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a b s t r a c t

Although Hebbian learning has long been a key component in understanding neural plasticity, it has not
yet been successful inmodelingmodulatory feedback connections, whichmake up a significant portion of
connections in the brain. We develop a new learning rule designed around the complications of learning
modulatory feedback and composed of three simple concepts grounded in physiologically plausible
evidence. Using border ownership as a prototypical example, we show that a Hebbian learning rule fails
to properly learn modulatory connections, while our proposed rule correctly learns a stimulus-driven
model. To the authors’ knowledge, this is the first time a border ownership network has been learned.
Additionally, we show that the rule can be used as a drop-in replacement for a Hebbian learning rule to
learn a biologically consistent model of orientation selectivity, a network which lacks any modulatory
connections. Our results predict that the mechanisms we use are integral for learning modulatory
connections in the brain and furthermore that modulatory connections have a strong dependence on
inhibition.
© 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The brain has a remarkable ability to learn to process com-
plicated input through self-organization, and since the studies of
Hubel and Wiesel (1963) it has been known that the develop-
ment of early visual processes is dependent on experience. In
the decades since, models of visual development have focused on
feedforward pathways, with little attention given to the learning
of modulatory connections. Modulatory connections, which adjust
existing neuron activations instead of directly driving them, domi-
nate feedback pathways,which themselves constitute amajority of
the connections in the brain (Markov et al., 2014). Hebbian-based
models have come a long way in explaining potential mechanisms
of learning (Clopath, Büsing, Vasilaki & Gerstner, 2010; Hebb,
1949; Widloski & Fiete, 2014), especially in feedforward models
of V1 (Stevens, Law, Antolík & Bednar, 2013), but an increasing
amount of literature suggests that more comprehensively explain-
ing plasticity requires novel approaches (Lim et al., 2015; Zenke,
Agnes & Gerstner, 2015). We will argue that the principles of Heb-
bian learning, known colloquially as fire together, wire together,
cannot be used alone to learn correctly or maintain stability in the
context of modulatory connections.
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The primary contributions of this work are twofold: the de-
velopment of a new learning rule that handles modulatory con-
nections, and showing that a stimulus driven feedback model of
border ownership can be learned in a biologically plausible way
as a result of the new learning rule. The new learning rule, which
we call conflict learning, is composed of three conceptually simple,
physiologically plausible mechanisms: adjusting plasticity based
on the activation of strongly learned connections, using inhibition
as an error signal to explicitly unlearn connections, and exploiting
several timescales. With border ownership as our prototypical ex-
ample, we show that a Hebbian learning rule fails to properly learn
modulatory connections, while the components of our proposed
rule enable it to learn the required connections. Border ownership,
which involves the assignment of edges to owning objects, is per-
haps one of the earliest and simplest visual processes dependent
upon modulatory feedback (Kogo & van Ee, 2014), appearing in
V1, V2, and V4 (Zhou, Friedman & Von Der Heydt, 2000). Although
many models of its function exist (e.g., lateral models: Sakai and
Nishimura (2006); Zhaoping (2005), feedforward: Supèr, Romeo
and Keil (2010), and feedback: Craft, Schütze, Niebur and Von
Der Heydt (2007)) those incorporating feedback are especially
promising, integrating well with models of attention (Mihalas,
Dong, vonderHeydt&Niebur, 2011;Qiu, Sugihara&vonderHeydt,
2007) and concepts of grouping (Martin & von der Heydt, 2015).
However, until now, all of these models have used fixed, hand-
crafted weights, with no demonstration of how the connection
patterns for border ownership might be learned.
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With our new learning rule, we demonstrate that inhibitory
modulation of plasticity, in conjunction with competition, is likely
a crucial mechanism for learning modulatory connections. Addi-
tionally, we show that the rule can be used as a drop-in replace-
ment for a Hebbian learning rule even in networks lacking any
modulatory connections, such as an orientation selective model
of primary visual cortex. Conflict learning is compared against a
recent Hebbian learning based rule (GCAL; Stevens et al. (2013)),
which is a good baseline rule for comparison because its weight
updates are governed purely by Hebbian logic and it operates at a
level of abstraction that captures important physiological behav-
iors while still being usable in large scale neural network models
(e.g., orientation selectivity) and being adaptable for use in new
network architectures (e.g., border ownership). We demonstrate
that conflict learning, like a Hebbian rule such as GCAL, can be used
to learn a biologically consistent model of orientation selectivity.
Our results further suggest that networks learned with conflict
learning have improved noise and stability responses.

