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BIK-BUS: Biologically Motivated 3D Keypoint
Based on Bottom-Up Saliency

Sílvio Filipe, Student Member, IEEE, Laurent Itti, Member, IEEE, and Luís A. Alexandre

Abstract— One of the major problems found when developing
a 3D recognition system involves the choice of keypoint detector
and descriptor. To help solve this problem, we present a new
method for the detection of 3D keypoints on point clouds and
we perform benchmarking between each pair of 3D keypoint
detector and 3D descriptor to evaluate their performance on
object and category recognition. These evaluations are done in
a public database of real 3D objects. Our keypoint detector is
inspired by the behavior and neural architecture of the primate
visual system. The 3D keypoints are extracted based on a bottom-
up 3D saliency map, that is, a map that encodes the saliency of
objects in the visual environment. The saliency map is determined
by computing conspicuity maps (a combination across different
modalities) of the orientation, intensity, and color information
in a bottom-up and in a purely stimulus-driven manner. These
three conspicuity maps are fused into a 3D saliency map and,
finally, the focus of attention (or keypoint location) is sequentially
directed to the most salient points in this map. Inhibiting
this location automatically allows the system to attend to the
next most salient location. The main conclusions are: with a
similar average number of keypoints, our 3D keypoint detector
outperforms the other eight 3D keypoint detectors evaluated
by achieving the best result in 32 of the evaluated metrics
in the category and object recognition experiments, when the
second best detector only obtained the best result in eight of
these metrics. The unique drawback is the computational time,
since biologically inspired 3D keypoint based on bottom-up
saliency is slower than the other detectors. Given that there are
big differences in terms of recognition performance, size and
time requirements, the selection of the keypoint detector and
descriptor has to be matched to the desired task and we give
some directions to facilitate this choice.

Index Terms— 3D keypoints, 3D interest points, 3D object
recognition, performance evaluation.
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I. INTRODUCTION

THE interest on using depth information on computer
vision applications has been growing recently due to the

decreasing prices of 3D cameras. Depth information improves
object perception, as it allows for the determination of its shape
or geometry.

This paper has two main focuses: the first is to present a
new keypoint detector; the second an evaluation of our and
the state-of-art in 3D keypoint detectors when used for object
recognition. Our keypoint detector is a saliency model based
on spatial attention derived from the biologically plausible
architecture proposed in [1] and [2]. It uses three feature
channels: color, intensity and orientation. The computational
algorithm of this saliency model has been presented in [2]
and it remains the basis of later models and the standard
saliency benchmark in 2D images. We present the 3D version
of this saliency detector and demonstrate how keypoints can
be extracted from a saliency map.

The 3D keypoint detectors and descriptors that we will
compare can be found in version 1.7 of the Point Cloud
Library (PCL) [3]. PCL is a collection of state-of-art
algorithms and tools to process 3D data. With this, we will
find what is the best pair of keypoint detector/descriptor for
3D point cloud objects. This is done in order to overcome
the difficulty that arises when choosing the most suitable pair
of keypoint detector and descriptor for use in a particular
task. We propose to answer this question using a public large
RGB-D Object Dataset [4], this is composed by 300 real
objects.

There are other works that make the evaluation of keypoint
detectors and descriptors. In [5] and [6], the evaluation was
taken with 2D keypoint detectors, and for 3D were presented
in [7] and [8]. A similar work on descriptor evaluation was
performed in [9] and [10], where a comparison of several 3D
keypoint detectors is made in this work. In relation to the work
of [5]–[8], our novelty is that we use a real object database
instead of an artificial, large number of 3D point clouds,
different keypoint detectors and the evaluation is done based
on categories and objects recognition. In [11], we have made
a repetability evaluation of the state-of-art in 3D keypoint
detectors. The benefit of using real 3D point clouds is that it
reflects what happens in real life, such as, with robot vision.
These never “see” a perfect or complete object, like the ones
present by artificial objects.

In [9], Alexander focuses on the descriptors available
in PCL, explaining how they work and made a comparative
evaluation on publicly available data. It compares descriptors
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based on two methods for keypoint extraction: one is a
keypoint detector and the second approach consists on
sub-sampling the input cloud with two different sizes, using
a voxelgrid with 1 and 2 cm leaf size. The sub-sampled
points are considered keypoints. One conclusion in this work
is that the increased number of keypoints improves recognition
results at the expense of size and time. In our study, we will see
that it is not enough, the results also depend on the keypoint
location. The same author studies the accuracy of the distances
both for objects and category recognition and finds that simple
distances give competitive results. Our work will use the
distance measure with the best accuracy presented in [10].

The paper is organized as follows: the next section presents
the evaluated keypoint detectors; in Section III, we describe
our keypoint detector; Section IV discusses the recognition
pipeline used in this paper and the last two sections will
discuss the results obtained and present the conclusions.

II. 3D KEYPOINTS

There are several proposals for 3D keypoint detectors [11].
In that work, the invariance of 3D keypoint detectors according
to rotations, scale changes and translations was evaluated. It
also contains a more detailed description of the keypoint detec-
tors presented below and we compare our proposal against
these ones.

