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This work lays the foundation for a framework of cortical learning based
on the idea of a competitive column, which is inspired by the functional
organization of neurons in the cortex. A column describes a prototypi-
cal organization for neurons that gives rise to an ability to learn scale,
rotation, and translation-invariant features. This is empowered by a re-
cently developed learning rule, conflict learning, which enables the net-
work to learn over both driving and modulatory feedforward, feedback,
and lateral inputs. The framework is further supported by introducing
both a notion of neural ambiguity and an adaptive threshold scheme.
Ambiguity, which captures the idea that too many decisions lead to in-
decision, gives the network a dynamic way to resolve locally ambiguous
decisions. The adaptive threshold operates over multiple timescales to
regulate neural activity under the varied arrival timings of input in a
highly interconnected multilayer network with feedforward and feed-
back. The competitive column architecture is demonstrated on a large-
scale (54,000 neurons and 18 million synapses), invariant model of bor-
der ownership. The model is trained on four simple, fixed-scale shapes:
two squares, one rectangle, and one symmetric L-shape. Tested on 1899
synthetic shapes of varying scale and complexity, the model correctly as-
signed border ownership with 74% accuracy. The model’s abilities were
also illustrated on contours of objects taken from natural images. Com-
bined with conflict learning, the competitive column and ambiguity give
a better intuitive understanding of how feedback, modulation, and inhi-
bition may interact in the brain to influence activation and learning.
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1 Introduction

Invariant processing is a hallmark of the visual system, which effortlessly
recognizes objects at nearly any combination of scale and viewpoint. De-
spite the proliferation of biologically inspired work on object recognition,
how invariance is achieved remains an unresolved question and a challeng-
ing problem for computational models. Scale invariance is especially prob-
lematic, as it introduces questions of not only how multiple scales should
be represented but how responses to those should dynamically interact
together.

Scale is often addressed by using a feature pyramid, where the input it-
self or processed versions thereof are scaled and fed through the network
at multiple scales before the resulting output is integrated into a single
response (Dollár, Appel, Belongie, & Perona, 2014; Itti, Koch, & Niebur,
1998; Lowe, 1999). This technique is practical but does not correlate to a di-
rectly plausible explanation for how the brain is scale invariant, and it does
not allow for much interaction between different scales. In object recog-
nition systems, if scale is considered, it is typically handled by duplicat-
ing features at varying resolutions and then performing a pooling or max
operation to select a single winner (Serre, Wolf, & Poggio, 2005) in what
essentially becomes a scale pyramid over features. Because the pooling op-
eration discards information, this type of approach is also limited in the in-
teraction between varying scales. Modern approaches using deep networks
generally rely on some sort of region proposal step, such as a sliding win-
dow, an attention system (Cheng et al., 2015) or a network specialized to
find candidate regions (Ren, He, Girshick, & Sun, 2015). Other approaches
combine region proposal and recognition into a single network (Liu et al.,
2016; Redmon, Divvala, Girshick, & Farhadi, 2016), though ultimately all
of these approaches resize the selected region to the canonical size of the
network, which expects a near-perfect crop.

This work introduces two primary contributions—the competitive col-
umn and ambiguity—that resolve some of the complications introduced by
multiscale processing. They are demonstrated on a model of border owner-
ship, extending the previous work of Grant, Tanner, and Itti (2017). Border
ownership is an early scale-invariant visual process that involves the as-
signment of object boundaries to objects (Zhou, Friedman, & von der Heydt,
2000). As border ownership responses begin to occur before object recogni-
tion takes place (Brincat & Connor, 2006; Williford & von der Heydt, 2016),
polarity (or ownership) assignment must be decided in the face of what is
often locally ambiguous input. Combined with its putative feedback struc-
ture (Craft, Schütze, Niebur, & von der Heydt, 2007), border ownership is a
challenging but tractable target for learning.

The first contribution of this work, the competitive column, is a solu-
tion for scale invariance that takes inspiration from both scale pyramids as
well as the highly interconnected wiring of the visual system (Markov et al.,
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2014). The resultant architecture is a hierarchical cascade with the addition
of connections between every layer of the network, much like the concept of
skip connections, which have become popular in deep learning (He, Zhang,
Ren, & Sun, 2016) and have previously been referred to as shortcut connec-
tions (Bishop, 1995). Using the learning rule developed in the previous work
(conflict learning; Grant et al., 2017) the competitive column can be used to
learn invariant responses through visual experience alone.

The second contribution of this work is the development of a new no-
tion of ambiguity that dampens the activity of neurons that cannot reach
a reliable consensus. The ability to resolve ambiguity is critical for mul-
tiscale interaction, which can introduce conflicting responses generated
at different scales. In the figure-ground system of Layton, Mingolla, and
Yazdanbakhsh (2015), one of the few systems to use scale in a nontrivial
fashion, larger-scale responses inhibit smaller-scale responses. In this work,
inhibitory feedback will be used in the computation of ambiguity, which can
ultimately inhibit the activation of a neuron in a similar fashion.

These primary contributions are supported by an adaptive threshold
scheme that addresses many of the complications introduced by a multi-
layer network where input can arrive at varying times. The threshold op-
erates over multiple timescales in a fashion analogous to the weights in
conflict learning.

Together, these contributions are used to learn an invariant model of
border ownership that addresses the shortcomings of the model of border
ownership in the previous work (Grant et al., 2017) which was restricted
to specific scales incapable of handling overly ambiguous input. The com-
petitive column architecture is used to train a new, deeper model on four
simple fixed size shapes, which is tested on nearly 2000 procedurally gener-
ated shapes of varying complexity and scale. The performance of the model
is analyzed as a function of scale, rotation, and translation invariance. It
is additionally demonstrated on a sample of contours taken from natural
images.

The ability of the network to learn invariant responses through visual
experience alone, without an explicit teacher, demonstrates the capabilities
of the competitive column architecture, as well as the benefits of ambigu-
ity. The implications of the architecture are discussed as it relates to acti-
vation dynamics as well as learning, especially in regard to the concept of
proto-objects.

2 Background

2.1 Border Ownership. As mentioned in section 1, border ownership is
an early visual process that assigns borders to owning objects. In terms of
neural responses, border ownership (BO) neurons, which are typically edge
selective, respond strongly when an object is observed on one side of them
and weakly when presented to the nonpreferred side (Zhou et al., 2000).
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The computation of border ownership requires information from outside
the classical receptive field, suggesting that it necessitates the cooperation
of BO neurons spread across an entire figure to ensure a correct polarity as-
signment. Border ownership is believed to be a critical component of figure-
ground segmentation, a process that is itself likely critical for higher-level
tasks such as object recognition (Kogo & van Ee, 2014).

The grouping hypothesis (Martin & von der Heydt, 2015) has emerged as
a dominant theory for how neurons compute border ownership. Craft et al.
(2007) developed a model where pairs of BO neurons compete over a po-
larity assignment while receiving feedback from higher-level grouping neu-
rons, which pool over a wide range of BO responses. The grouping neurons
have annular receptive fields and are essentially tuned to fire when a mostly
contiguous arrangement of BO neurons supports the interior of the figure
occurring at the retinotopic position of the grouping neuron (see Figures 2A
and 2B). Another fundamental concept behind the computation of border
ownership is complementary facilitatory and suppressive input to border
ownership neurons (Sakai & Nishimura, 2006), which supports push-pull
dynamics between competing BO neurons. Subsequent models (Mihalas,
Dong, von der Heydt, & Niebur, 2011; Qiu, Sugihara, & von der Heydt,
2007; Russell, Mihalaş, von der Heydt, Niebur, & Etienne-Cummings, 2014)
have applied attention to grouping models of border ownership, but rela-
tively little concern has been paid to how such border ownership could be
learned. The previous work (Grant et al., 2017) thus developed a learning
rule that could be used to learn a model of border ownership, but it lacked
a formal network architecture and did not display the scale invariance seen
in actual BO neurons.

To address scale invariance, this work develops the competitive column
architecture, detailed in section 3, and applies it to learning a model of bor-
der ownership. It should be emphasized that the competitive column archi-
tecture is not itself a model of border ownership, but rather a framework in
which border ownership can be learned. The model of border ownership
in Grant et al. (2017) featured grouping neurons at a single scale, which re-
sulted in BO neurons that could not generalize across object sizes regardless
of training input. Here, using the competitive column architecture, the hi-
erarchy will be deepened. The interaction between a new layer of neurons,
referred to as proto-object neurons, the previously used grouping neurons,
and the border ownership neurons lead to a model that can generalize over
a wide range of object scales and complexities. Although these neurons are
given different names for illustrative purposes, they are all identical within
the competitive column architecture; crucially, it is a combination of learn-
ing and visual experience that gives rise to border ownership and grouping
behaviors of the neurons.

2.2 Conflict Learning. This section provides a brief overview of con-
flict learning, which is fully detailed in Grant et al. (2017). Conflict learning,
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which is used as the learning rule throughout this work, is a learning rule
for artificial neural networks designed around the complications of mod-
ulatory input. Modulatory input signals are those that affect the output of
a neuron only when coincidental with driving input, which is input that
can directly trigger the firing of a neuron (Brosch & Neumann, 2014). The
previous work discusses in detail why modulatory input necessitates a
new learning rule and why traditional Hebbian-like associative rules are
insufficient.

Conflict learning consists of three components, which work in tandem
to differentiate activity among driving and modulatory inputs. In the fol-
lowing, xi refers to the activation value of a neuron i, and wi j the weight
between neurons i and j:

1. Spreading. Neurons are restricted to increasing weight on only those
connections that overlap with their existing preferred stimulus. A coeffi-
cient, κi, applied to the weight update, is set equal to the maximum activa-
tion among a neuron’s strongly learned connections,

κi = max
j|(wi j (t)> 1

2 max
j

wi j (t))
x j, (2.1)

where strongly learned connections are those whose weight exceeds half the
strength of the largest weight among that individual neuron’s connections.

