set of all 42 features. Again,
the spatial competition on the whole saliency map is not per-
formed during object search. This is due to the nature of the spatial
competition, which tends to punish high values within the same
uniform region. Since that region describes the probability of the
object, that location should be allowed to contribute to the overall
saliency map.

Once a biased saliency map is computed, the locations with the
highest locally maximal values in that map are searched first. That
is, the object model is used on the locations which are local max-
ima in the biased saliency map. This processes in known as atten-
tion shifts. Finding local maxima is achieved by selecting the
maximum value in the saliency map and applying an inhibition
of return (IOR) mechanism to that location. The IOR is performed
by applying a Gaussian disk mask with fixed radius to the saliency
map which set all salient values underneath the mask toward zero,
so that the next maximum salient location would have to be out-
side the disk. Implementation details of this mechanism have been
described previously (Itti et al., 1998; Itti & Koch, 2000).

3. Results

The model was tested on three publicly available datasets to
evaluate its performance in both object recognition and object
search tasks.
3.1. Object recognition

For the object recognition task, several challenging datasets
were used. These datasets included objects under many transfor-
mations including rotations and various viewpoints, illumination
changes and illumination color changes. The original idea of the
experiment was to use SIFT (Lowe, 2004) on top of the output of
our model in order to speed up the search for object during recog-
nition. However, during our preliminary experiments we found
that using SIFT did not actually provide better recognition results
than the raw output of our model. As a result, we directly compare
the recognition capabilities of SalBayes against state-of-the-art ob-
ject recognition methods: the SIFT (Lowe, 2004) algorithm as pro-
posed by Lowe and the HMAX algorithm with feature learning
proposed by Serre, Wolf, and Poggio (2005). These two methods
were chosen due to their popularity in the machine vision and cog-
nitive modeling community. For example, HMAX has been used to
explain basic facts about the ventral visual system (Riesenhuber &
Poggio, 1999) and has been used in object recognition (Serre et al.,
2005, Serre, Wolf, Bileschi, Riesenhuber, & Poggio, 2007), while
SIFT has been used to build 3D models of objects (Snavely, Seitz,
& Szeliski, 2006), robotics navigation (Se, Lowe, & Little, 2002; Eli-
nas & Little, 2005; Sim, Elinas, & Griffin, 2005; Barfoot, 2005) and
object classification (Lowe, 1999). Due to the large amount of data,
a Beowulf cluster consisting of eight dual–dual-core Opterons(tm)



L. Elazary, L. Itti / Vision Research 50 (2010) 1338–1352 1345
(four cores per node for a total of 32 cpus) running at 2.6 GHz was
used to run the algorithms in a parallel fashion. The cumulative
amount of CPU time taken for the testing sets was captured to
compare the efficiency of the models.

The SIFT implementation was obtained from the author’s web-
site (Lowe, 2004), but the matching keypoints software was chan-
ged slightly to provide keypoint matching against a large dataset.
In particular, a k-nearest neighbor algorithm (with k = 2) was used
to determine the object identity given a test image and an image
database. An implementation of HMAX with feature learning in
Matlab was obtained directly from the author’s website (http://
cbcl.mit.edu/software-datasets/standardmodel/index.html). How-
ever, due to the large amount of data, the software was slightly
modified to compute the features for all objects under all transfor-
mations and save them to a file first. This allowed us to extract the
features in parallel using the Beowulf cluster. An SVM algorithm
with a RBF kernel was used for training and testing. The implemen-
tation of the SVM was obtained from Chang and Lin (2001).