A. Harris 3D

The Harris method [12] is a corner and edge based
method and these types of methods are characterized by their
high-intensity changes. These features can be used in shape
and motion analysis and they can be detected directly from
the grayscale images. For the 3D case, the adjustment made
in PCL for the Harris3D detector replaces the image gradients
by surface normals, where the covariance matrix Cov will
be calculated. The keypoints response measured at each pixel
coordinate (x, y, z) is then defined by:

r(x, y, z) = det (Cov(x, y, z)) − k (trace(Cov(x, y, z)))2,

(1)

where k is a positive real valued parameter and a thresholding
process is used to suppress weak keypoints around the stronger
ones. The keypoint responses are positive in the corner region,
negative in the edge regions, and small in flat regions [12].
If the contrast of the point cloud increases, the magnitude
of the keypoint responses also increase. The flat region is
specified by the trace falling below some selected threshold.

In the PCL we can find two variants of the Harris3D
keypoint detector: these are called Lowe [13] and Noble [14].
The differences between them are the functions that define the
keypoints response (equation 1). Thus, for the Lowe method
the keypoints response is given by:

r(x, y, z) = det (Cov(x, y, z))

trace(Cov(x, y, z))2 . (2)

The keypoints response for Noble method is given by:

r(x, y, z) = det (Cov(x, y, z))

trace(Cov(x, y, z))
. (3)

In the case of the Lowe detector (the differences between the
values of the keypoint responses in the corner regions) edge
regions and planar regions tend to be closer to zero compared
to those of the Noble detector. This means that there are more
regions considered flat.

B. Kanade-Lucas-Tomasi

The Kanade-Lucas-Tomasi (KLT) detector [15] was
proposed a few years after the Harris detector. In the 3D
version presented in the PCL, this keypoint detector has the
same basis as the Harris3D detector. The main differences
are: the covariance matrix is calculated using the intensity
value instead of the surface normals; and for the keypoints
response they used the first eigenvalue of the covariance
matrix. Finally, the suppression process is similar to the one
used in the Harris3D method.

C. Curvature

The curvature method in the PCL calculates the principal
surface curvatures on each point using the surface normals.
The keypoints response used to suppress weak keypoints,
around the stronger ones is the same as in the Harris3D.

D. Scale Invariant Feature Transform 3D

The Scale Invariant Feature Transform (SIFT) keypoint
detector was proposed by [16]. In [17], the original algorithm
for 3D data is presented, which uses a 3D version of the
Hessian to select the interest points. The input cloud, I (x, y, z)
is convolved with a number of Gaussian filters whose standard
deviations {σ1, σ2, . . . } differ by a fixed scale factor. That
is, σ j+1 = kσ j where k is a constant scalar that should
be set to

√
2. The adjacent clouds are subtracted to yield a

small number of Difference-of-Gaussian (DoG) clouds. Once
DoG clouds have been obtained, keypoints are identified as
local minima/maxima of the DoG clouds across scales. This
is done by comparing each point in the DoG clouds to its
eight neighbors at the same scale and nine corresponding
neighborhood points in each of the neighborhood scales. If the
point value is the maximum or minimum among all compared
points, it is selected as a candidate keypoint.

E. Smallest Univalue Segment Assimilating Nucleus

The Smallest Univalue Segment Assimilating Nucleus
(SUSAN) corner detector was introduced in [18]. SUSAN is
a generic low-level image processing technique which, apart
from corner detection, has also been used for edge detection
and noise suppression. A geometric threshold is applied, which
is simply a precise restatement of the SUSAN principle: if
the nucleus (center pixel of a circular region) lies on a corner
then the Univalue Segment Assimilating Nucleus (USAN)
area will be less than half of its possible value. USAN is a
measure of how similar a center pixel’s intensity is to those in
its neighborhood. A gray value similarity function s(g1, g2)
measures the similarity between the gray values g1 and g2.
Summing over this kind of function for a set of pixels is
equivalent to counting the number of similar pixels. It can be
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Fig. 1. General architecture of our Biologically Inspired Keypoint Detector based on Bottom-Up Saliency. Our method receives as input a point cloud similar
to those shown in Figs. 3 and 4 and a linear filter is applied to obtain the color, intensity and orientations information. The full process is described in the
text.

used to adjust the detector’s sensitivity to the image’s global
contrast level. The smoothness plays of s(g1, g2) an important
role in noise suppression [18], since it only depends on the
difference between g1 and g2. To make the method more
robust, points closer in value to the nucleus receive a higher
weighting. Moreover, a set of rules presented in [19] are used
to suppress qualitatively “bad” keypoints. Local minima of
the SUSANs are then selected from the remaining candidates.

F. Intrinsic Shape Signatures 3D

Intrinsic Shape Signatures 3D (ISS3D) [20] is a method
relying on region-wise quality measurements. This method
uses the magnitude of the smallest eigenvalue (to include only
points with large variations along each principal direction)
and the ratio between two successive eigenvalues (to exclude
points having similar spread along principal directions).