2. Unlearning. Conflict learning treats inhibition as an error signal indi-
cating that the inhibited neuron has mistakenly strengthened any currently
active connections. A neuron competing with its neighbors via inhibition
exerts pressure on those neurons to unlearn the connections driving its ac-
tivation if those neighbors are coincidentally active. In this context unlearn-
ing is expressed as a decrease of weight toward some initial nonnegative
minimum. The amount of inhibition a neuron receives is used to interpo-
late between a positive and a negative associative weight update, δi j,

δi j = (1 − Inhib) ∗ αηxix jκi − Inhib ∗ βηxix j, (2.2)

where α and β (set to 1 in all experiments) can be used to control the rate of
learning versus unlearning and η is the learning rate. Inhib represents the
inhibition received and is defined formally in section 3.3.

3. Short and long-term (SLT). Connection weights are adjusted on short-
term and long-term timescales. The short-term weight wi j adjusts rapidly
to the current stimulus, but decays toward and fluctuates around the more
stable, slowly adapting long-term weight wltm

i j . The only visible weight for
a neuron is its short-term weight; long-term weights are internal and ob-
served only via their effect on short-term weights. The entire neuron weight
update process has four steps:
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a. Compute short-term weight updates δi j.
b. Move long-term weights toward short-term weights, interpolating

between the updated short-term weight wi j(t) + δi j, and the previous
long-term weight wltm

i j (t):

wltm
i j (t + 1) = (1 − sltm)(wi j(t) + δi j ) + sltmwltm

i j (t). (2.3)

c. Move short-term weights toward long-term weights, interpolating
between the updated short-term weight and the updated long-term
weight wltm

i j (t + 1):

wi j(t + 1) = (1 − sstm)(wi j(t) + δi j ) + sstmwltm
i j (t + 1). (2.4)

d. Normalize short- and long-term weights independently,
where sltm and sstm are smoothing factors, and all weight updates are
clamped between a nonnegative, nonzero lower bound and an upper
bound of 1.

An accumulator of lifetime short-term weight updates is used for com-
puting the smoothing factor sltm for the long-term weight update:

acci j(t + 1) = acci j(t) + δi j. (2.5)

The smoothing factor for the long-term update, sltm, is computed by com-
paring a neuron’s proportion of long-term weight against its proportion of
lifetime accumulator value (normalized wltm

i j (t) versus acci j(t + 1)). When
the wltm

i j (t) update would move the long-term weight proportion toward
that of the accumulator, sltm is decreased, proportional to the remaining
distance between them. In cases where the wltm

i j update would move the
proportion away from the accumulator, sltm is increased. This has the effect
of decreasing the rate of change of the long-term weight when it diverges
too much from the lifetime accumulated value acci j.

3 The Competitive Column Model

The competitive column model is a framework for a prototypical organi-
zation of neurons that supports invariant learning. The model has two key
components. The first is a column structure and associated wiring that work
in concert with conflict learning to use various sources of inhibition as teach-
ing signals and learn features among driving and modulatory inputs. The
second is a new activation dynamic called ambiguity that is used to resolve
locally ambiguous input, which is supported by novel threshold dynam-
ics that mirror the mechanics of short- and long-term weights in conflict
learning.
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3.1 The Competitive Column. The organization of neurons into
columns to support competition has long been a component of more bi-
ologically plausible models of the visual system (Fukushima, 1980). In the
primary visual cortex, neurons are arranged in perpendicular slabs such
that neurons with similar receptive fields but different orientation prefer-
ences are adjacent to each other (Blasdel & Salama, 1986; Hubel & Wiesel,
1974). In this sense, the column is more of a conceptual grounding to de-
scribe organization.

The column structure developed here, called the competitive column, is
a way to organize neurons such that a diversity of features can be learned
while maintaining invariance to rotation, translation, and scale. An illus-
tration of the model is shown in Figure 1. Much like the columns that
Fukushima (1980) used, neurons here will be organized into a column if
they are within some radius of each other. Though the mental model of a
column often (and indeed here as well) has neurons stacked in a cylinder,
the neurons need not actually be laid out like this.

Competitive columns have winner-take-all dynamics such that only one
neuron can be dominant in activation at a time. Neurons that lose out to
more active neurons have their activation diminished but not extinguished.
This property, which is seen in opposing polarities of actual border owner-
ship responsive cells (Zhou et al., 2000), is essential for the correct oper-
ation of conflict learning. Conflict learning utilizes the competition in the
column to drive differentiation among the learning of modulatory features.
The model developed here bears some resemblance to the selective tuning
attention model of Tsotsos et al. (1995) in that both use a hierarchical frame-
work with winner-take-all dynamics. Their model differs in that it uses a
backward pass of these dynamics to refine relevant features to the upper-
most winning location, pruning other activations away, whereas the model
developed here has constant winner-take-all dynamics in every column.

Neurons within columns also have lateral connections that extend out-
side the column to other nearby neurons, which are organized into other
competitive columns. The weight distribution of these lateral connections
determines the overall topographic organization of a layer. The competi-
tive column model makes a distinction between driving and modulatory
inputs, which are learned as two independent sets of connections. Lat-
eral inhibition is used as the error signal for driving input and within-
column inhibition for modulatory input. This allows inhibition received
through lateral connections to cause a differentiation over driving input,
analogous to how within-column inhibition differentiates modulatory in-
put. The inhibition affects the neuron activation in the same fashion as that
received from within the column; neurons can only be inhibited by those
that are more active than them. Grant et al. (2017) demonstrated that center-
surround lateral connectivity could be used with conflict learning to cause
neurons to develop a smooth pinwheel-like configuration analogous to that
often seen in mammalian primary visual cortex. Jain, Millin, and Mel (2015)
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Figure 1: The competitive column and associated network topology. A compet-
itive column is an organization for neurons into local units of competition that
receive driving feedforward, modulatory lateral, and modulatory feedback in-
put. (A) Columns are created by wiring together neurons in a local neighbor-
hood with mutual inhibition such that a winner-take-all-like network is created.
The winner-take-all dynamics are such that losing neurons are not fully deac-
tivated because of competition. Columns also have lateral connections to other
neurons residing in other columns within a larger local neighborhood. (B) A
diagram showing the types of input a column receives. Feedforward and feed-
back input come from both immediately adjacent layers in the hierarchy (direct)
as well as distant layers (skip). Feedforward and feedback that trickle through
layers in a cascade also ultimately affect the column by influencing the direct
input it receives. (C) A diagram showing how the column receives input from
other layers in a hierarchy. Input is received from directly adjacent layers, as
well as from every distant layer. Input thus follows a pattern of coming from
increasingly large receptive fields with increasingly weak weights. Input also
arrives from within the same layer in the form of lateral connections.
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demonstrated that the structure of lateral connectivity is key to differentiat-
ing between these V1-like maps and more differentiated multimaps where
a multitude of different features can be learned. Thus, the role of lateral
connections in the competitive column model is to drive the overall config-
uration of the learned feedforward features of a layer.

Columns receive feedforward and feedback input from every other layer
in the network. As the layer-to-layer distance increases, so does the recep-
tive field size; neurons deeper in the hierarchy have large receptive fields
over earlier levels. This is accompanied by a similar reduction in weight,
much like what is seen in real neurons (Markov et al., 2014). This is key to
the learning of scale invariance as it allows for differentiation over the in-
fluence of input from multiple scales. The network thus combines a typical
hierarchical cascade with the ideas of a scale pyramid. The increasing re-
ceptive field size of neurons at deeper levels allows the neurons to learn a
mixture of scaled-up features along with more “parts-like” features com-
posed of input from intermediary layers.

Since feedback is modulatory and weights decrease with layer-to-layer
distance, neurons can exert a great deal of control over their received feed-
back by inducing neurons in adjacent layers to deactivate. A neuron that
receives feedback from the next layer likely also supplies driving input to
that layer, and this allows for interesting dynamics to occur between differ-
ent scales in the network. This is key to the operation of ambiguity devel-
oped in section 3.2.

3.2 Ambiguity. Border ownership is an example of a visual process that
requires the resolution of locally ambiguous information to make a correct
decision regarding edge polarities (Kogo & van Ee, 2014). Sometimes this
ambiguity is due to a bistable representation of figure and ground, such as
the famous Rubin’s vase illusion (Rubin, 1915), in which either a vase or two
faces can be seen. More often, this ambiguity can arise as a consequence of
local features of an object. For example, the neurons that respond to border
ownership have limited receptive field sizes yet must make a decision de-
pendent on global context they may not have direct access to. A putative
mechanism for the computation of border ownership is briefly reviewed in
Figures 2A and 2B.

The problem of resolving ambiguity is not one that can simply be pushed
to a deeper level in a hierarchy and solved independently by a larger scale.
Eventually there will be a decision between multiple choices where there
appear to be several good candidates given the current state of the network.
Thus, a useful method of breaking ambiguity should operate at every level
of computation, and indeed at every neuron. Further, this issue is not iso-
lated to the problem of border ownership but is a general problem faced
when making decisions; there are often many competing choices that can-
not be decided on without the influence of some additional factor (consider
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Figure 2: The grouping neuron–based computation of border ownership and
an example of a locally ambiguous shape. (A) The output of border ownership
(BO) neurons for multiple orientations and polarity assignments are grouped
together by a grouping cell, G. The grouping cell reinforces all BO neurons with
polarities that support evidence of a closed object located at the grouping cell.
Grouping cells receive feedforward input from BO neurons, and BO neurons
receive feedback input from grouping cells. Black arrows represent polarities
that support the grouping neuron; gray arrows represent polarities inconsis-
tent with that grouping neuron. (B) BO neurons receive identical driving input
(e.g., an oriented edge), but their association with a specific grouping cell ties
them to a specific polarity (e.g., object left or right). BO neurons responding to
the same stimulus compete with each other (dashed line), with feedback from
grouping neurons driving differentiation over polarity. (C) A classical locally
ambiguous shape for the assignment of border ownership. The top and bottom
corners of the c shape have identical local features to the concavity missing from
the middle. Each region has three edges making a nearly closed convexity and
has the same number of corner features supporting the interior of an object.
Each colored grouping cell has a receptive field (dashed circle) from which it re-
ceives input from BO neurons with appropriate polarities (like-colored arrows).
Note that along the concavity, BO neurons of opposing polarities receive equal
amounts of feedback and supply equal amounts of driving input to the group-
ing neurons. Only a small subset of BO and grouping neurons are drawn for il-
lustrative purposes. (D) The same shape as in panel C with grouping performed
over larger receptive fields. Note that the polarity assignment supported by the
larger grouping would give an incorrect polarity to the concavity of the c shape.
Without explicitly modeling the entire object, the assignment of edge polarities
requires a way of quantifying the local ambiguity of decisions and moving the
network toward an unambiguous assignment. (Portions of the figure were in-
spired by Craft et al., 2007.)
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relatable situations like deciding on a restaurant to eat at or dealing with
conflicting navigation suggestions while driving a car).