We test the proposed algorithm (along with HMAX and SIFT)
against three large standard databases (ALOI, COIL, SOIL-47) sepa-
rately and all together. The datasets are systematically broken into
training and testing sets composed of the various images in the
dataset. These sets include 1 image for training and the rest for
testing, 6.25% training 93.75% testing, 12.5% training 87.5% testing,
25% training 75% testing and 50% training and 50% testing. The first
object recognition dataset used was the Amsterdam Library of Ob-
ject Images (ALOI) (Geusebroek et al., 2005). This dataset contains
photographs of 1000 objects placed on a turntable and subjected to
various transformations. These transformations include 12 illumi-
nation colors, 24 illumination directions, and 72 viewpoints (each
object was rotated in steps of 5�). All photographs were first scaled
down to a 256 � 256 pixel image to speed up computations. Sev-
eral splits of the entire dataset into training and testing sets were
considered, from using only one instance of each transformation
Fig. 5. Classification rates as a function of training size obtain
(three images total) for training, to using half of the dataset for
training. Object recognition testing was then performed on all
1000 objects on transformations that were not in the training data-
set. The next data set used was the Columbia Object Image Library
(COIL) (Nene et al., 1996) which consisted of photographs of 100
objects under 72 rotated views. The 7200 color images of
128 � 128 pixels were obtained by placing objects in the center
of a turntable that was rotated at 5� increments. Here again several
splits into training and testing sets were tested, from using only
the first image for training and all others for testing, to using half
of the dataset for training and the other half for testing. Object rec-
ognition was then performed on all 100 objects and on views that
were not in the training datasets. The last dataset used was the
SOIL-47 (Burianek et al., 2001) comprising photographs of 47
household objects. The images were obtained by placing a camera
on a robot arm and moving it to various positions. In addition, the
objects were also subjected to two illumination conditions. We
again created training sets that ranged from just a single instance
of each object, to half the dataset of the various views of the object.
In addition, one of the illumination conditions for each of the two
illumination conditions was used for training. Testing was then
performed on all objects and on views that were not in the training
datasets.

The results show that under many object transformations the
model was able to successfully learn the objects, classify them cor-
rectly and search for them in an efficient manner. In particular,
Fig. 5 and Table 1 shows that the model was able to classify the
large datasets tested on average over 88.64% correctly. As indicated
in Fig. 5, the HMAX algorithm was able to achieve a 92.46% classi-
fication rate on the ALOI dataset. Although this is a slight improve-
ment over the proposed method, it should be noted that the
features computed in the HMAX algorithm are 2000 dimensions
in size and take more then 46 s to compute per image, as compared
to the proposed model which uses only 42 features and is 279
ed by the proposed algorithm SalBayes, SIFT and HMax.

http://cbcl.mit.edu/software-datasets/standardmodel/index.html
http://cbcl.mit.edu/software-datasets/standardmodel/index.html


Table 1
Average recognition from the various datasets using 25% of the data for training. N represents the number of images in the testing set. The work of others have been included in
this table to place the performance in context. To our knowledge, no one has before us used all of the 1000 objects in the ALOI database under all conditions.

Method Classification rate (%)

ALOI N = 81,000 COIL N = 5400 SOIL47 N = 1410 ALL datasets N = 87,810

SalBayes 83.83 97.20 84.89 88.64
SIFT 72.68 87.19 94.48 84.78
HMAX 83.42 77.02 57.87 72.77
MNS (Murthy, 2007) – 99.91 100.001 –
LAF (Obdrzalek & Matas, 2002) – 99.90 100.001 –
Graph matching (Kittler & Ahmadyfard, 2001) – – 73.0 –
Extra trees (Maree et al., 2005) – 99.50 – –
Sub-windows (Geurts et al., 2004) – 99.61 – –
SNoW/edge (Roth et al., 2002) – 94.13 – –
SNoW/intensity (Roth et al., 2002) – 92.31 – –
Linear SVM (Roth et al., 2002) – 91.30 – –
NN (Roth et al., 2002) – 87.50 – –

Table 2
Recognition results on the ALOI dataset under the various transformations using 25% of the data for training. N represents the number of images in the testing set. The fifth
column is the performance rate obtained when using all images (all images from A, B and C), while the sixth column represent an unweighted average of performance obtained for
A, B and C (if the same number of transformations where equally likely to occur.).