The ISS3D Si = {Fi , fi } at a point pi consists of
two components: 1 – The intrinsic reference frame Fi =
{pi , {ex

i , ey
i , ez

i }} where pi is the origin, and {ex
i , ey

i , ez
i } is the

set of basis vectors. The intrinsic frame is a characteristic of
the local object shape and independent of viewpoint. There-
fore, the view independent shape features can be computed
using the frame as a reference. However, its basis {ex

i , ey
i , ez

i }
(which specifies the vectors of its axes in the sensor coor-
dinate system) are view dependent and directly encode the
pose transform between the sensor coordinate system and
the local object-oriented intrinsic frame, thus enabling fast

pose calculation and view registration. 2 – The 3D shape fea-
ture vector fi = ( fi0, fi1, . . . , fi K−1), which is a view inde-
pendent representation of the local/semi-local 3D shape. These
features can be compared directly to facilitate the matching of
surface patches or local shapes from different objects.

III. PROPOSED 3D KEYPOINT DETECTOR

The Biologically Inspired 3D Keypoint based on Bottom-Up
Saliency (BIK-BUS) is a keypoint detector that is based on
the saliency maps. The saliency maps are determined by
computing conspicuity maps of the features intensity and
orientation in a bottom-up and data-driven manner. These
conspicuity maps are fused into a saliency map and, finally, the
focus of attention is sequentially directed to the most salient
points in this map. Using this theory and following the steps
presented in [2] and [21], we will present our keypoint detector
(shown in Fig. 1).

A. Linear Filtering

The color channels (r , g, and b) of the input colored point
cloud are normalized when I = (r + g + b)/3 is larger than
1/10 of its maximum over the entire image. Other locations
yield zero r , g, and b. This is done because large areas with
uniform illumination produce very weak signals, and areas
with illumination changes (such as object contours) result in
strong signals [2]. With these three normalized color channels,
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we create four broadly-tuned color channels:

R = r − (g + b)/2, (4)

G = g − (r + b)/2, (5)

B = b − (r + g)/2 and (6)

Y = (r + g)/2 − |r − g|/(2 − b), (7)

where R is for the red channel, G for the green, B for the
blue and Y for the yellow.

Gaussian pyramids [22] are used in the spatial scales, which
progressively low-pass and down-sample the input cloud,
producing horizontal and vertical cloud-reduction factors.
Five Gaussian pyramids R(σ ), G(σ ), B(σ ), Y (σ ) and I (σ )
are created from the color and intensity channels, where σ
represents the standard deviation used in the Gaussian kernel.

Each Gaussian pyramid is achieved by convolving the cloud
with Gaussian kernels of increasing radius, resulting in a
pyramid of clouds. We apply a similar concept to search
the density map D over a range of scales, where D can be
{R, G, B, Y, I }. We convolve D with a set of 3D Gaussian
kernels to construct a pyramid of density maps, with each layer
representing the scale σ . A factor of 2 is used to down-sample
the density map and the reduction of the standard deviation
of the Gaussian kernel by

√
2. The pyramid creation is a step

similar to the DoG presented in the Section II-D.
Let L(·) (one of the five Gaussian pyramids) be a scale

space for D:

L(x, y, z, σ ) = D ∗ g(x, y, z, σ ), (8)

where ∗ is the convolution operator and g(x, y, z, σ ) is a 3D
Gaussian with standard deviation σ given by:

g(x, y, z, σ ) = exp

(−x2 − y2 − z2

2σ 2

)
. (9)

The orientation pyramids O(σ, θ) are obtained using
the normals extracted from the intensity cloud I , where
θ ∈ {0°, 45°, 90°, 135°} is the preferred orientation [22].
In the primary visual cortex, the impulse response of
orientation-selective neurons is approximated by Gabor
filters [23]. The orientation pyramids are created in a similar
way to the color channels, but applying 3D Gabor filters with
different orientations θ .

B. Center-Surround Differences

In the retina, bipolar and ganglion cells encode the spatial
information, using center-surround structures. The center-
surround structures in the retina can be described as on-center
and off-center. The on-center use a positive weighed center
and negatively weighed neighbors. The off-center use exactly
the opposite. The positive weighing is better known as
excitatory and the negative as inhibitory [24].

Similarly to the visual receptive fields, a set of linear center-
surround operations is used to compute each feature. Visual
neurons are most sensitive in a small region of the visual space
(the center), while stimuli in the surround inhibit neuronal
response [2]. Center-surround is computed as the difference
between the center pixel at scale c ∈ {2, 3, 4}, and the surround

is the corresponding pixel at scale s = c + δ, with δ ∈ {3, 4}.
The across-scale difference between two maps (represented
by ‘�’) is obtained by interpolation to the center scale c and
point-by-point subtraction.

The first set of feature maps is concerned with intensity
contrast. In mammals, this is detected by neurons sensitive
either to dark centers on bright surrounds (off-center) or to
bright centers on dark surrounds (on-center) [2], [23]. Here,
both types of sensitivities are simultaneously computed in a
set of six maps I (c, s):

I (c, s) = |I (c) � I (s)|. (10)

For the color channels, the process is similar, which, in
the cortex, is called ‘color double-opponent’ system [2].
In the center of their receptive fields, neurons are excited by
one color and inhibited by an other, while the converse is
true in the surround. The existence of a spatial and chromatic
opponency between color pairs in human primary visual cortex
is described in [25]. Given the chromatic opponency, the
maps RG(c, s) and BY (c, s) are created to take in account
the red/green and green/red, and blue/yellow and yellow/blue
double opponency, respectively, as:

RG(c, s) = |(R(c) − G(c)) � (G(s) − R(s))| (11)