A prototypical example of this problem for border ownership is the “c
shape,” which has a concavity with the same local features as the top and
bottom portions of the shape (illustrated in Figures 2C and 2D). Given a
feedback model for border ownership, which uses grouping cells to collect
local evidence of objectness, strong responses will be elicited within both
the concavity and the actual c shape. These will reinforce decisions made at
the border ownership neurons that drive those grouping neurons, and ul-
timately it will not be possible to make a reliable polarity choice along the
concavity. Even deepening the hierarchy, as will be done here by the addi-
tion of proto-object neurons with larger receptive field sizes, will not break
this ambiguity; at a slightly larger scale, this object is still highly symmetric
and ambiguous.

The proposed way to solve this problem is to come up with a measure of
how ambiguous the activation of a neuron is and then dampen its activity. In
essence, the ambiguous neurons will cease to contribute to the state of the
network, allowing unambiguous neurons to reach consensus. The border
ownership neurons are ambiguous because the neurons for each polarity
are receiving strong feedback from grouping cells on opposing sides of the
object. However, this alone does not give an individual neuron the ability
to decide it is ambiguous. Consider that before these neurons even receive
feedback, their common feedforward driving input will put them into a
similar state of high activation that is resolved through competition and
the contribution of noise to drive an initial winner. It is not until these neu-
rons both become reinforced in their decisions through modulatory feed-
back that they can be said to be ambiguous.

To give neurons a way to measure this individually, a combination of in-
hibitory and excitatory feedback is used. Neurons are expected to learn a
preferred feedback stimulus (in the case of border ownership, from a sin-
gle polarity) and a nonpreferred stimulus (from the opposite polarity). Al-
though the model of Craft et al. (2007) already proposed using inhibitory
feedback to drive polarity decisions for border ownership, inhibitory feed-
back alone is insufficient to resolve this problem and unnecessary to com-
pute border ownership in largely unambiguous inputs, as Grant et al. (2017)
demonstrated.

It is the balance of excitatory and inhibitory modulatory feedback that
provides the best measure of whether a neuron is in an ambiguous state. A
neuron receiving a high amount of both types of input is receiving a signal
from neurons deeper in the hierarchy that it should be both highly active
and highly inhibited. This is precisely what causes an ambiguous assign-
ment of border ownership: high feedback from grouping neurons on com-
peting polarities.

To best capture this description of ambiguity, ambiguity is defined to be
the minimum of the modulatory excitation and inhibition. Defined this way,
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a neuron that receives high amounts of both modulatory excitation and in-
hibition is considered to be ambiguous, while a neuron that receives a high
amount of either excitation or inhibition is unambiguous. In addition, a neu-
ron receiving no modulatory input is also unambiguous. Using a minimum
for this operation, a semantic difference can be made between high inibition
in isolation and high inhibition coincidental with high excitation.

Ambiguity is detailed mathematically in section 3.3, and a demonstra-
tion of border ownership assignment on the c shape with and without a
notion of ambiguity can be found in section 5.2.

3.3 Neuron Activation. As mentioned in section 3.1, neurons receive
many sources of input that can be classified as driving or modulatory. Driv-
ing input comes purely from excitatory feedforward connections. Modula-
tory input comes from either lateral or feedback connections and can be
excitatory or inhibitory. Inhibitory lateral input, which can be from within-
column or intercolumn neurons, is divisive and provides the source of the
control signal used for unlearning in conflict learning. Inhibitory feedback
input is subtractive and used in the computation of ambiguity.

A model neuron j has a continuous firing rate x based on integrating
weighted inputs,

x j = f
(

g
(

FF + (Lat · FF2) + (FB · FF2) + ε

1 + Inhib + Ambiguity

)
, θ fast

j

)
, (3.1)

where FF, Lat, and FB represent the sum of weighted inputs of all feed-
forward, excitatory lateral, and feedback inputs, respectively. Each sum is
calculated as

∑
i∈type wi jxi, where wi j is the weight between neurons i and j.

Inhibitory lateral inputs are excluded here and instead apply divisively as
Inhib. Note that feedback and lateral connections are gated by feedforward
input; they cannot activate a neuron in the absence of feedforward driving
input.

Inhib represents the sum of weighted input of all inhibitory lateral con-
nections that are at least as active as neuron j:

∑
i | xi≥x j, i∈lateral wi jxi. The ac-

tivation requirement supports the winner-take-all dynamic of a column by
preventing the winner from being inhibited. These inhibitory inputs come
from both within-column and intercolumn sources and are used in the com-
putation of κ in conflict learning (see equation 2.2).

Ambiguity is defined to be the minimum of the total excitatory and in-
hibitory feedback: min(FB+, FB−), where FB = FB+ + FB−.

ε is a noise term sampled from a normal distribution: N (0, σ 2
noise). For

neurons within the same column that share similar or identical driving
input, noise causes one to be more active than the other, allowing inhi-
bition to take place even in the absence of modulating input. This is es-
pecially crucial during learning, when modulatory input has not yet been
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differentiated over neurons in a column. Noise provides a mechanism to
drive winner-take-all dynamics, which in turn drives differentiation of in-
put. After learning has occurred, noise can cause the initial winner in a col-
umn receiving only driving input to be random, but this is quickly corrected
through later-arriving modulatory input.

g(x) is a gain control function that dampens any activation that exceeds
1.0 and applies a gain normalization term γ :

g(x) = min(x, 1.0) + max(0.0, log10 x)
γ

. (3.2)

The desired activation range for neurons is [0, 1.0], though neurons are
allowed to exceed this upper level of activation temporarily. The dampen-
ing function g(x) does nothing to activation within the nominal range but
pushes overactivation back toward 1.0. Overactive output is thus quickly
quelled over several network iterations.

The goal of the gain normalization term, γ , is to enable balanced winner-
take-all dynamics to occur within a competitive column. It is essential that
the activations of neurons within the column can be compared fairly, and
this can happen only if the neurons are operating in the same range of
activation. This is much the same effect as homeostatic synaptic scaling
within real neurons (Turrigiano, 2008) and works similar to the normaliza-
tion model proposed by Heeger (1992). To achieve this in the model, γ is
set proportionately to the highest activation of any neuron in the column:
γ = γt−1 ∗ max j x j, j ∈ column. Note that gain control mechanisms like γ

must be averaged over time to avoid rapid oscillations caused by changing
activation values with each model iteration (Heeger, 1992). A simple expo-
nential average (see equation 3.3) suffices for this.

f (x, θ ) sets the output to zero if it is less than a threshold value. Thresh-
olds are described in section 3.4. Thresholds are further bound between a
minimum (θmin) and maximum (θmax) value. The minimum threshold value
is set such that the noise term ε in the activation function is unlikely to spu-
riously activate the neuron.

3.4 Thresholds. Biological neurons have adaptive thresholds that con-
trol whether their input is high enough to trigger activation (Nicholls, Mar-
tin, Wallace, & Fuchs, 2001). Often a model will set neuron thresholds to be
a rolling average of activation (Stevens, Law, Antolík, & Bednar, 2013), but
there are disadvantages to such a mechanism. If a long period passes with-
out a neuron receiving input, it can begin to lower its threshold and fire for
nonpreferred stimuli. This contributes to a network forgetting its learned
weights when examples of certain features are sparse.

Additionally, a typical threshold does not work well when the input to
a neuron changes dynamically over a short period of time. As the model
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neurons in this work receive feedback and even feedforward inputs at dif-
ferent time steps, it is essential that the threshold can capture this change in
activation and still ensure the input is within some expected range. Thus,
a threshold needs to behave much like the weights in conflict learning: it
needs a long-term stable value but also needs to be adaptable on a short-
term timescale.

To address both issues, a new threshold scheme was created that uses
the short- and long-term weights in conflict learning, which provide a form
of hysteresis for the neurons. Neurons have three thresholds based on long-
term activations xltm

j (i.e., activations calculated using the long-term as op-
posed to short-term weights) of their driving input:

• θmax
j : a rolling average of the maximum long-term activation

• θactive
j : a rolling average of above-threshold long-term activation

• θ
decay
j : a rolling average of subthreshold long-term activation

These three thresholds effectively classify the activation of the neuron
into three states: an active regime, where the long-term activation exceeds
θactive

j ; a subthreshold regime, where the long-term activation is between
θactive

j and θ
decay
j ; and a decay regime, where the long-term activation is less

than θ
decay
j . Much like the long-term weights, these thresholds are “hidden”

state, in that they do not directly control whether the neuron activates. A
fourth, faster-moving threshold, θ fast

j , controls whether the neuron actually
activates based on its short-term activation x j and is determined by the in-
put and the other three thresholds.

Thresholds are updated with the following equations, which use an ex-
ponential average that moves the threshold toward some new target value
with a smoothing factor s:

avg(θold, θnew, s) = (1 − s)θold + sθnew. (3.3)

When the neuron is in the active regime, θmax
j is adjusted to avg(θmax

j ,

xltm
j , s). θ fast

j is adjusted to avg(θ fast
j , θmax

j , s). The smoothing factors are cho-
sen such that these thresholds rise rapidly and fall slowly.