Method Classification rate (%)

A. Changes in illumination
color only N = 9000

B. Changes in illumination
direction only N = 18,000

C. Changes in rotation
only N = 54,000

All images from A, B,
and C N = 81,000

Unweighted average of
performance for A, B and C

SalBayes 64.79 75.50 89.71 83.83 76.67
SIFT 89.41 71.47 70.95 72.68 77.28
HMAX 99.04 83.13 80.76 83.42 87.64
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times faster (0.165 s per image). Moreover, the increase in perfor-
mance was only achieved when training on half of the dataset,
which means that the difference between a training image and a
testing image is not large. As seen, the proposed algorithm, SalBa-
yes, was able to achieve better performance with less training data
at speeds which greatly surpass both HMAX and SIFT. Examining
the different datasets, it can be seen that the proposed model
was able to learn the object features from only a few training
examples (less then five per object) and achieve good results. In
particular, the COIL dataset shows that from five training exam-
ples, the model was able to correctly identify 91.28% of the test
images correctly. Lastly, the test result also show that the system
performs fairly well when using only gray value images (just like
HMAX and SIFT). This indicates that the proposed system can still
provide useful information in the absence of color information.

Because the ALOI dataset contained the most systematic trans-
formations, further analysis was done to determine the classifica-
tion rate under each type of transformation. Looking at Table 2
we can see that HMAX performs best under several transforma-
tions. In particular, it does exceptionally well on the illumination
color task. On the other hand, our new model performs well in
the illumination color task when considering gray value images.
Additionally, the model does exceptionally well under the rotation
task. This shows the model’s robustness against rotation and pos-
sible other 3D transformation (as can be seen in the soil47 dataset)
as a result of picking the most salient features to remember when
determining the classification of an object.

Looking at the timing aspects of the models tested, it can be
seen that the proposed method, SalBayes, outperforms both SIFT
and HMAX by many folds. Examining the results from Fig. 6, it
can be seen that for testing on half of the ALOI dataset, it took only
3.42 h for the SalBayes algorithm as opposed to 4878.3 h for SIFT
and 678.55 h for HMax. On average across all the datasets the
new model was more than 1500 times faster than SIFT and 279
times faster than HMAX.
3.2. Grid based object search

The visual search task was evaluated by creating a dataset
which consisted of search arrays created from the ALOI images.

Figs. 7 and 8 shows an example of a scene created for the search
task. The scenes were created by taking random objects from the
ALOI dataset under random transformations (from all 1000 ob-
jects) and placing them in a 2 � 2 or a 5 � 5 grid pattern. A random
object was then chosen as the target object and the system
searched for that target. This resulted in search images of size
512x512 pixels for the 2 � 2 grid and 1280 � 1280 for the 5 � 5
grid (256 � 256 pixels per object). The parameters for the objects
that were learned from training on half of the dataset as described
above were used in this task. The number of ‘‘attention shifts”
(inspections of individual objects) taken to reach the target object
was then recorded. The inhibition of return (IOR) size was set to 30
pixels radius. This meant that only a small portion of the image
would be inhibited at a time. As a result, multiple fixations per ob-
ject could result if the object has strong multiple salient location,
which would lead to greater number of fixations than the grid will
allow.

Fig. 8 show the number of scenes vs. the number of attention
shifts taken to reach the target object. The result show that during
the search task, only 4.2 attended locations were required on aver-
age (with standard deviation of 5.9) to be examined in order to find
the target object. About 218 fixations (290 fixations for 30 pixels
IOR for the whole image minus 72 fixation for one 256 image)
would be needed to systematically cover the whole image for the
2 � 2 and 1692 fixations for the 5 � 5 array. In particular, in these
synthetically-generated scenes, the model was able to find the tar-
get object in fewer than five attended locations in over 76% of the
scenes (average of 5 � 5 and 2 � 2 search arrays). Since the scenes
could have contained any one of the 1000 objects, the ambiguity in
the various scenes is large. For example, a few objects are green
boxes, where the only varying feature is the size. Additionally, in



Fig. 6. Total CPU time required for testing, as a function of the fraction of each dataset that was used for training. As more images are used for training, fewer images remain
for testing (hence the decrease in processing time for HMAX), but, in the case of SIFT, a larger keypoint database is built.