BY (c, s) = |(B(c) − Y (c)) � (Y (s) − B(s))|. (12)

Orientation feature maps, O(c, s, θ), encode, as a group,
local orientation contrast between the center and surround
scales:

O(c, s, θ) = |O(c, θ) � O(s, θ)|. (13)

C. Normalization

We cannot combine directly the different feature maps
because they represent different dynamic ranges and extraction
mechanisms. Some salient objects appear only in a few maps,
which can be masked by noise or by less salient objects
present in a larger number of maps. In order to resolve that,
we use a map normalization operator N (.). This promotes
the maps that contain a small number of strong activity, and
suppresses the peaks in the maps that have many of them [2].
N (.) consists of: 1 – Large amplitude differences are elimi-
nated by normalizing the map values to a fixed range [0..M],
where M is the global maximum of the map; 2 – Multiply
the map by (M − m)2, where m is the average of all its other
local maxima. The lateral cortical inhibition is the biological
motivation for this normalization [26].

D. Across-Scale Combination

The conspicuity maps are the combination of the feature
maps, for intensity, color and orientation. They are obtained
through the reduction of each map to scale four and
point-by-point addition ‘

⊕
’, called across-scale addition. The

conspicuity maps for the intensity, I , and color channels,
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Fig. 2. Block diagram of the 3D recognition pipeline.

C , are given by:

I =
4⊕

c=2

c+4⊕
s=c+3

N (I (c, s)) and (14)

C =
4⊕

c=2

c+4⊕
s=c+3

[N (RG(c, s)) + N (BY (c, s))]. (15)

For orientation, we first created four intermediary maps,
which are a combination of the six feature maps for a given θ .

Finally, they are combined into a single orientation
conspicuity map:

O =
∑

θ∈{0°,45°,90°,135°}
N

[
4⊕

c=2

c+4⊕
s=c+3

N (O(c, s, θ))

]
. (16)

The three separate channels (I , C and O) have an inde-
pendent contribution in the saliency map and where similar
features between them will have a strong impact on the
saliency.

E. Linear Combination

The final saliency map is obtained by the normalization and
a linear combination between them:

S = 1

3

(N (I ) + N (C) + N (O)
)
. (17)

F. Inhibition-of-Return

The Inhibition-of-Return (IR) is part of the method that is
responsible for the selection of keypoints. It detects the most
salient location and directs attention towards it, considering
that location a keypoint. After that, the IR mechanism
transiently suppresses this location in the saliency map and
its neighborhoods in a small radius, such that attention
is autonomously directed to the next most salient image
location. The suppression was achieved replacing saliency
map values with zero. The following iteration will find the
most salient point (the maximum) in different location. This
iterative process stops when the maximum of the saliency
map reaches a certain value (a minimum), which is defined
by a threshold. Computationally, the IR performs a similar
process of selecting the global and local maximums.

Fig. 3. Examples of point clouds from the RGB-D Object Dataset.

IV. 3D OBJECT RECOGNITION PIPELINE

In this section, we present the pipeline used in this work,
shown in Fig. 2. As input clouds, we use point clouds with
the object previously segmented from the RGB-D Object
Dataset [4] presented in the next sub-section. These point
clouds will feed the keypoint extraction process (see more
details in Section IV-B), which are used to reduce the
computational cost of the recognition system. Typically, the
largest computational cost of these systems is at the stage
of computing the descriptors, so, it makes sense to use only
a subset of the input clouds. In Fig. 2, the cloud input also
feeds the descriptors extraction, but it is only used to obtain
information about the keypoints neighbors (to calculate the
normals at the point). A set of object descriptors is compared
to those that have been previously computed and which are
in the object database. The one that presents the smallest
distance is considered as the corresponding object.

A. Segmented Cloud

The evaluation is done using the large RGB-D Object
Dataset1 [4]. This dataset was collected using an RGB-D
camera and contains a total of 207621 segmented clouds. The
dataset contains 300 physically distinct objects taken on a
turntable from 4 different camera poses and the objects are
organized into 51 categories. Fig. 3 presents some objects of
the this dataset. It’s possible to see that there are some errors
in the point clouds, due to segmentation errors and sometimes
depth sensor noise (some materials do not reflect the infrared
pattern used to obtain depth information as well). The chosen
objects are commonly found in home and office environments,
where personal robots are expected to operate.

In this work, we use 5 point clouds of each physically
distinct object, performing a total of 1500 point clouds selected
for comparison. In Section V, we explain why we only select
1500 point clouds from this dataset.

1The dataset is publicly available at http://www.cs.washington.edu/
rgbd-dataset.
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TABLE I

KEYPOINTS STATISTICS. THE NUMBER OF POINTS, TIME IN SECONDS (S) AND SIZE IN KILOBYTES (KB)

PRESENTED ARE RELATED TO EACH CLOUD IN THE PROCESSING OF THE TEST SET

B. Keypoint Extraction

The keypoint detection methods have many parameters to
adjust, but normally we use the default values in the PCL.
For all the keypoint detectors, we define the same search
radius to 1cm. Where we had to set more parameters was
with Susan and SIFT3D methods. For the Susan method, we
define two parameters: the distance_threshold = 0.01 cm is
used to test if the nucleus is far enough from the centroid; and
the angular_threshold = 0.01 cm to verify if the normals
are parallel. In the SIFT3D, we define the min_scale = 0.002,
nr_octaves = 4, nr_scales_per_octave = 4 and the
min_contrast = 1. These parameters were adjusted with these
values, such that all methods present a similar average number
of the keypoints (as can be seen in table I). Fig. 4 presents
a cloud of points where the several keypoint detectors were
applied with these parameters.