Conflict learning works in a fundamentally different way to
previous learning rules by leveraging inhibition as an error sig-
nal to dynamically adjust plasticity. Though many existing tech-
niques built upon Hebbian learning, such as those derived from
STDP (spike timing-dependent plasticity, Song, Miller and Abbott,
2000) or BCM learning (Bienenstock, Cooper & Munro, 1982), have
some method to explicitly control synaptic weakening (e.g., based
on signal timing for STDP or comparisons to long term activation
averages for BCM), inhibition only indirectly affects learning by
lowering activation. Our successful application of the rule to learn-
ing models of orientation selectivity as well as border ownership
serves as a prediction that modulatory connections in the brain
require inhibition and competition to play a bigger role in the
dynamics of neural plasticity and activation.

2. Modulatory connections

Modulatory connections are the primary motivation for the
development of conflict learning. They are found extensively in
feedback projections related to visual processing, for example from
visual cortex to the thalamus (Cudeiro & Sillito, 2006; Jones et
al., 2012, 2015), from higher visual areas to primary visual cor-
tex (Callaway, 2004; Hupe, James, Girard, Lomber, Payne et al.,
2001), as well as from posterior parietal cortex to V5/MT (Friston
& Büchel, 2000). Top-down modulatory influences also play a
role in phenomena such as attention (Baluch & Itti, 2011; Beuth
& Hamker, 2015; Yantis, 2008), object segmentation (Roelfsema,
Lamme, Spekreijse & Bosch, 2002), and object recognition (Bar et
al., 2006). Attention is a modulatory effect and has the greatest
impact on already active representations (Buschman & Kastner,
2015). Modulatory feedback, used in much the same way as in
our border ownership experiment, has been used to construct a
model of attention that replicates numerous observed attentional
effects on both firing rates and receptive field structure (Miconi &
VanRullen, 2016).

Modulatory connections can alter the existing activation of a
neuron, but cannot cause activity in isolation; they must work
in conjunction with driving inputs (Brosch & Neumann, 2014b).
We can observe this distinction mathematically by first looking at
the activation function for an artificial neuron, which is typically
modeled by some function of its weighted inputs:

xj = f

⎛⎝ ∑
i∈input

xiwij

⎞⎠ (1)

where wij is the weight between neurons i and j and xi is the
activation of neuron i.

However, as modulatory connections are defined as those that
do not directly drive the activation of a neuron, their effectmust be
distinguished from driving connections, which, in similar fashion
to Brosch and Neumann (2014b), we formalize as:

xj = f (Dj + g(Dj,Mj)) (2)

where Dj =
∑

i∈drivingxiwij and Mj =
∑

i∈modulatoryxiwij. g is a
monotonically increasing function with respect to Dj and Dj = 0
implies that g(Dj,Mj) = 0. Typically, g is a simple product between
Dj and Mj (e.g., Bayerl and Neumann, 2004; Brosch and Neumann,
2014a; Roelfsemaet al., 2002), hypothesized to be implementedbi-
ologically by backpropagation-activated coupling (Larkum, 2013).

When feedforward inputs are taken to be driving and feed-
back to be modulatory, it can be said that feedback is gated by
feedforward, an effect noted by Larkum (2013). Roelfsema et al.
(2002) discuss the idea of gating in detail and use it to support a
model of figure-ground segregation. This gating allows networks
to integrate feedback without struggling to balance it against feed-
forward input or incurring spurious top-down-driven activation.
The physiological mechanics ofmodulation have been best studied
in relation to the thalamus, with a recent review by Varela (2014)
showing that modulatory input is extensive and heterogeneous
in regard to origin, neurotransmitter, and function. Brosch and
Neumann (2014b) discuss the evidence for the potential physio-
logical implementation of modulatory feedback while developing
a network-level circuit model for feedforward and feedback inter-
action.

2.1. Hebbian learning and modulatory connections

Traditional Hebbian based learning rules adapt weights based
on some function of the coincidental firing of pre and postsynaptic
neurons:

∆wij = f
(
wij, xi ∗ g

(
xj
))

. (3)

Hebbian learning in its most basic formulation has no mecha-
nism to bound weight growth, making it trivially unstable. For our
purposes we use a formulation of Hebbian learning that includes
a normalization component for stability, adapted from Stevens et
al. (2013):

∆wij =
wij + ηxixj∑
k(wkj + ηxkxj)

− wij (4)

where η is the learning rate. This weight update, and its nor-
malization, are applied independently to driving and modulatory
connections (i.e. all wij are the same connection type).