For the subthreshold regime, if xltm
j < θmax

j , θactive
j is adjusted to

avg(θactive
j , xltm

j , s). If xltm
j < θactive

j , θ
decay
j is adjusted to avg(θdecay

j , θactive
j , s).

The smoothing factors are chosen such that these adjustments occur slowly.
Finally, in the decay regime, θ

decay
j is adjusted to avg(θdecay

j , θminimum, s),

and θ fast
j is adjusted to avg(θ fast

j , θactive
j , s). The smoothing factors are chosen

such that the passive decay rate is very slow, while the reset of θ fast
j occurs

quickly.
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The overall effect of these thresholds is a neuron that maintains a sta-
ble activation point through rapidly changing input. This is especially im-
portant given the short-term weights of conflict learning, which adapt as
the neuron is firing. Due to the decay threshold, the neurons will not drop
their thresholds quickly in the absence of input and will lower their thresh-
old only if exposed to long periods of subthreshold activation. Since the
thresholds are based on driving input only, neurons will not deactivate
when their output is decreased by competition. It is only possible to affect
the driving input of competing neurons indirectly through recurrent mod-
ulatory feedback to the sources of such driving input, which can indeed
lead to deactivation. This inability to directly deactivate a competing neu-
ron is critical, however, for the proper function of conflict learning, which
relies on inhibition received through competition as a teaching signal for ac-
tive neurons. This behavior of competing neurons receiving a nonpreferred
stimulus (e.g., receiving the correct orientation but with opposite owner-
ship polarity) to still activate can be seen experimentally in border own-
ership neurons (Zhou et al., 2000). Furthermore, this behavior allows two
significant effects to take place with conflict learning: the first is that neurons
within a column can learn the same driving input but differentiate on mod-
ulatory input, and the second is that lateral interaction between columns
can drive differentiation over entire columns, leading to different driving
input preferences among different columns.

4 Network Construction

This section details how the competitive column architecture is applied to a
model of border ownership. The construction and wiring of the network
are first detailed, followed by the training regimen that is used to learn
features in an unsupervised fashion. The model builds on the previous
work of Grant et al. (2017), which uses a feedback-based model of border
ownership based on grouping (see Figure 2 for an illustration of grouping
neurons). The model developed here introduces an additional layer of
grouping, called the proto-object layer, which pools responses from both
border ownership neurons and grouping neurons. As will be demonstrated,
this additional layer gives the network increased scale invariance and the
ability to respond to more complex input.

As mentioned in section 2.1, the network has no a priori knowledge
or biasing toward learning border ownership. All neurons that undergo
learning are identical, and the naming of the different layers is based on a
semantic interpretation of their responses. A combination of local competi-
tion, learned connection patterns, and training input causes the network to
become selective to border ownership.

4.1 Network Construction and Wiring. The network is constructed of
up to five layers: an input layer, an edge response layer, a border ownership
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Figure 3: A schematic of the network configuration used for the experiments.
Each layer of the network has the same dimensions, though the density and
receptive field size tend to increase with layer depth. The input and edge re-
sponse layers have fixed weights, as does the feedforward input to the border
ownership layer. The border ownership, grouping, and proto-object layers all
perform learning. These layers are interconnected to each other through feed-
forward and feedback projections. Each layer is parameterized by the number
of neurons in its competitive columns, with different network topologies having
different configurations. Layers show actual responses for depicted input, with
the polarity colored according to preferred orientation for the border ownership
layer.

layer, a grouping layer, and a proto-object layer. The border ownership,
grouping, and proto-layers are parameterized by the number of neurons
in their competitive columns. An overall schematic of the network can be
seen in Figure 3.

Three topologies of networks are used in the experiments: 1G0P, which
has one grouping neuron per column and no proto-object layer; 1G1P,
which has one grouping neuron per column and one proto-object neuron
per column; and 4G1P, which has up to four grouping neurons per column
and one proto-object neuron per column. The border ownership layer is al-
ways fixed to have exactly eight neurons per column.

The input and edge response layers have fixed weights. Input is pro-
vided as a grayscale image that is held constant by the input layer until
the next stimulus is presented. The edge responses are computed at four
orientations (0, 45◦, 90◦, and 135◦) by log Gabor filters (Field, 1987) param-
eterized by θgabor = π and f = √

π . To reduce artifacts from edge filtering
that can occur at small resolutions (e.g., shifts of edges), the network input
is upsampled by a factor of 10 to be 800 × 800 pixels. The results of the fil-
tering are then downsampled back to the 80 × 80 network size. This gives
a total of 25,600 edge-responsive neurons, with four for each location in the
network.

The border ownership layer consists of 80 × 80 columns, each contain-
ing eight border ownership neurons, for a total of 51,200 neurons. Each
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column receives driving feedforward input from every orientation at
the same location in the edge-response layer. The input from the four
orientation-selective neurons is duplicated within the column such that
there are two border ownership neurons for each edge response.

The dimensions of the network are held constant across each layer,
though beginning with the grouping layer, the density of neurons de-
creases. Additionally, beginning with the grouping layer, neurons are no
longer arranged on a grid but are instead placed randomly using a Poisson-
disc algorithm (Bridson, 2007), which aims to maintain a minimum distance
between any two neurons. This random placement means that the group-
ing and proto-object layers are populated by a target number of neurons,
though the actual number may vary slightly.

The border ownership layer is a slight exception to the others because
its feedforward is fixed and its neurons are arranged on a grid, as opposed
to random placement. This was done to ensure that the network could be
trivially probed to determine polarity assignments; each border ownership
column is known to have two neurons for each orientation, so comparing
their activations and weight distributions directly provides the column’s
polarity.

For the 1G configurations, the grouping layer has a target of 25% of the
density of the border ownership layer, with 1750 neurons. For the 4G con-
figuration, four times as many neurons are generated as in the 1G config-
uration. For the 1P configuration, the proto-layer is populated at a density
target of 10% of the border ownership layer, with 750 neurons.

The neurons in the border ownership, grouping, and proto-layers are
wired in a similar fashion:

• Neurons receive excitatory and inhibitory feedback projections from
every downstream layer. Feedback arrives from every neuron at the
same retinotopic position within some radius in each layer. The ra-
dius used for immediately adjacent layers (i.e., L + 1), rs, determines
the base preferred scale of the network. Every successive layer dou-
bles the size of the radius.

• Neurons receive excitatory feedforward projections from every up-
stream layer in the same fashion as feedback, with the radius dou-
bling for successive layers.

• Lateral projections (excitatory and inhibitory) arrive from every neu-
ron not in the same competitive column on the same layer within the
base scale radius.

The incoming weights to each neuron are organized by their source (e.g.,
direct feedback, skip feedback, direct feedforward). Each group of weights
is given some amount of uniform initial weight, as well as a maximum pool
of total learnable weight. If the total weight within a group exceeds the max-
imum weight for that group, it is normalized back down to the maximum
total weight. The number of connections in a group scales with the radius
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of the projection, which increases as layer-to-layer distance increases. This
causes each individual connection to have less impact on the activation of
the neuron the further the source of input.

Columns are wired as follows:

• Neurons are considered to be in the same column if they are within
some radius of each other. This radius is set for each layer such that
the number of neurons within a column hits a specific target.

• Every neuron in a column receives an inhibitory projection from ev-
ery other neuron within the column.

The networks used in the experiments learn all feedback and column
weights beginning with the border ownership layer. Feedforward weights
are learned starting with the grouping layer. The base scale is set such that
a 10 × 10 pixel square (prior to upsampling) can be fully contained within
the input of a grouping neuron. This gives an rs of 5

√
(2). The radius used

to determine if two neurons occupy the same column is rs/8. For the 1G1P
network, the above configuration leads to a network with around 54,000
neurons and 18 million synapses that participate in learning. Full details of
the implementation, such as source code and detailed parameter informa-
tion, can be found online (Grant & Itti, 2018).

4.2 Training. The network is trained by repeatedly exposing it to mov-
ing closed-shape outlines. The scale of shapes shown to the network is de-
scribed in terms of the preferred stimulus size of the grouping neurons (rs,
which is set to optimally respond to 10 × 10 pixel square); a shape with a
scale of 1 is one that ideally matches a grouping neuron, a scale of 2 is twice
its preferred size, and so on. Shapes are always sized such that their height
and width are whole multiples of the preferred scale.

Shapes are drawn from a 2 × 2 shape generator that can create all pos-
sible combinations of binary pixels on a square 2 × 2 grid, such that the
resulting shapes are a single connected component and contain no holes.
For a 2 × 2 generator, this means that there are four total possible shapes:
a 1 × 1 square, a 2 × 1 rectangle, a 2 × 2 corner (symmetric L), and a 2 × 2
square. When these shapes are presented to the network, they are appro-
priately translated to pixels based on the parameterization rs (e.g., 1 × 1 →
10 × 10 pixels, 2 × 2 → 20 × 20 pixels, and so on).

After a shape has been randomly selected, it is given both a random ori-
entation and a random position. The position is chosen such that the cen-
troid will be within the network input. A random direction is then picked,
and the shape is repeatedly translated in that direction until no portion of
it can be viewed by the network. Each position of the shape is presented
for 13 iterations of the network, which provides ample time for the influ-
ences of feedback to circulate through the network. A blank stimulus is ap-
plied for 13 iterations in between selecting a new random shape. All results



362 W. Grant and L. Itti

Figure 4: A schematic of the training procedure for the border ownership net-
work. Shapes are generated from a 2 × 2 shape generator to produce all pos-
sible single component shapes with no holes. The generator yields shapes that
are sized proportional to the base preferred scale (rs) of the network. The valid
shapes inset depicts all valid shapes that a 2 × 2 generator can yield. These
shapes are then repeatedly sampled from, given a random orientation, and
placed randomly on the network. The shape is then translated in a random di-
rection until it leaves the field of view. This process is repeated, with a blank
stimulus in between selecting a new shape, until the network is converged.

presented in the next section are on networks that were trained on 15,000
such randomized presentations of the four shapes from the 2 × 2 generator.
These networks are then tested on 1895 novel shapes from a 4 × 4 generator.
An illustration of this training process is provided in Figure 4.