Table I also presents some statistics about the keypoints
extracted from the selected point clouds. To get an idea
of the reduction between the input points clouds and the
keypoints, we include on the last row of the table the statistics
information about the input point clouds. All the processing
time was calculated based on Intel Core I7 Extreme Edition
X980 (3.3GHz), 24Gb RAM (FSB 1066) and Fedora Core 14
operating system.

C. Descriptor Extraction

One of our goals was to evaluate the available descriptors
in the current PCL version (1.7 pre-release) [3]. There are
some descriptors in PCL which we will not consider in this
paper, since they are not applicable to point cloud data directly
or they are not object descriptors, some of them are pose
descriptors (6DoF).

Table II presents some features of the evaluated descriptors
and some statistics regarding the descriptors (in the same
way as we did for the keypoint extraction methods). The
second column contains the number of points generated by
each descriptor given an input point cloud with n points.
In this work the input cloud will be only the keypoints
points. The third column shows the length of each point.
The fourth column indicates if the descriptor requires the

Fig. 4. Keypoint detectors applied on a “food_box” point cloud. The red
points are the keypoints extracted from each detector and the number of
these is presented in the legend of each sub-figure (best viewed in color).
(a) BIK-BUS (103 keypoints). (b) Curvature (72 keypoints). (c) Harris3D
(59 keypoints). (d) ISS3D (289 keypoints). (e) KLT (72 keypoints). (f) Lowe
(59 keypoints). (g) Noble (59 keypoints). (h) SIFT3D (304 keypoints).
(i) Susan (2790 keypoints).

calculation of the surface normals at each point. In column 5,
we present if the method is a global or a local descriptor.
Global descriptors require the notion of the complete object
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while local descriptors are computed locally around each
keypoint and work without that assumption. The sixth column
indicates if the descriptor is based on the geometry or shape
of the object, and if the analysis of a point is done using a
sphere. The main ideas of each descriptor are presented in the
following subsections.

It’s only possible to make a fair comparison between the
descriptors if they always use the same parameters in all
steps of the pipeline, shown in Fig. 2. In the parametric
configuration of the descriptors, we use the default values
defined in the PCL. For the descriptors that use normals, we
define a radius of 1cm for the calculus of normal and for the
normal estimation radius search.

1) 3D Shape Context: The 3D Shape Context (3DSC)
descriptor [27] is the 3D version of the SC descriptor [28].
It is based on a spherical grid centered on each keypoint.
The surface normal estimation is used to orient the grid to
the north pole. The grid is defined by bins along the azimuth,
elevation and radial dimensions. The bins along the azimuth
and elevation dimensions are equally spaced, on the other
hand, the radial dimension is logarithmically spaced. The
final representation of the descriptor is a 3D histogram,
where in each bin contains a weighted sum of the number of
points falling on the grid region. These weights are inversely
proportional to the bin volume and the local point density.

2) Point Feature Histograms: Descriptors such as Point
Feature Histograms (PFH) [29], Fast Point Feature Histograms
(FPFH) [30], [31], Viewpoint Feature Histogram (VFH) [32],
Clustered Viewpoint Feature Histogram (CVFH) [33]
and Oriented, Unique and Repeatable Clustered Viewpoint
Feature Histogram (OUR-CVFH) [34] can be categorized as
geometry-based descriptors [35]. These type of descriptors are
represented by the surface normals, curvature estimates and
distances, between point pairs. The point pairs are generated
by the point p and the points in its local neighborhood q .
And they are represented with the angles α, φ and θ , which
are computed based on a reference frame (u, v,w). The
vector u is the surface normal at p, (n p), v is equal to
u × p−q

||p−q||2 and w is the cross product of these two vectors.
With this reference frame, the angles can be computed using:
α = vT ·n p , φ = uT · p−q

||p−q||2 and θ = arctan(wt ·n p, uT ·n p).
PFHRGB is an version of PFH in which is included infor-

mation regarding the color of the object. This variant includes
three more histograms, one for the ratio between each color
channel of p and the same channel of q .

3) Fast Point Feature Histograms: The FPFH descriptor
[30], [31] is a simplification of the PFH. In this case, the
normal orientation angles are not computed for all point pairs
of p and its neighborhood. The angles are computed only from
its k-nearest neighbors. The estimated values are stored into
a histogram, since this represents the divisions of the feature
space.

4) Viewpoint Feature Histogram: In [32], they proposed
an extension of FPFH descriptor, called VFH. The main
differences between this and the other two descriptors above
are: the surface normal is centered on the centroid c and
not in the point p (n p); instead of computing the angles
using all (PFH) or k-nearest neighbors (FPFH), it uses only

the centroid of the input cloud; VFH adds a viewpoint
variance using the angle β = arccos( n p ·c

||c|| ), wich repre-
sents the central viewpoint vector direction translated to
each normal; and it only produces one descriptor for the
input cloud.