Fig. 7. Example 5 � 5 search scene built from the ALOI dataset. Scenes were created by taking random objects from the ALOI dataset under random transformations (from all
1000 objects) and placing them in either a 2 � 2 or a 5 � 5 grid pattern.
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some of the images, the object was never found due to a zero sal-
iency value. Presumably, an exhaustive search would take place on
the locations that were not searched.
3.3. Satellite image search

Another search task consisted of finding houses in satellite
images. This task consisted of satellite images (786 � 786 pixels)
obtained from the New Orleans region after hurricane Katrina.
An example application of this type of search would be to deter-
mine the number of houses effected by a natural disaster in an
autonomous manner. This can be achieved by comparing the num-
ber of houses found before and after a disaster. Since satellite
images contain a lot of data, it is often difficult for humans to
quickly find places of interest in these images. In this task, the
model was set to find images containing houses, so that humans
can determine what do to with these regions (provide food,
estimate the disaster area, etc.) The system was trained with 38
instances of houses obtained from 10 such satellite images
Fig. 9. Training images used to find houses in the satellite images. The system was traine
size.
(786 � 786 pixels), and was tested on finding 95 houses spread
out across 20 images. On an average each image contained five
houses with standard deviation of 1.94 while occupying about
50 � 50 pixels. All images were hand labeled and a house was con-
sidered found if it was within a 30 pixel radius region of interest.
For comparison, the same search task was used with the optimal
gains proposed in Navalpakkam and Itti (2007).

Fig. 9 shows some of the training images used for the houses
while Fig. 11 shows a typical satellite image upon which our model
was used to find houses. To evaluate how well the Gaussian distribu-
tions fit the underlying probability distributions, the feature values
were fit using a smoothing normal kernel function with a sliding
window. The results shown in Fig. 10 indicate that the distributions
do in fact resemble a Gaussian distribution. However, note that in
some cases the distributions are highly peaked, which suggests that
a super-Gaussian model may provide a slightly better fit.

As can be seen in Fig. 11, not all attended locations fell within
houses, but the majority of locations did. On an average it took
1.52 searched locations with a standard deviation of 2.95 to find
a house. The optimal gains method found a house within 1.95
searched location on average with a standard deviation of 1.51.
Fig. 12 shows the percentage of the image that needed to be
searched in order for find the houses in all 20 images. These results
show that on average after searching about 25% of the image, all
houses were found.

Fig. 12 also shows that the optimal gains method performed
slightly better when finding the first few houses, but took much
longer than our method to discover the more difficult targets. This
slight improvement in initial performance is likely due to the fact
that the optimal gains model considers both the target’s and distrac-
tors’ features in order to compute the best gain values. On the other
hand, the SalBayes method only uses knowledge from the object to
find the object. After finding a few houses, the performance of the
optimal gains model drops considerably. This is mainly due to the
max normalization method (see Section 2.1 and Navalpakkam & Itti,
2007 for details), which allows features which ’pop out’ from the
scene, yet are unrelated to the targets, to compete with those targets
whose features are less visually unique.
4. Discussion

In this paper, we have developed a new unified model of atten-
tional guidance and recognition which exploits the duality
d with 38 instances of houses obtained from 10 satellite images 786 � 786 pixels in



Fig. 10. Probability distribution of the houses for the various feature maps using a smoothing normal kernel function with a sliding window. The features are broken down in
a grid where the rows indicate the feature type (intensity, color opponency (red–green, blue–yellow) and four orientations 0�, 45�, 90�, 135�), while the columns indicate the
scale (1 being the coarsest and 6 being the finest).