5 Experiments

The competitive column and ambiguity are tested on various border own-
ership tasks using three network variants, with topologies as described in
section 4.1. Networks were each trained as described in section 4.2.
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For all experiments, the accuracy of a given border ownership assign-
ment is computed by comparing a ground-truth assignment against the
polarity assigned by the network. If the polarity points to the same side
(plus or minus 90◦) of the ground truth, it is considered correct, as in Teo,
Fermuller, and Aloimonos (2015).

5.1 Border Ownership Assignment. To study the scale invariance and
ability to generalize to challenging shapes, the networks were tested on
shapes sampled from a 4 × 4 shape generator. The trained networks were
only ever exposed to shapes from a 2 × 2 generator during training, so
an overwhelming majority (99.8%) of the testing input was novel to the
network.

Shapes generated from a 4 × 4 generator can be categorized by the
strictest subset generator that could have created them. This is done by look-
ing at the maximum of the shape’s width or height. For example, a 3 × 2
rectangle would be classified as scale 3, whereas a 2 × 2 corner would be
scale 2. Using this scheme, scale 1 has 1 shape, scale 2 has 3 shapes, scale 3
has 40 shapes, and scale 4 has 1,855 shapes. It should be noted that as the
scale of the shape increases, so does the potential complexity of the shape.
Scale 4 shapes can range from a simple 4 × 4 square to a snaking path with
many locally ambiguous regions.

For evaluating the performance of the networks on these shapes, each
shape was presented in the center of the network with no rotation. The
polarity assignments were recorded after 13 iterations of the network, the
same number of iterations a shape is presented for at a particular location
during training.

Figure 5 shows the median polarity accuracies for each scale of shapes
on all network configurations. All networks had essentially ideal perfor-
mance on objects from the same scale at which they were trained. However,
as the scale increased, performance significantly decreased for the network
that lacked the proto-object layer (1G0P). At scale 3, the 1G0P network had
a median accuracy of 87% compared to 100% and 98% for the 1G1P and
1G4P networks, respectively. At the highest scale, the 1G0P fared consid-
erably worse, with a median accuracy of 61% compared to 73% and 74%,
respectively.

The 1G0P network degrades in performance because its grouping neu-
rons, which have a preferred stimulus scale of 1, are unlikely to activate
as objects grow beyond this size. From the perspective of a grouping neu-
ron, the stimulus goes from a fully closed contour to some portion of the
presented object. While, depending on the learned thresholds, a grouping
neuron may still activate for a corner or three-sided end to a shape, as the
scale increases, it becomes increasingly likely that the grouping neuron is
exposed to only a linear contour, which will fail to excite it above its thresh-
old. Since the network additionally lacks proto-object neurons, which have
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Figure 5: A histogram of network performance against different scales of gen-
erated shapes. All shapes from a 4 × 4 generator were tested and placed into
scales by the strictest subset generator that could have created them. The net-
works with the proto-object layer (1G1P, 1G4P) show significant improvements
in median polarity accuracy compared to the network without (1G0P) for all
scales 2 and larger. Asterisks indicate extreme significance (p value < 1e − 5,
computed via Wilcoxon signed rank test) when compared to the 1G0P model.
Error bars denote 95th percentile cutoffs.

larger receptive field sizes, it ultimately cannot generalize as well to larger
input.

In the networks that contain a proto-object layer, the proto-object neu-
rons have preferred stimulus sizes that are at least of scale 2, which gives
the network a greater deal of scale invariance. Because proto-object neu-
rons receive feedforward projections from both the border ownership layer
and the grouping layer, their behavior is more nuanced than a scaled-
up grouping neuron. Proto-object neurons learn a conjunction of scaled-
up features, from the border ownership input, as well as more localized
grouping responses. The interaction of feedforward and feedback between
the grouping and proto-object layers also enhances scale invariance by al-
lowing mutual reinforcement of activations.

The 4G1P network differs from the 1G1P network only in that it has
considerably more grouping neurons, which are arranged into competitive
columns. This causes the grouping neurons to compete over modulatory
feedback from the proto-object layer much the same way border owner-
ship neurons do from the grouping layer. The increase in grouping neuron
density also creates extra lateral competition, which causes differentiation
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in learned feedforward features; some grouping neurons will learn features
more receptive to corners or other subsets of a larger object. Since the overall
topology of the network is the same as in the 1G1P network, not much dif-
ference should be expected between the two networks, which is confirmed
by the median polarity accuracies, which are not significantly different from
the 1G1P network. The more nuanced differences in the 1G1P and 4G1P net-
works are discussed in more detail in section 6.1.

Figures 6 and 7 show polarity assignments taken from a variety of shapes
using the 1G1P network. These figures show all possible shapes from a 2 × 2
generator, but only a small subset of scale 3 shapes and a fraction of scale
4 shapes. As seen in Figure 5, performance degrades slightly as scale in-
creases, which is largely because the increased scale makes it possible for
the generator to create shapes that have multiple competing ambiguities.
Since the network was never exposed to such examples during training, it
is limited in its ability to resolve such ambiguities. However, in many cases,
it is still able to resolve a large number of difficult assignments.

The network shows a slightly diminished activation for neurons that pri-
marily receive support from the proto-object layer, such as the middle por-
tions of the larger areas in Figures 6E, 6J, and 7D. This happens because the
strength of direct feedback diminishes as layer-to-layer distance increases,
and feedback from the proto-object that routes through the grouping neu-
rons is gated by the driving input to those grouping neurons, which is di-
minished due to the scale of the input.

In other cases, competing ambiguities can cause a diminished activation
of the border ownership response. In Figure 6J, grouping feedback on the
outside of the figure competes with grouping and proto-object feedback on
the inside of the figure. The combined support of the two scales causes the
interior to outcompete the exterior feedback. As losing neurons in a col-
umn do not fully deactivate, it is possible for there to be residual activation
of grouping or proto-object neurons supporting the incorrect polarity until
their adaptive thresholds adjust.

The majority of incorrect responses tend to occur in regions where there
is strong local evidence of a concavity and weak competing evidence, at
any scale, for the correct assignment. This can be seen in Figures 7G and
7H, where some of the polarities along the interior concavity are either very
weak or incorrect when the opposing side is an interior T junction for the
shape. Figure 7F demonstrates that deep concavities are difficult to correctly
assign, though this particular figure presents additional challenges: it has
three concavities that all interfere with each other such that an incorrect
assignment on one can affect the others.

5.2 Ambiguity. Figure 8 demonstrates the impact of ambiguity on de-
ciding the border ownership of a 3 × 2 c shape. The network used for this
example is the 1G1P network, which has both grouping and proto-object
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Figure 6: Sample shape responses from the 1G1P network on shapes up to scale
3. The input to the network is shown as a black outlined shape with arrows rep-
resenting the network-assigned polarity overlaid. Shapes A through D are the
only shapes that the network was exposed to during training and are created
by a 2 × 2 generator. All shapes starting at E are scale 3. Each shape is accompa-
nied by the percentage of border ownership neurons that had correct polarity
assignments when the result was probed.

neurons. Ambiguity was disabled for the “no ambiguity” network by set-
ting the ambiguity term in the activation equation 6 to 0.

Although both networks initially have a large grouping response within
the concavity of the c shape, the network with ambiguity dampens the ac-
tivation of neurons that give rise to this activation. Border ownership (BO)
neurons along the concavity lower their activation, which in turn decreases
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Figure 7: Sample shape responses from the 1G1P network on shapes of scale
4. Scale 4 shapes are not only considerably larger than shapes the network was
trained on, but can contain very complex and locally ambiguous arrangements
of features. The ability of the network to resolve ambiguity is diminished as the
scale increases or if multiple portions of the input are ambiguous. Each shape is
accompanied by the percentage of border ownership neurons that had correct
polarity assignments when the result was probed.

the driving input to the grouping layer. This causes the grouping-layer neu-
rons that were receiving input from solely ambiguous BO neurons to fail
to meet their thresholds and turn off. With these grouping neurons deac-
tivated, competition within the previously ambiguous BO columns causes
the polarity to shift to the now unambiguous interior of the shape, which
has uncontested grouping activation. This process takes a few iterations to
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Figure 8: The progression of border ownership (BO) assignment for a 3 × 2 c
shape with and without ambiguity. The top of the figure shows the ground-
truth data, with edges colorized by the correct polarity assignment. The bottom
portion of the image is split into two columns: with and without ambiguity. Each
row shows the network state at a different time step, beginning with the onset
of the stimulus and ending with the first iteration of correct polarity assign-
ment. BO responses are accompanied by the percentage of BO neurons that had
correct polarity assignments when the result was probed. At t = 2, the polarity
assignment is driven by random noise and purely feedforward input. At t = 3,
feedback begins to arrive from the grouping and proto-object layers. Note that
the grouping neurons are initially responsive for the concavity of the c shape for
both networks. The network with ambiguity shows dampening of ambiguous
BO neurons starting at t = 3, when feedback input is received from both sides
of each neuron. This dampened activity propagates to the grouping neurons at
t = 4, which lowers the ambiguity of the BO neurons. At t = 6, the neurons
are fully unambiguous, and the correct assignment emerges. Without ambigu-
ity, the assignment in the concavity is both random and muted due to constant
competition.
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Table 1: Network Results with Ambiguity Disabled.

Network Scale 1 Scale 2 Scale 3 Scale 4

0G1P, no ambiguity 100% 89% 73% 59%
1G1P, no ambiguity 100% 97% 86% 67%

Note: Percentages indicate the median polarity accuracy.

complete, but eventually an interior-only activation of the c shape drives an
unambiguous response from the BO neurons.

The network without ambiguity has no way of resolving the polarity
assignment of BO neurons along the concavity. The basic winner-takes-all
dynamics of the column will indeed be choosing winners each iteration, but
without a way to prevent feedback from applying equal amounts of excita-
tion and inhibition to competing polarities, no stable winner can emerge.