5) Clustered Viewpoint Feature Histogram: The CVFH [33]
is an extension to VFH. The idea behind this descriptor is that
objects which contains stable regions S. That enable them
to be divided into in a certain number of disjoint regions.
Stable regions are obtained by first removing the points with
high curvature and then applying a smooth region growing
algorithm. For each stable regions k, they find the centroid ck

and its normal (nck ) to compute a local reference frame.
It is similar to the VFH descriptor, but instead of using
the centroid ant its normal of the input cloud, it is only
from the stable region. The final descriptor is given by the
concatenated local reference frames (u, v,w, SDC, β), which
is a histogram. The Shape Distribution Component (SDC) is
equal to (c−pk )2

max{(c−pk)2} , k = 1, · · · , |S|.
6) Oriented, Unique and Repeatable Clustered Viewpoint

Feature Histogram: The OUR-CVFH [34] is a semi-global
descriptor based on Semi-Global Unique Reference Frames
(SGURF) and CVFH [33], which exploits the orientation
provided by the reference frame to encode the geometrical
properties of an object surface. For a specific surface S,
it computes N triplets (ci , ni , RFi ) obtained from the smooth
clustering and the SGURF computation. SGURF aims to solve
some limitations of CVFH by defining multiple repeatable
coordinate systems on S. This allows to increase the spatial
descriptiveness of the descriptor and obtain the 6DoF from
the alignment of the reference frames.

For the surface description, it uses an extension of CVFH
in the following way: first, ci and ni are used to compute the
first three components of CVFH and the viewpoint component
as presented in [33]. The fourth component of CVFH is
completely removed and instead the surface S is spatially
described by means of the computed RFi . To perform this, S is
rotated and translated, so that RFi is aligned with the x , y, z
axes of the original coordinate system of S and centered in ci .
To take in account the perturbations on RFi , an interpolation is
performed by associating to each point pk eight weights. The
weights are computed by placing three 1D Gaussian functions
over each axis centered at ci , which are combined by means of
weight multiplication. Finally, the weights associated with pk

are added to 8 histograms, its index in each histogram being
selected as c

Ri
, where R is the maximum distance between any

point in S and ci .
7) Point Pair Feature: The Point Pair Feature (PPF)

descriptor [36] assumes that both the scene and the model are
represented as a finite set of oriented points, where a normal
is associated with each point. It describes the relative position
and orientation of two oriented points which is similar to the
surflet-pair feature from [30] and [37]. If you have two points
p1 and p2 and their normals n1 and n2, the P P F is given by

P P F(p1, p2) = (d2, � (n1, d), � (n2, d), � (n1, n2)), (18)

where � (a, b) ∈ [0, π] represents the angle between a and b
and d = p2 − p1.



170 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 1, JANUARY 2015

TABLE II

FEATURES AND STATISTICS OF THE EVALUATED DESCRIPTORS IN THIS WORK. n = Number OF POINTS IN INPUT CLOUD; p = NUMBER OF AZIMUTH

BINS; m = NUMBER OF STABLE REGIONS; Y = YES; N = NO. THE TIME IN SECONDS (S) AND SIZE IN KILOBYTES (KB) PRESENTED ARE RELATED

TO EACH CLOUD IN THE PROCESSING OF THE TEST SET. TO KNOW THE TOTAL TIME OR THE TOTAL SIZE SPENT BY A DATABASE

OF ONE OF THIS DESCRIPTOR, WE NEED TO MULTIPLY THAT BY THE NUMBER OF CLOUDS PRESENT IN THE DATABASE

The model is represented by a set of P P F’s, where similar
feature vectors being grouped together. This is computed for
all the pair points. The distances are sampled in ddist steps
and the angles in dangle = 2π/nangle steps and the vectors
with the same discrete representation are grouped.

An object model descriptor M can be mapped from the
sampled space to the model space S. The four dimensional
P P F defined at equation 18 are mapped to set A of all pairs
(mi , m j ) ∈ M2 that define an equal feature vector.

The final local coordinates use a voting scheme, this is done
in order to maximize the number of scene points that lie on the
model, allowing the recovery of the global object pose. The
similarities between their rotations and translations are used
to obtain the pose through the voting system.

In PCL, there is also a color version, called PPFRGB. In this
version, three new ratios are added, one for each color channel.

8) Signature of Histograms of Orientations: The Signature
of Histograms of OrienTations (SHOT) descriptor [38] is based
on a signature histograms representing topological features,
that make it invariant to translation and rotation. For a given
keypoint, it computes a repeatable local reference frame using
the eigenvalue decomposition around it. In order to incorporate
geometric information of point locations in a spherical grid.
For each spherical grid bin, a a 1D histogram is obtained. This
histogram is constructed by summing point counts of the angle
between the normal of the keypoint and the normal of each
point belonging to the spherical grid. Finally, the descriptor
override all these histograms according to the local reference
frame.

In [39], Tombari et al. propose two variants: one is a color
version (SHOTCOLOR), where use the CIELab color space as
color information; the second one (SHOTLRF), they encode
only the local reference frame information, discarding the
shape bins and spherical information.