Fig. 11. Typical results for finding houses. The small yellow square indicates the
fixation point, while the yellow circle indicates the inhibition of return size. The
arrow shows the order in which the fixation points where chosen (which
corresponded to saliency values). As can be seen, not all attended locations fell
within houses, but the majority of locations did. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 12. Percentage of houses found vs. percentage of image searched for the 20
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between these two tasks. On the one hand, when the model is pro-
vided with a description of an object, it will output a probability
map describing the likelihood that the object can be found at each
location in an input image. On the other hand, when provided with
only a location in an input image, the model will provide a list of
probabilities denoting the likelihood that each of it’s known ob-
jects is located at the given location. As shown in the results, the
model performs informed search better than previous related ef-
forts when given difficult targets, and has shown recognition per-
formance that is on par with current state-of-the-art methods
while providing very significant speed gains.
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To our knowledge, no one has extensively tested their models
across the three popular datasets used here all together. The work
by Murthy (2007) comes close, but they only used a subset of the
ALOI dataset for recognition. As can be seen, other models have
been able to achieve superior performance on specific datasets.
However, it is important to note that all of the successful methods
use non-parametric methods for classification which causes their
computation time to grow linearly in time with the number of
training views. Since the goal of the proposed model is to provide
a fast first layer recognition stage, any algorithm containing com-
plex, non-parametric classifications will not be able to efficiently
support a large object database. We propose that our model could
easily lend it’s vast speed improvements by operating as a fast
front-end to such complex algorithms, and leave the analysis of
such a hybrid system to future work.

Although the model was tested using an extensive dataset of ob-
jects and scenes, additional tests using objects in natural scenes
could prove useful as well. However, there have not been any data-
sets created thus far which contain many objects (in the order of
1000) under systematic variations embedded in natural scenes.1 Im-
age databases such as the LabelMe (Russell, Torralba, Murphy, &
Freeman, 2005) and Caltech 101/102 (Fei-Fei, Fergus, & Perona,
2006), do not provide a systematic object search, but are more con-
cerned with general object search. For example, finding any chair
could be viewed as search, but requires much more semantic knowl-
edge for the search (there are many types of chair that could exist). As
a result, a broad semantic meaning can cause great variations and
ambiguity in the search. Additionally, most of the objects that people
have labeled in the LabelMe dataset are salient to begin with and
would not greatly benefit from a biased saliency map (Elazary & Itti,
2008). We believe that one of the strong points of our experimental
validation in this paper is that it is very systematic, which will be
more difficult to achieve with these type of labeled natural scenes.

Looking at the performance in the ALOI dataset against various
transformations, we see that the model does not perform as well as
HMAX under the illumination color condition. This is mostly due to
the fact that the model considers color information to perform
classification. Therefore, as the color of the object changes (due
to the color of the light) the model encounters more ambiguity.
However, such changes in color illumination do not often occur
in the real world, and so we claim that robustness to 3D transfor-
mation and illumination direction are more desirable features in a
first level recognition system.

Looking at the timing aspects of the methods tested, it can be
seen that the proposed method, SalBayes, outperforms both SIFT
and HMAX by many folds. Furthermore, the time requirement
for both HMAX and SalBayes does not change significantly with
training datasets (both decrease as the amount of remaining test-
ing data decreases). This results from the underlying classifier that
is used to classify the features. Both SalBayes and Hmax use a
parametric density function to estimate the probability of the fea-
tures belonging to a particular class. However, SIFT uses a non-
parametric estimation (k-NN) which results in an increase in the
time required to classify a given feature with the increase in train-
ing data.