Although not shown in the figure, proto-object neurons are also respon-
sive to the input and supply feedback to both the BO neurons and the
grouping layer. Since the strength of feedback decreases with layer-to-layer
distance, the majority of the feedback influence the proto-object neurons ex-
ert on the BO neurons is channeled through the grouping neurons. Since
feedback is modulatory and the lowered activation of the BO neurons
causes inactivation of some grouping neurons, any feedback the proto-
object neurons applied to those deactivated grouping neurons no longer
affects the previously ambiguous BO neurons. Thus, not only does the
grouping response converge with the unambiguous activation of BO neu-
rons, but the proto-object response does as well. All layers of the network
settle in an unambiguous state.

There is some residual activation among the grouping neurons even
after a nonambiguous result is reached because neurons in a competitive
column are not fully deactivated even when losing the winner-take-all com-
petition. This causes a small amount of input to reach the grouping layer
from the incorrect polarity BO neurons around the concavity, which may
be enough to turn on some grouping neurons. The long-term thresholds
of the neurons need to be such that the neurons will turn on from the ini-
tial driving feedforward stage, in which it can be expected that half of the
neurons are randomly incorrect. Thus, the thresholds are often low enough
to see some activation at this stage. This residual activation causes a slight
oscillation in activation among the ambiguous neurons (due to increased
ambiguity), which eventually is removed from the network by two factors:
the dampening function (see equation 3.2) and the fast-moving component
of the threshold (see section 3.4).

To further test the importance of the ambiguity mechanism, the experi-
ment of section 5.1 was repeated using the 0G1P and 1G1P networks with
the ambiguity disabled. The resulting median scores are listed in Table 1. In



370 W. Grant and L. Itti

both cases, the networks with ambiguity disabled performed significantly
worse than their counterparts with ambiguity enabled (see Figure 5). This
result demonstrates that the mechanisms that benefit the polarity assign-
ment in the c shape generalize to a wide variety of the tested shapes.

5.3 Detailed Rotation, Scale, and Translation Invariance. Although
the scores in Figure 5 capture the overall trend of the network to be invari-
ant, it is useful to look at more detailed metrics of invariance. The network
is evaluated on two example shapes of differing base scale and complexity
to give insight into the network’s invariance to scale, translation, and rota-
tion. All results in this section are from the 1G1P network that was trained
on shapes from a 2 × 2 generator.

A 1 × 1 square shape and a 3 × 2 c shape were presented to the 1G1P net-
work with various transformations applied. To test rotation, the shape was
placed in the center of the network and then rotated in continuous steps
up to 360◦. As with previous tests, results were taken after letting the net-
work settle for 13 iterations. A blank stimulus was applied in between each
rotation to prevent any memory of the previous rotation from influencing
the result. The results can be seen in Figure 9A. Due to the way the net-
work was trained with random rotations of generated shapes, the network
is fully rotation invariant. This is largely due to the nature of grouping and
proto-layer neurons, which optimally respond to a closed contour in their
receptive fields.

To test scale invariance, the shapes were presented to the center of the
network and scaled down by a factor of 0.5 up to a factor of 2.0. Unlike
the shapes yielded from the shape generators, these shapes were allowed
to have fractional sizes. A blank stimulus was applied between each suc-
cessive scale. The results are presented in Figure 9B. For simpler shapes,
the network is scale invariant over a wide range of object scales. As the
complexity of objects increases, such as with the c shape, explicit activation
dynamics driven by ambiguity are required for an accurate polarity assign-
ment. This is more sensitive to changes in scale since there is a limited range
in which the grouping, proto, and border ownership neurons can interact
with each other. However, the network still displays an impressive band
of high accuracy and does not catastrophically fall off. When scaled up by
a factor of 2.0, the c shape is six times larger than the preferred grouping
neuron stimulus size along its longest dimension.

Finally, to test translation invariance, the shapes were positioned at 121
locations, and the network’s predicted polarity assignments were recorded.
Shapes were initially presented with their centroids in the upper-left corner
of the network before systematically traversing the network horizontally
and vertically for each sampled location, as seen in Figure 10. The training
regime translates shapes randomly all over the network, so it is unsurpris-
ing that the final network shows translation invariance. So long as the shape
can be fully displayed within the network, the resulting polarity assignment
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Figure 9: Orientation and scale invariance for a 1 × 1 square shape and a 3 × 2
c shape on the 1G1P network. (A) The average polarity accuracy of the network
is plotted as a function of the rotation of the shape. (B) Presented shapes were
scaled from half to twice their original size. Presented sizes thus included many
fractional amounts of the preferred scale of the network, to which it was never
exposed in training. The average polarity accuracy of the network is plotted
as a function of the multiplier applied to the shape scale. A vertical gray line
indicates the base scale for the shapes.

is accurate. There is some fall-off at the edges of the network due to specific
implementation details. The trained networks used for all tests were sized
such that no artifact of this could affect the results.

5.4 Contours from Natural Images. Natural images represent a sub-
stantial step up in contour complexity compared to the procedurally gen-
erated shapes used in the previous experiments. In this experiment, the
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Figure 10: Translation invariance for a 1 × 1 square shape and a 3 × 2 c shape
on the 1G1P network. Presented shapes were translated such that their centroid
was placed in 121 sampled locations spanning the entire network input. The
average polarity accuracy is plotted as a function of the offset of the centroid in
terms of network size. The upper graphic is for the 1 × 1 square shape and the
lower graphic is for the 3 × 2 c shape.

network is given a sample of line drawings of natural images from the
Berkeley Segmentation Data Set (BSDS500; Arbelaez, Maire, Fowlkes, &
Malik, 2011). These line drawings were annotated by human subjects.

The 1G1P network is used for all natural contour examples, with a mi-
nor adjustment made to neuron thresholds. Since this network was trained
on artificially generated shapes, its thresholds have adapted to the expected
activation driven by the Gabor filter-edge responses on these shapes, which
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were computed at only one spatial frequency. The natural images have en-
tirely different statistics and edges that may not correspond to the thickness
of the artificial shapes. To address this, the activation thresholds of all neu-
rons are decreased toward their decay thresholds. This allows the neurons
to respond to stimuli that may give decreased driving input when com-
pared to the procedurally generated shapes the neurons were trained on.
Given enough time with subthreshold input, the neurons would naturally
adjust their thresholds in a similar manner (see section 3.4 for details on
how the thresholds work).

Results are shown in Figure 11, with the original color images provided
for context. Ground-truth responses were created to calculate the percent-
age of correct polarity assignments by hand-labeling the contours of each
figure such that the polarity pointed roughly orthogonal to the contour, to-
ward the interior of the object. For the car image, only the exterior contours
were considered, as the correct assignment of the interior contours is more
subjective.

These images showcase examples with many features the network has
never seen in its training: curves, scales that are not whole multiples of the
preferred stimulus size, missing contours, holes, and occlusions. As such,
the network does make some mistakes and is unable to give an unam-
biguous response for some of the contours, but the overall outlook of the
responses is highly favorable given the limited training on just four proce-
durally generated shapes.

The network makes few mistakes in Figure 11A, with the only noticeable
errors occurring near the tail as well as the propeller. Competition among
different scales leads to the mistake near the propeller. The propeller con-
cavity is supported mostly by grouping neurons, whereas the largest por-
tion of the plane interior is roughly the scale of the proto-object neurons.
Direct feedback from the proto-object neurons to the border ownership neu-
rons is weaker than direct feedback from the grouping neurons, as the layer-
to-layer distance is greater. In addition, indirect feedback from proto-object
neurons, routed through intermediate grouping neurons, is modulated by
the driving input to those grouping neurons. Thus, in cases where interme-
diate grouping neurons are not very active, such as is the case along the
largest portions of the plane interior, the total feedback received is weak.
Because of these factors, the proto-object response on the interior of the air-
plane loses to the stronger but incorrect grouping neuron response in the
propeller concavity, causing incorrect or ambiguous polarity assignment.

Figure 11B demonstrates that a portion of the input can be missing, and
correct polarity assignments can still be computed. In the 1G1P network,
grouping and proto-object neurons learn to fire given sufficient input from
a roughly annular distribution of border ownership neurons, with no re-
quirement that those firing neurons are contiguous.

Figure 11C is largely correct, with some diminished response along
the bottom of the car. The car is significantly larger than the proto-object



374 W. Grant and L. Itti

Figure 11: Border ownership assignment on contours of selected natural im-
ages. The upper portion of each panel shows the full color natural image, and
the bottom shows the ground-truth human-drawn line drawing that served as
input to the model, overlaid with the border ownership assignment generated
by the network. Each subfigure is also accompanied by the percentage of bor-
der ownership neurons that had correct polarity assignments when the result
was probed, as well as an outlined box that shows the preferred stimulus size
of the grouping and proto-object neurons, scaled to the input. The figure is best
viewed zoomed in, for detail. (A) Contours from an airplane. The network has
never previously been exposed to curved contours or even shapes that did not
match a whole multiple of its referred stimulus size. (B) Contours from a bear.
The network still manages to assign correct ownership even though a portion
of the contour is missing. (C) Contours from a car. Note that this object contains
several “holes,” or enclosed regions within the overall silhouette, which are an
entirely novel input. (D) Contours from a pair of horses. Note that this image
contains two objects at vastly different scales, with the smaller horse occluding
the larger one. The network has never before been exposed to occlusion.
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receptive field size. It is possible that a deeper hierarchy, which would in
turn have neurons with even larger receptive field sizes, could alleviate this
situation. The proto-object neurons would then receive feedback from some
deeper layer, and thus feedback weight would increase through both direct
and indirect connections back to the grouping neurons.

Figure 11D encapsulates the difficulty of scale-invariant processing in
the context of border ownership. The legs of the horses are smaller than
the preferred grouping stimulus size, and the body of the larger horse is at
about the limit of the larger proto-object receptive field. In addition, the legs
create long concavities that lead to ambiguous local inputs. The contour of a
horse can be seen as a natural image analog of the c shape and would serve
well as a litmus test for future work.