To better understand why such a Hebbian rule is not suitable
for learning modulatory connections, let us look at the dynamics
of a minimal network with two competitive neurons, illustrated
in Fig. 1. In this context, competitive means that the neurons are
connected such that more active neurons inhibit the activation of
those less active through lateral connections. The desired state of
this network is to have each competing neuron develop a strong
connection to a unique source of modulatory input. It should be
noted that this end state is considered desired due to its computa-
tional usefulness as a source of top-down information rather than
a direct extrapolation from biology.

We can imagine this network as, for example, a simple attention
network concerned with detecting apples or oranges in its input.
The modulatory connections act as attentional biases towards ei-
ther apples (M1) or oranges (M2). Though one fruit may be desired
over the other (e.g., searching for a specific fruit; M1 active versus
M2), the network has no control over what is present in its input.
Features related more to apples (N1) or to oranges (N2) may be
active regardless of the bias signal, even occurring simultaneously.
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Fig. 1. A simple network with modulatory connections. Neurons N1 and N2 receive
identical driving input and compete over input from two modulatory neurons, M1
andM2 . The colored connections show the desired state of the network, where each
competing neuron has learned a unique source of modulatory input. The dashed
connection represents lateral inhibition. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

This presents a problem to learning if a pure correlation based
rule, like Hebbian learning, is to be used, as the top-down bias is
equally correlated with each bottom-up driving input. Learning a
unique source of modulatory input is desirable because it allows
the attentional biases to affect only the features with which they
are semantically associated. With this in mind, let us analyze how
this Hebbian learning rule behaves in this network.

The activity of a neuron in the network can be expressed us-
ing (2) with a product for g() along with adding divisive inhibi-
tion (Carandini & Heeger, 2012) for competition (following Brosch
and Neumann, 2014b; Stevens et al., 2013) as well as a noise term:

xj =
Dj + DjMj + ϵ

1 + Inhibj
. (5)

We are interested in the dynamics of the network once it has
reached the desired state. Let us assume that the neurons have
each already learned associations to a unique modulatory input,
such that wM1N1 = wM2N2 = wmax and wM2N1 = wM1N2 = wmin.
Because the weights are normalized (see (4)), this configuration
implies that wmin + wmax = 1.

Without loss of generality, assume that M1 is highly active
while M2 is inactive, resulting in M1 sending strong feedback to
N1. Because of that feedback, N1 will become more active than N2
regardless of whether or not it was more active prior. N2 is then
inhibited by N1, but because it receives the same driving input, it
remains at a lower but non-zero activation. Formally:

xM1 > 0 and xN2 > 0

substituting this into (4) gives:

∆wM1N2 =
wmin + ηxM1xN2

wmin + wmax + ηxM1xN2 + 0
− wmin

=
wmin + ηxM1xN2

1 + ηxM1xN2

− wmin

(6)

letting α = ηxM1xN2 ,

∆wM1N2 =
wmin + α

1 + α
− wmin

=
wmin + α − wmin(1 + α)

1 + α

=
(1 − wmin)α

1 + α

. (7)

Because α > 0 and 1 > wmin ≥ 0, ∆wM1N2 > 0. Thus wM1N2 is
increasing and the system is not in a steady-state. This implies that
even if this Hebbian learning rule managed to reach the desired

state, it would not be in equilibrium and would be disrupted by
any input.

Compared to this simple example, the modulatory inputs in
more general networks will be populations of correlated neurons,
and the competing neurons may not all receive identical driving
input. Distinct populations are assumed to be weakly correlated
with each other (otherwise they would be the same population).
The core challenge of learning modulatory connections, however,
can be captured by this example using two neurons driven by iden-
tical input competing over two independent modulatory inputs.

Implementations of Hebbian learning that restrict weight
growth through means other than weight re-normalization, such
as the Generalized Hebbian Algorithm (Sanger, 1989), which is
closely related to Oja’s rule (Oja, 1982), or the BCM rule, which
uses an adaptive threshold based on expected average activation
to adjust the sign of the weight update, can also be shown to be
either unstable or not guaranteed to reach the desired state of
this network. We will revisit and analyze these two variations of
Hebbian learning in Appendix A after introducing conflict learning
in the next section.