While examining the performance of the proposed model, it
was found that additional training examples did not always im-
prove performance. This can be attributed to ambiguities devel-
oped by modeling each feature distribution as a unimodal
Gaussian. When too many training instances are used, the actual
distribution of a feature’s density function can become multi-mod-
al, which can then be poorly approximated by the model. Future
1 We are currently in the process of building an extensive dataset where the same
objects are photographed in different complex natural backgrounds under different
light conditions and poses.
work is planned to evaluate more advanced PDF representations,
such as mixtures of Gaussians or particle filters to try to accommo-
date for such situations. However, despite these limitations, the
proposed model has shown that from a very small dimensional fea-
ture vector (42 dimensions) at a single location on an object (the
most salient location), the model was successfully able to distin-
guish among many objects.

One improvement to the model could be made by the choice of
probability distribution. For example, after examining the features
of particular objects, it was found that often the feature distribu-
tion could not be simply modeled using a single Gaussian model.
That is, some of the variations of particular features could not be
explained with a normal distribution. In particular the color (under
the color illumination changes) and the orientations (under the
rotation variations). As a result, estimating this as a normal distri-
bution would cause errors in biasing and classifying the features.
One explanation for the shape of these distributions can be due
to the various ranges of values for different objects of the same
class. For example, an object could contain strong red features
and weak red features depending on the illumination color.

It was also found that the distributions in the ALOI dataset often
exhibited two modes (which were primarily due to the changes in
orientations and changes in illuminations). If the various variations
of the objects can be modeled, then a single Gaussian can be used
to describe a particular part of an object, and the mixture can be
used to describe all the parts. Therefore, using a mixture of Gauss-
ian model can provide a better model of the probability distribu-
tion. Training the mixture of Gaussian can be achieved by using
an expectation–maximization (EM) algorithm. The drawbacks of
this algorithm, however, are that it is an iterative method and re-
quires that all training exemplars be available in each iteration. It
would be worth investigating how the mixture of Gaussian model
can be learned on-line as new inputs come in. One suggested way
would be to cluster the data, extract the means, and then learn a
single Gaussian on the cluster. The multiple clusters would then
yield the mixture model.

Fig. 10 shows that some of the distributions in the satellite
images house search could have been modeled using a super-
Gaussian, to account for the sharp peak in the distribution. For
example, the Laplace or logistic distribution could have been used
in some of the distributions to model this peak. The results of
which can improve performance by not only increasing the proba-
bility around the mean but accounting for more variations by hav-
ing a fatter tail. However, future research will need to determine
when and how to switch distribution models and how will this ef-
fect performance for both searching and recognition.

Examining the satellite images search results (Fig. 12), we see
that the performance of the Optimal Gains proposed in Navalpak-
kam and Itti (2007) performs the same as the proposed model for
the first few houses, but then loses performance when attempting
to find more houses. The reason is that the Optimal Gains follows a
similar structure proposed by Treisman’s Feature Integration The-
ory (Treisman & Gelade, 1980; Treisman & Sato, 1990) and Wolfe’s
Guided Search (Wolfe, 1994) in which whole spatial maps of fea-
ture detectors are biased towards the target. Considering the neu-
ral hardware available in the brain (each neuron can perform
computations independent of each other), it could be conceived
that each neuron can be biased separately, which is the approach
we have chosen to take in this paper. Additionally, we bias the fea-
ture maps with more of a probabilistic approach (applying a PDF
for each neuron) as opposed to a simple gain change. This would
enable the system to bias for weak features among strong ones
as discussed in the introduction (since applying a gain would boost
features and not suppress them). From a biological aspect, this can
be seen as shaping the profiles of detectors that are more likely to
respond to the target by shaping their tuning curve toward the tar-
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get individually, using prior knowledge about the object. This re-
sults in great granularity in the discrimination ability of the search
without the added overhead and limitations of multiple sub-bands.

Additionally, it is important to note that the optimal gains sys-
tem as well as Feature Integration Theory and Guided Search is
trained for search specifically, and does not uses this information
for classifying the object. In this paper, we concentrated on the
synergy between learning the parameters for the classification,
and then using them for search. However, a hybrid system could
be used so that the object can be searched more efficiently in the
presence of known distractors. In particular, using some of the
knowledge of the distractors could help achieve grater perfor-
mance under certain conditions.