6 Discussion

This competitive column architecture, combined with the previously devel-
oped conflict learning rule, provides a glimpse into how feedback, modula-
tion, and inhibition may shape learning. Although recent efforts have made
some progress toward understanding some aspects of feedback processing
(Lillicrap, Cownden, Tweed, & Akerman, 2016), how feedback influences
activation and learning remains a fundamental question. The competitive
column and ambiguity, as applied to a model of border ownership, give
some intuition that may be useful in probing the understanding of the brain
and developing more powerful models of object recognition. Although it is
unsupervised, conflict learning allows the model to have a built-in teach-
ing signal, which as backpropagation-based approaches have shown, is an
excellent way to assign blame and modulate learning.

This focus on the importance of feedback for both learning and net-
work dynamics is a departure from a large body of prior work focusing
on feedforward processing, particularly with respect to object recognition
(DiCarlo, Zoccolan, & Rust, 2012). Animal models (Zhang et al., 2011),
human psychophysical experiments (Isik, Meyers, Leibo, & Poggio, 2013;
Kheradpisheh, Ghodrati, Ganjtabesh, & Masquelier, 2016), and feedforward
computational models (Serre et al., 2007) have shown that feedforward pro-
cessing is sufficient for at least some level of object recognition. These claims
have largely focused on the ability of feedforward information, decoded
late in the visual hierarchy, to be useful for rapid categorization tasks (e.g.,
animal versus nonanimal, 100 ms or less of visual input). However, these
types of tasks cover only a minimal set of visual experience, whereas scenes
often contain multiple objects, have complex backgrounds, or are driven
by high-level goals. Feedback is likely necessary for object recognition in
these more challenging contexts, as well as intermediate visual processes
such as figure-ground segmentation or directing top-down attention (Kher-
adpisheh et al., 2016). Zhang et al. (2011), for example, showed that when
top-down attention was directed to a single object in an array of multiple
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objects, an initially ambiguous decoding of neurons in IT became unam-
biguous for the attended object.

The competitive column model does not contend with the idea that
some core of object recognition can be resolved with purely feedforward
processing (DiCarlo et al., 2012), and indeed the recent successes of cortical-
inspired deep learning models are nearly all purely feedforward (Kher-
adpisheh et al., 2016). Consider the grouping response with ambiguity in
Figure 8. At t = 2, the grouping response is driven entirely by feedforward
activation. At t = 5, when the border ownership response has resolved am-
biguity through several iterations of recurrent processing, the change in
grouping neuron activation is mostly restricted to the ambiguous portion of
the input. The change in the proto-object responses, which is not depicted,
is even less discernable. It is entirely conceivable that a classifier trained on
the initial feedforward response could still learn that the pattern of group-
ing activity at t = 2 is consistent with a c shape or some category associated
with a c shape.

The same cannot be said about the border ownership responses, which
dramatically change over time as recurrent processing takes place. The ini-
tial feedforward response of the border ownership neurons is ambiguous
and covers multiple semantic interpretations (i.e., polarity) of the input si-
multaneously. Similar behavior occurs in any layer of the network that has
multiple neurons competing within a column (see section 6.1 for discussion
on competition among grouping neurons).

The competitive column model thus predicts that the initial wave of
feedforward information activates a plurality of neurons with shared fea-
tures that can have different semantic interpretations. Recurrent processing
causes the network to move toward a selection of these features that share
an unambiguous semantic interpretation. This suggests that a rapid feedfor-
ward response is useful for high-level categorization but that more nuanced
information, such as border ownership, is both unavailable at the top of the
hierarchy as well as not immediately computed earlier in the hierarchy.

This viewpoint of feedback processing does not quite fit into the di-
chotomy described by DiCarlo et al. (2012). Information does not need to
reach the end of the hierarchy before it can influence earlier stages; in the
competitive column model, recurrent feedback processing permeates every
level of the hierarchy, is continuous, and occurs nearly immediately. What
ultimately matters is how ambiguous the scene is: the lower the ambiguity,
the more reliable the feedforward pass of information is. In the context of
the competitive column model, ambiguous scenes are those that promote
multiple simultaneous interpretations of shared features.

To summarize, both feedforward and feedback processing play im-
portant roles. Feedforward information drives the initial response of the
network, while a continuous interaction of recurrent feedback and feedfor-
ward processing provides refinement. Information is encoded at varying
levels of the hierarchy, and a densely connected network of direct and skip
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connections makes it available throughout (Markov et al., 2014). It is likely
that much of this feedback processing can be biased through top-down at-
tention, context, or other mechanisms but that it remains a critical compo-
nent for visual experience.

6.1 Toward Proto-Objects. The competitive column architecture en-
courages competition and a partitioning of learned features at every level of
the hierarchy. Figure 12A shows a representative set of feedback receptive
fields for a single border ownership column. The learning rule, combined
with the column architecture, causes neurons to learn conjunctions of high-
and low-level features—in this case, orientation selectivity combined with
polarity preference. While this effect is most noticeable at the border own-
ership layer, especially due to their structured feedforward input, it is also
evident at deeper layers of the network.

The new layer of neurons added to the network to support scale invari-
ance is called the proto-object layer. The goal of these neurons is to provide
a grouping mechanism over a larger receptive field size. If these neurons
received input only from the border ownership layer, they may have acted
just like grouping neurons and learned large annular receptive fields. How-
ever, proto-object neurons also receive direct input from the grouping neu-
rons, which gives them interesting visual features, seen in Figures 12B to
12E. While it is difficult to give a precise description of their preferred stim-
ulus, proto-object neurons learn conjunctions of midlevel (grouping) and
low-level (border ownership) features. This can be seen especially in Fig-
ures 12C to 12E, which appear to learn a general large-scale surround (from
direct border ownership input) with a preference for more localized input
(from grouping input). The features learned here are dependent on the vi-
sual experience of each neuron, as well as the competition it receives from
between-column lateral connections. Some neurons, such as in Figure 12B,
happen to learn their grouping input in alignment with their border own-
ership input, giving the perception of a large annular receptive field.

This use of the term proto-object is similar to that used by von der
Heydt and others, though it differs somewhat in that von der Heydt (2015)
treats the grouping neuron response as a proto-object. In the 1G1P model,
the grouping neurons respond to annular, convex configurations of bor-
der ownership neurons, which are very general responses that have little
unique relation to any particular object. The 4G1P model, however, learns
grouping features that are more in line with parts or subcomponents of ob-
jects and are a better match to what the name proto-object implies.

This specialization into subcomponents can be seen in Figures 12F to 12I,
which depict grouping columns of varying sizes and the learned feedfor-
ward and feedback receptive fields. In cases where a column contains a
single neuron, there is little competition over feedforward and none over
feedback, so the neuron learns an annular receptive field and associated
feedback. This is the most general grouping feature of a border ownership
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Figure 12: Example receptive fields of neurons in competitive columns of the
4G1P model. (A) The learned feedback (FB) weights of a single border own-
ership column. Eight neurons are depicted, with two for each orientation. The
neurons learn to compete over polarities for each orientation. Green indicates
an excitatory connection and red an inhibitory connection. Feedback is learned
from both the grouping and the proto-object layer. (B–E) The learned feed-
forward (FF) weights of four proto-object neurons. The proto-object layer has
columns with single neurons. Feedforward input is colored based on the pre-
ferred polarity of the border ownership neuron that supplied the input. In-
put comes from both border ownership and grouping neurons: any input from
a grouping neuron is colored by tracing its feedforward inputs to the border
ownership layer. (F–I) Learned feedforward and feedback connections for four
grouping neuron columns. Column size is dependent on the random distribu-
tion of neurons in the grouping layer, so some columns have fewer than four
neurons. The top row in each inset depicts learned feedforward weights, col-
ored as in the proto-object columns. The bottom row depicts the learned feed-
back weights from the proto-object layer, colored as in the border ownership
column. The figure is best viewed digitally, zoomed in.

network and a prototypical grouping neuron response. In cases where there
are multiple neurons, competition drives a differentiation over both feed-
forward and feedback features. In Figures 12G to 12I, the learned feedfor-
ward receptive fields initially learn very similar distributions before some
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of the neurons specialize. This specialization is driven by both a partitioning
of feedback, much as in the border ownership neurons, as well as between-
column lateral competition over driving feedforward input. Figures 12G
and 12H illustrate columns where some neurons have begun to specialize
both their feedforward and feedback receptive fields, while other neurons
still retain features similar to a neuron without competition, such as that
seen in Figure 12H. In Figure 12I, the neurons are beginning to show special-
ization over feedback while maintaining similar feedforward preferences,
much as the border ownership neurons operate. Unlike the border own-
ership neurons, the feedforward connections here are learned. Thus, the
competitive column architecture shows the ability to replicate the same be-
havior that was forced in the border ownership neurons by fixing the feed-
forward input: a replication of driving input with diversification among
modulatory input.

This increased differentiation of feedforward and feedback input occur-
ring with increased competition is a hopeful sign for future expansion of
the model. The experiments also demonstrated that there is likely a benefit
to having increased representation within the network for generalization to
larger scales and more complex features.

6.2 Modeling Border Ownership. As mentioned in section 2.1, the
model of border ownership in this work shares similarities with several
others (Mihalas, Dong, von der Heydt, & Niebur, 2011; Russell et al., 2014)
that are based on the grouping hypothesis (Martin & von der Heydt, 2015).
Both of these models and the current work build on a theory of using op-
posing regions of facilitatory and suppressive input to determine border
ownership polarity (Sakai & Nishimura, 2006; Sakai, Nishimura, Shimizu,
& Kondo, 2012). In the context of border ownership neurons, these facilita-
tory and suppressive regions are inputs that either agree or disagree with
the preferred polarity of the neuron. For example, excitatory feedback from
a grouping neuron on the same side as the preferred polarity is facilitatory,
while inhibitory feedback from the opposing polarity’s grouping neuron
is suppressive. Sakai et al. (2012) focus on the general concept of facilita-
tory and suppressive input and do not dictate the source (e.g., feedforward,
feedback) of such information.