9) Unique Shape Context: An upgrade of the 3DSC
descriptor [27] is proposed in [40], called Unique Shape
Context (USC). Tombari et al. reported that one of the
problems found in 3DSC is to avoid multiple descriptions
for the same keypoint, based on the need to obtain as many
versions of the descriptor as the number of azimuth bins. It can
cause a possible ambiguity during the successive matching and
classification process. To resolve that, they proposed to define
only a local reference frame (as defined in [38]) for each
keypoint, such that spherical grid associated to a descriptor
be directed exclusively by the two main directions in relation
to the normal plane. The remaining process for obtaining USC
descriptor still the same as the 3DSC.

10) Ensemble of Shape Functions: In [41], they introduced
the Ensemble of Shape Functions (ESF) which is a shape
function describing feature properties. This is done using the
three shape functions presented in [42], that are the angle,
the point distance, and the area. To compute this, they use
three points randomly selected, where: two of them are used
to calculate the distance; the angle is defined by two lines
created from all of them; and area of the triangle formed
between them. An approximation (voxel grid) of the real
surface is used to separate the shape functions into more
descriptive histograms. These histograms will represent the
point distances, angles, areas and (on, off or both) surface.

11) Point Curvature Estimation: The Point Curvature
Estimation (PCE) descriptor calculates the directions and
magnitudes of principal surface curvatures (obtained using the
cloud normals) on each keypoint, eigenvectors and eigenvalues
respectively. For each keypoint, it will produce a descriptor
with 5 values. Three values are the principal curvature, which
is the eigenvector with the largest eigenvalue and the other
two values are the largest and smallest eigenvalues.
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TABLE III

AUC AND DEC VALUES FOR THE CATEGORY AND OBJECT RECOGNITION FOR EACH PAIR KEYPOINT DETECTOR/DESCRIPTOR.

WE ALSO PRESENT THE MEAN TIME (IN SECONDS) REQUIRED FOR THE KEYPOINTS AND DESCRIPTORS EXTRACTION.

BOLD INDICATES THE BEST (BIGGER) RESULTS IN TERMS OF AUC AND DEC FOR EACH PAIR

D. Object Database

Using the 1500 point clouds selected, the experiments use
the Leave-One-Out Cross-Validation (LOOCV) method [43].

As the name suggests, LOOCV involves using a single obser-
vation from the original sample as the validation data, and the
remaining observations as the training data. This is repeated
such that each observation in the sample is used once as
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Fig. 5. ROCs for the category recognition experiments (best viewed in color). (a) PFH. (b) PFHRGB. (c) SHOT. (d) SHOTCOLOR.

the validation data. This is the same as a K -fold cross-
validation with K being equal to the number of observations
in the original sampling. With 1500 point clouds and LOOCV
method, we perform more than 1600000 comparisons for
each pair keypoint detector/descriptor and we have a total of
135 pairs (9 keypoint detectors × 15 descriptors).

E. Distance Measure and Matching
One of the stages in 3D object recognition is the corre-

spondence between an input cloud and a known object cloud
(stored in the database). The correspondence is typically done
using a distance function between the sets of descriptors.
In [10], multiple distance functions were studied. In this work,
we will use the distance D6 that presents good results in terms
of recognition and run time. Consider two point clouds each
represented by a set of descriptors A and B , then the distance
D6 between the point clouds is given by

D6 = L1(cA, cB) + L1(stdA, stdB), (19)

where cA and cB are the centroids of the sets A and B ,
respectively, and

stdA(i)=

√√√√√ 1

|A| − 1

|A|∑
j=1

(a j (i)−cA(i))2, i =1, . . . , n, (20)

a j (i) refers to the coordinate i of the descriptor j , and likewise
for stdB . The L1 distance is between two descriptors (not sets)
x, y:

L1(x, y) =
n∑

i=1

|x(i) − y(i)|. (21)

V. EXPERIMENTAL EVALUATION AND DISCUSSION

In order to perform this evaluation, we will use three
measures: the Receiver Operator Characteristic (ROC) Curve,
the Area Under the ROC Curve (AUC) and the decidabil-
ity (DEC). The decidability index [44] (equation 22) represents
the distance between the distributions obtained for the two
classical types of comparisons: between descriptors extracted
from the same (intra-class) and different objects (inter-class).

DEC = |μintra − μinter |√
1
2 (σ 2

intra + σ 2
inter )

, (22)

where μintra and μinter denote the means of the intra- and
inter-class comparisons, σ 2

intra and σ 2
inter the respective

standard deviations and the decidability can vary
between [0,∞[.

The obtained AUC and DEC are given in table III, while
the ROCs for category and object recognition are presented in
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Fig. 6. ROCs for the object recognition experiments (best viewed in color). (a) PFH. (b) PFHRGB. (c) SHOT. (d) SHOTCOLOR.