Lastly, the model proposed in this paper works in situations in
which the object can be described using few simple features. For
example, a house or a road can be described using simple features.
However, more complex objects or scenes would need multiple
features spanning greater spatial distance (more than the fovea
size) to be described. For example, an urban area does not only
contain a house but also contains multiple houses and roads (as
seen from above). As a result, it would be advantageous if more
knowledge can be added to the biasing, as proposed by Navalpak-
kam and Itti (2005). This knowledge would describe the parts of
the object, and its relation in the scene. For example, if the system
is looking for a refrigerator, then it knows that refrigerators are
composed of doors. In addition, if the system is looking at a kitchen
scene, then it can first check the likely locations of fridges within
the scene first. Therefore, the knowledge of scenes can be used to
efficiently speed up the search in more complex scenes. This
knowledge can also boost the recognition rate by setting up the
appropriate prior for the scene. For example, if we know the prob-
ability of a fridge appearing in a given scenes, ambiguities in
appearances with another objects (say a door) can be resolved
using the prior information about the scene. This knowledge can
be provided from gist models, such as one proposed by Torralba,
Oliva, Castelhano, and Henderson (2006). In addition, the knowl-
edge base can be used to narrow down the search for features.
For example, if a few houses are already encountered, then the sys-
tem should check for the presence of trees. Therefore, the next fix-
ation should bias for trees. As a result, the system knows that this
could not be an ocean (because of the structure in the knowledge
base), so it should not bias for boats. For a previous implementa-
tion of such a system (see Navalpakkam & Itti, 2005).
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Appendix A

A.1. HMAX

This visual structure was first proposed by Riesenhuber and
Poggio (1999) and later improved by Serre et al. (2005). It was
dubbed HMAX (‘‘Hierarchical Model and X”) and has drawn its
inspiration from biological vision. The main contribution of the
structure is its ability to achieve invariance at the local level by
pooling local features using a max operator in both scale and posi-
tion. The whole structure is built from two layers, where the first
layer extracts Gabor features and pools them together. The pooling
first takes the max over the position by sub-sampling the space
into a grid size N-band and then taking the max between scales.
The second layer extracts codewords at random from the first layer
and stores them in a database. The response of the layer is then
computed by a distance measure between the memorized patches
and the current stimulus using Radial Basis function (RBF). Lastly,
an SVM is used to classify objects based on the features from the
second layer.

A.2. SIFT

This algorithm has been proposed by Lowe (2004) and is known
as SIFT, which stands for Scale-Invariant Feature Transform. The
algorithm first extracts keypoints by using local scale-space max-
ima and minima of various Difference of Gaussian (DoG) opera-
tions applied to the input image. This results in keypoints from
varius locations and scales with heigh texture energy. From these
keypoints, a descriptor vector invariant to scale, translation, slight
3D rotations and intensity is created. This is achieved with a 128
dimensional vector indicating the gradient locations and orienta-
tions using a histogram. The space is quantizes into a 4 � 4 grid
while the orientations are quantized into eight orientations. These
descriptor vectors are store in a database for classification.

During the classification stage, the same processes described
above is used to extract various descriptor vectors from a new im-
age, while a Nearest Neighbor algorithm is used to find matches in
the database. Additional, at least three close matching keypoints
are required to match with an additional affine constraint (checked
with an Hough transform) in order for the object to be recognized.

A.3. SVM

Support vector machines (SVM) are a method of supervised
classification and regression first proposed by Vladimir Vapnik in
1963 for linear separation. The hypothesis space of an SVM is a
set of hyperplanes that attempts to achieve the largest distance
to any sample in the training dataset for any class, which is known
as the functional margin. To handle non-linear classification, SVMs
employ a kernel trick proposed by Boser et al. (1992), which first
maps the data into a liner space using a kernel of some kind, and
then performs the linear separation. Common kernels include Poly-
nomial, Radial Basis Function and Gaussian functions.
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