The work of Sakai et al. (2012) is especially relevant as their model of
border ownership is tested on artificial shapes generated in a similar fashion
to those in this work, as well as natural images from a related data set. The
results are not directly comparable however, as their shapes are categorized
by the number of 1 × 1 squares the shapes are constructed from, and border
ownership is measured only at a single location. Their shapes consist of 4,
6, or 8 1 × 1 squares, whereas the shapes in this work are sampled from a
4 × 4 matrix of squares, with generated shapes having between 1 and 16
1 × 1 squares.
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Their model uses the average response of a large population of BO neu-
rons with randomly generated regions of facilitation and suppression to as-
sign polarity. This averaging over a large number of random features gives
a high degree of consistency to the border ownership response. The learned
receptive fields for the current work (see Figure 12), match the most consis-
tent neurons in Sakai et al. (2012), which have symmetric opposing regions
of facilitation and suppression. One important difference is that Sakai et al.
(2012) emphasize the relative importance of suppressive input, whereas the
current model relies on a balance of facilitatory and suppressive input to
drive the ambiguity mechanism. The notion of ambiguity is unique to the
current model. Sakai et al. (2012) note how assignment of polarity within
the concavity of a c shape demonstrates lower consistency, which ambigu-
ity is directly designed to address. As demonstrated in the more complex
examples of Figure 7, the surround configuration to a concavity influences
the ability of the network to resolve the ambiguity (Sajda & Finkel, 1995),
which is also true of actual border ownership neurons (Sakai et al., 2012).

The overcomplete nature of the randomly modulated BO neurons of
Sakai et al. (2012) likely affords the network a higher amount of invariance
over border ownership assignment. It would be worthwhile to investigate
if additional randomness could benefit the current model. The size of the
competitive columns in the current work, in conjunction with conflict learn-
ing, results in receptive fields that are highly symmetric. However, if the
number of neurons in the border ownership columns were increased, it is
likely that a more diverse set of neurons could be learned, much like what
is seen by increasing the size of the grouping columns (see Figure 12).

The model of Mihalas et al. (2011) uses feedback grouping mechanisms
to compute border ownership. The largest structural difference from the
current model is the existence of inhibitory feedforward connections from
BO neurons to grouping neurons that support nonpreferred polarity assign-
ments. The competitive column model does not currently have a notion of
inhibitory driving connections, though it is not difficult to imagine poten-
tial benefits from such a mechanism. In the context of ambiguous shapes,
for example, inhibitory feedforward could reduce the oscillatory behavior
of ambiguity seen in the grouping neurons in Figure 8 and discussed in sec-
tion 5.2. It is unclear what the implications would be on learning for such a
mechanism, however.

Russell et al. (2014) develop a feedforward model of border ownership
that combines traditional grouping mechanisms (Craft et al., 2007) with
center-surround attention mechanisms (Itti et al., 1998). Neurons with large
center-surround receptive fields in opposing polarities (on-off and off-on)
are used to compute a feedforward-driven notion of objectness, which bi-
ases the activation of BO neurons, as a feedforward analog to grouping
neurons. Inhibitory feedforward is again utilized, with the center-surround
neurons inhibiting inconsistent BO neurons. The model achieves invariance
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through the use of successive feature pyramids, much like the Itti et al.
(1998) model of saliency.

Although it shares various similarities to the models discussed, one of
the most important contributions of this work is the demonstration that
the complex features and connections of border ownership can be learned
through visual experience alone. The competitive column framework,
which has no built-in knowledge of border ownership, learns highly in-
variant border ownership selective neurons supported by grouping mech-
anisms. This gives additional credibility to the functional organization of
border ownership supported by the discussed models.

6.3 Generalizability. Remarkably, the network shows a capability to
generalize from the simple 2 × 2 shapes it was trained on to the complex
contours of the tested natural images, as seen in section 5.4. In modern deep
convolutional networks, the ability of a network to generalize to unseen
classes of input is a fundamental problem that which requires retraining
and risks catastrophic forgetting (Kirkpatrick et al., 2017). The network used
here, with three active layers, is still quite shallow by deep learning stan-
dards, which can be hundreds of layers deep (He et al., 2016), or by biology,
which suggests that up to 10 levels of processing are involved in the visual
hierarchy (Felleman & Van Essen, 1991; Markov et al., 2014). Perhaps some
ability of the network to generalize to larger and more complex shapes and
contours is due to this shallow nature and lack of features tied to overly
specific input (as is blamed in some deep networks; see Long, Cao, Wang,
& Jordan, 2015; Sun, Feng, & Saenko, 2016), but the experiments suggest
that the invariance and generalizability of the network should increase as
more layers and competition are introduced.

Although the network does display a high amount of scale invariance,
scale is still one of the most challenging aspects of more natural input. Fig-
ure 11D best demonstrates the difficulty of multiscale interaction and pro-
cessing. The network is unable to strongly classify the polarity of the larger
horse in particularly wide regions of its back and similarly unable to set-
tle on an unambiguous assignment in the long concavities created by the
younger horse’s legs. Figure 11C also presents challenging questions about
what the correct assignment of polarity is for enclosed objects, or “holes,”
should be.

It remains to be seen if the competitive column approach will general-
ize to fundamentally different tasks outside of what it has been demon-
strated on, that is, tasks other than orientation selectivity (see Grant et al.,
2017) or border ownership. This type of adaptability is one of the great
strengths of deep learning (Neyshabur, Bhojanapalli, McAllester, & Srebro,
2017). Though the competitive column model and conflict learning were
primarily designed around solving orientation selectivity and border own-
ership, the methodology underlying them is general; it is purely the statis-
tics of input that drive the learning and emergent behavior.
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6.4 Biological Implications. The proposed mechanism of ambiguity is
entirely hypothetical. Yet this method is not outside the realm of what is
plausible for a neuron to compute; it is based on local computation and
operates in a similar fashion to divisive inhibition. Given that the general
model fits in with current ideas of border ownership, it is reasonable to
hypothesize that a similar mechanism to ambiguity exists in real neurons.
The model in its current form predicts that neurons receiving ambiguous
input should dampen their activity before reaching a stable response and,
further, that this stable response should show a decaying oscillation due to
a feedback loop.

The model of border ownership demonstrated here is inspired by the
feedback model of Craft et al. (2007), which is predicated on the group-
ing hypothesis (Martin & von der Heydt, 2015). Grouping cells, as origi-
nally described, are hypothetical units. Although synchrony that supports
the grouping hypothesis has been observed, individual grouping cells have
yet to be identified (von der Heydt, 2015). The results of the 1G4P net-
work, as seen in section 6.1, suggest that it may not be strictly necessary
for the canonical grouping neuron to be present for a border ownership re-
sponse. It is possible that the same relationships encoded by a grouping
neuron are also present in lower-level features such as curves and corners.
In the 1G4P network, grouping neurons initially show canonical, annular
receptive fields, but these are largely replaced by more specialized features
over time as more competition occurs. The feedback circuit between these
specialized units and the border ownership neurons remains intact, how-
ever, maintaining an association with a particular polarity. This thus paints
the picture of border ownership as a process supported by an increasing
amount of modulatory recurrent activity as the hierarchy deepens and re-
sponses become more object-like.

6.5 Related Frameworks. The competitive column model presented
here has many similarities with two recent models of cortical processing: the
capsule model of Sabour, Frost, and Hinton (2017) and the column-based
model of Hawkins, Ahmad, and Cui (2017). Common to all three models is a
notion of creating complex responses to input that bind to multiple features.
In this work, edge-responsive features are bound to polarity information, in
Sabour et al. (2017), features associated with numeric characters are bound
to location information, and in Hawkins et al. (2017), sensory features are
bound to allocentric location signals. The capsule model learns using super-
vised backpropagation of error, following a long-established path of artifi-
cial neural networks. Although it has a notion of prediction and alignment
between successive layers, the capsule model does not truly feature recur-
rent or modulatory processing.

The competitive column model and the model of Hawkins et al. (2017)
are more similar. Both feature an architecture centered around the abstract
notion of a cortical column, and both use modulatory input sourced from
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lateral and feedback connections. While the model here places an empha-
sis on the influence of modulatory feedback, Hawkins’s model is more fo-
cused on lateral connectivity. A primary difference, aside from the learning
rules and activation dynamics, is that the competitive column model learns
conjunctions of features on its own. Hawkins’s model requires that the lo-
cation signal, which is ultimately bound to learned features, be presented
along with sensory input. Though an argument is presented for this being a
fundamental computation of a column, it remains an a priori signal for the
model as it currently is implemented. In addition, their model does not ex-
plain how features within a column can come to have similar feedforward
receptive fields while differentiating over modulatory input; the competi-
tive column model is capable of doing this (see section 6.1).

Ultimately all three models explore a more fundamental role for column-
like organization and contain dynamics that differ greatly from established
feedforward artificial neural networks. Perhaps these dynamics, particu-
larly those of modulation, will enable better models of cortical processing
and give greater intuition for how the brain works.

7 Conclusion

The competitive column model, combined with conflict learning, provides
a framework for learning invariant features that can differentiate over mod-
ulatory as well as driving inputs. The architecture was demonstrated on a
large-scale model of border ownership, which generalized from training
on four simple shapes to nearly 2000 shapes of varying scale and com-
plexity, as well as a small demonstration on contours taken from natu-
ral images. The presented notion of ambiguity provides a way to process
features that are locally ambiguous without the need for an explicit rep-
resentation of the ambiguity to be present. Interactions between different
scales of the network provide a way for lower-level neurons to dampen
their activity. The effects of this dampened input propagate throughout the
network, and the consequences of modulatory input result in low-level
decisions affecting the impact of activation deeper in the network. The
adaptive thresholds, combined with the short- and long-term weights of
conflict learning, give the network a form of hysteresis useful for the var-
ied timings of feedforward and feedback input. In the demonstrated model
of border ownership, the thresholds were essential for learning similar re-
sponses to driving input while allowing differentiation over modulatory
input.

The competitive column is likely a promising avenue for future work
on challenging problems. The results suggest that increased competition
combined with an increase in hierarchy depth could lead to the learning
of complex features and potential applications beyond border ownership,
such as object recognition.
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