Figs. 5 and 6, respectively. Table IV presents the information
about the number of times that each keypoint detector achieved
the best result in the category and object recognition and
the sums of these counts (Total column). When there is a
tie between two methods both methods score. Figs. 5 and 6
present only the four best descriptors of the table III, two use
color information and the other two don’t. The source code
and the others ROC curves are available online.2

Analyzing the descriptors in a generic way, the best results
were obtained with the PFHRGB. It is interesting to compare
it to the PFH: improvement can only be attributed to the
incorporation of color information. The same is true for
the SHOTCOLOR versus the SHOT descriptor. The two
best results in terms of category and object recognition are
presented in the descriptors that use color information. The
ROCs, in Figs. 5 and 6, also show the superiority of these
two descriptors (that use color) versus the remaining. FPFH
is an extension of PFH and it has a performance slightly
worst than the original descriptor, but it is faster to extract
and uses about half the space (shown in table II), as the
authors of the descriptor suggested. An interesting result is
the one obtained by PPFRGB which is an color extension

2http://socia-lab.di.ubi.pt/&#8764;silvio/

TABLE IV

COUNTING THE NUMBER OF TIMES A KEYPOINT DETECTOR

HAS THE BEST RESULT IN TABLE III. IN CASE OF A

TIE BOTH METHODS SCORE

of PPF: in this case the none color version is better than the
color version.

The USC was proposed as an upgrade to the 3DSC and
our results confirm that in fact it improves the 3DSC results.
Only when we used the SUSAN keypoint detector in both
recognition tasks, the 3DSC beats the USC in most of the
cases.

Considering OUR-CVFH an upgrade of CVFH and this
one an extension of VFH, we are not able to see where are
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improvements because both have lower scores and the process-
ing times are slightly higher than the original descriptor.

In terms of computational time and space, the descriptor’s
requirements varies a lot. If the application needs real-time
performance or when we are using embedded devices with
limited resources there are some descriptors that cannot be
considered.

Considering only the accuracy, the best combination
for the category recognition is BIK-BUS/PFHRGB, closely
followed by BIK-BUS/SHOTCOLOR, ISS3D/PFHRGB and
ISS3D/SHOTCOLOR both in terms of AUC and DEC.
The pairs BIK-BUS/PFHRGB and BIK-BUS/SHOTCOLOR
have exactly the same AUC, the difference is in the DEC
where it is slightly higher in the case of PFHRGB. BIK-BUS
turns out again the best performer among detectors: FPFH,
PPF, SHOT, SHOTCOLOR, USC and VFH. In relation to
the 3DSC and SHOTLRF descriptors, our keypoint detector
obtains the best DEC while the AUC is better when using
Curvature keypoint detector in both descriptors.

If we consider a threshold for the AUC tAUC and another
for the DEC tDEC , where tAUC = 0.8 and tDEC = 1.0.
With these thresholds will keep only two original descriptors
(PFH and SHOT) and four of its variants (FPFH, PFHRGB,
SHOTCOLOR and SHOTLRF). In the case SUSAN/SHOT
both thresholds fail and for SHOTLRF only the threshold tDEC

is satisfied in seven keypoint detectors. In these descriptors,
our detector only in a single case does not have the best results
in both measures, and this in the case of PFH where only
has a difference of 0.1%. In the other four descriptors, the
recognition accuracy varies between 2.2% and 8.4%.

In terms of object recognition, the best pair is BIK-BUS/
PFHRGB, but only beats the second best combination,
ISS3D/PFHRGB, because it presents a better DEC. For
SHOT and SHOTCOLOR descriptors if we compare our
keypoint detector with the ISS3D we obtain improvements for
both of 1.5% in the case of category recognition, and 1.1%
and 1.4% in object recognition, respectively. The only point
against our keypoint detector is relation to the processing
time, since it is approximately 6 times slower than ISS3D. The
processing time can be reduce by a parallel implementation or
by an implementation in GPU. The architecture of the BIK-
BUS, shown in Fig. 1, shows that the parallel implementation
would be a good strategy to solve this problem.

VI. CONCLUSIONS

In this paper we presented a novel 3D keypoint detector
biologically motivated by the behavior and the neuronal
architecture of the early primate visual system. We also made
a comparative evaluation of several keypoint detectors plus
descriptors on public available data with real 3D objects.
The BIK-BUS is a keypoint detector on a computational
technique to determine visual attention, which are also known
as saliency maps. The saliency maps are determined by
sets of features in a bottom-up and data-driven manner. The
fusion of these sets produced the saliency map and the focus
of attention is sequentially directed to the most salient points
in this map, representing a keypoint location.

In the evaluation, we used the 3D keypoint detectors and
the 3D descriptors available in the PCL library. The main
conclusions of this paper are: 1) a descriptor that uses color
information should be used instead of a similar one that uses
only shape information; 2) the descriptor should be matched
to the desired task, since there are differences in terms of
recognition performance, size and time requirements; 3) in
terms of keypoint detectors, to obtain an accurate recognition
system we recommend the use of the BIK-BUS, since its
performance was better in 32 tests, in a total of 60 tests. When
the second best detector only obtained the best performance
8 times (see table IV); 4) for a real-time system, the ISS3D
or Curvature detectors are good choices, since they have a
performance that is only surpassed by BIK-BUS and are faster;
5) in terms of descriptors, if the focus is on accuracy we
recommend the use of PFHRGB and for real-time a good
choice is the SHOTCOLOR because it presents a good balance
between recognition performance and time complexity.

In further work, we will select a small number keypoint
detectors and descriptors (those with the best results) in order
to analyze which are the best pair to do the recognition
of a particular category or object. We also consider a
parallelization of the code or an implementation on the
GPGPU in order to reduce the computational time of
BIK-BUS. This parallelization is possible because of the
architecture of the method, shown in Fig. 1.
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