3. Introducing conflict learning

Conflict learning was developed to address the demonstrated
instability of Hebbian learning rules in the context of modula-
tory connections, and can be intuitively described as a rule that
assigns a unique population of correlated modulatory inputs to
each neuron competing over those inputs. It is a general learning
rule composed of three conceptually simple, physiologically plau-
sible mechanisms: adjusting plasticity based on the activation of
strongly learned connections, using inhibition as an error signal to
explicitly unlearn connections, and exploiting several timescales.
These concepts are formalized by the following equations:

1. Spreading: Neurons are restricted to increasing weight on
only those connections that overlap with their existing pre-
ferred stimulus — thus causing a smooth spreading through
feature space. This is accomplished using a coefficient ap-
plied to theweight update, equal to themaximumactivation
amongst a neuron’s strongly learned connections:

κi = maxj|(wij(t)>
1
2 maxj wij(t))

xj (8)

where strongly learned connections are thosewhoseweight
exceeds half the strength of the largest weight amongst that
individual neuron’s connections.

2. Unlearning: Conflict learning treats inhibition as an error
signal indicating that the inhibited neuron has mistakenly
strengthened any currently active connections. A neuron
competing with its neighbors via inhibition exerts pressure
on those neurons to unlearn the connections driving its
activation, while receiving reciprocal pressure to unlearn
the connections that drive its neighbors. The amount of
inhibition a neuron receives is used to interpolate between
a positive and negative associative weight update:

δij = (1 − Inhib)ηxixjκi − Inhib ∗ βηxixj (9)

where β (set to 1 in all experiments) can be used to control
the rate of learning versus unlearning. The interpolation be-
tween learning and unlearning is irrespective of activation
strength and depends only upon the amount of inhibition
received.

3. Short and Long-Term (SLT): Connection weights are ad-
justed on a short-term and long-term timescale, striking a
balance between initial exploratory learning and long-term
exploitation of a learned pattern. The short-term weight wij
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adjusts rapidly to the current stimulus, but decays towards
and fluctuates around the more stable, slowly adapting
long-term weight wltm

ij . The only visible weight for a neuron
is its short-termweight; long-termweights are internal and
only observed via their effect on short-term weights. The
entire neuron weight update process has four steps:

(a) Compute short-term weight updates δij.
(b) Move long-termweights towards short-termweights:

wltm
ij (t + 1) = (1 − sltm)(wij(t) + δij) + sltmwltm

ij (t).
(10)

(c) Move short-termweights towards long-termweights:

wij(t + 1)
= (1 − sstm)(wij(t) + δij) + sstmwltm

ij (t + 1). (11)

(d) Normalize short- and long-term weights indepen-
dently.

where sltm and sstm are smoothing factors, described in Ap-
pendix B.2.2.

Conflict learning uses the same neuron activation principles as
GCAL (Stevens et al., 2013), described in Appendix B.1. It should be
noted that the above equations, although conceptually grounded,
are not directly fit to experimental data. The intent of this for-
mulation is to demonstrate that these concepts, when used to-
gether, provide a stable and plausible way to learn in networks
with modulatory connections that could exist in some fashion
in actual neurons. Although weight re-normalization (3d) is not
strictly biologically plausible (see Turrigiano and Nelson (2004) for
more viable alternatives), it ensures that weights are bounded in a
computationally amenable fashion, and furthermore is used in the
weight update equation for GCAL.

An in depth discussion of each component of conflict learning
is provided after the experiments, in Section 5, using the results to
address the components’ contributions towards learning and their
biological plausibility.

3.1. Conflict learning and modulatory connections

We can now revisit the simple network of Fig. 1 and see how
conflict learning resolves the observed stability problems of the
Hebbian learning rules. Recall the earlier argument (Section 2.1),
which showed that the analyzed Hebbian learning rules are not
stable in the desired state of the network. Specifically, we noted
that wM1N2 had a non-zero update. This is not the case when the
conflict learning rule is used instead.

Assuming the same weight configuration as for the Hebbian
rule, if M1 and N1 are active, xN1 > xN2 , and thus InhibN1 = 0
and InhibN2 = 1. Additionally, because N1 has an active strongly
learned connection, κN1 = 1 while N2 has no strongly learned
active connections, so κN2 = 0. For simplicity we use 1 and 0 for
the values of κ and Inhib, though the sign of the update remains the
same so long as (1− InhibN2 )κN2 > InhibN2β holds. Substituting all
of this into the short-term weight update (9) gives:

δM1N2 = (1 − (1))ηxM1xN2 (0) − (1) ∗ βηxM1xN2

= −βηxM1xN2 < 0
. (12)

Since wM1N2 already has a value of wmin, the effective negative
weight update applied will be 0, much like the effective positive
weight update for wM1N2 will be 0 because it is already at wmax.
Although N2 is still partially active, it is being inhibited by N1,
so it performs explicit unlearning towards M1 instead of positive
learning like in the Hebbian case. This same procedure can be

applied to the other three feedback connections in this example,
and in each case theweight updatewill be 0 or restricted to 0 by the
weight value range. Since all of the connection weights maintain
their values, the system is at equilibrium and can maintain this
steady state. Knowing that conflict learning is stable in the desired
state, we can consider its behavior in the other possible states
of the network and how the system transitions from an initial
unlearned state to the desired stable state.

The network has five functionally distinct states of interest as
seen in Fig. 2. (1) The initial state, where no connections have
become strongly learned (0SL). (2) A strongly learned connection
between one competitive neuron and one modulatory neuron
(1SL). Two strongly learned connections, either (3) one competitive
neuron with a strongly learned connection to both modulatory in-
puts (2SL-Split), (4) one modulatory neuron with strongly learned
connections between both competitive neurons (2SL-Shared), or
(5) unique strongly learned connections between modulatory and
competitive neurons (2SL-Desired).

We performed 30 repeated simulations of this simple network
to illustrate the trajectory taken by both the considered Hebbian
learning rule and conflict learning through the state space (see
Appendix C.1 for experimental procedures). Fig. 2 shows the out-
going transition probabilities as well as the percentage of time
spent in each state for both learning rules. This demonstrates that
the Hebbian learning rule, which cannot prevent both competitive
neurons from performing learning, immediately transitions into
the 2SL-Shared state before entering an oscillation between 2SL-
Shared, 2SL-Desired, and 1SL. The Hebbian rule cannot enter the
2SL-Split state because this state requires one neuron to perform
learning while the other does nothing. Conflict learning, as shown
in (12), is capable of performing positive learning on a competitive
neuron in isolation, due to its spreading and unlearning compo-
nents. The spreading component is chiefly responsible for prevent-
ing the system from entering the 2SL-Split state. The unlearning
and SLT components are similarly responsible for transitioning the
network out of the 2SL-Shared state, were it ever to be in that state.

A case by case analysis of the transitions made or avoided
by conflict learning can be found in Appendix A.1. Using the
nomenclature for the states introduced here, additional analysis
for simulating two additional variations of Hebbian learning, the
Generalized Hebbian and BCM learning rules, is provided in Ap-
pendices A.2 and A.3, respectively.

4. Network modeling results

In contrast to the simple network with two competitive neu-
rons, we now focus on large scale (several thousand neurons)
neural networks. We test conflict learning by learning a model
of border ownership as well as a model of orientation selectivity.
The border ownership network relies on modulatory feedback
for proper operation, whereas the orientation selective network
demonstrates that conflict learning is a general learning rule also
applicable in contexts lacking modulatory connections.

Conflict learning is compared against an implementation of
GCAL (Bednar (2012); Stevens et al. (2013); threshold adjustment
is implemented differently, see Appendix B.2.1 for full implemen-
tation details), a learning rule that uses purely Hebbian logic to
adjust its weights, increasing them when pre and postsynaptic
neurons are simultaneously active. Throughout the rest of this
work, we will often refer to GCAL as the ‘‘Hebbian learning rule’’
to emphasize the associative nature of its weight update. GCAL is
able to achieve biologically plausible results in applications such
as learning V1-like orientation selective maps by way of adjusting
neuron activation through contrast normalization and adaptive
thresholds (Stevens et al., 2013). For all experiments, both rules
use identical activation functions, activation thresholds, and con-
nection patterns, only differing in how their weights are adjusted.



36 W.S. Grant et al. / Neural Networks 88 (2017) 32–48

Fig. 2. State diagram for the simple network of Fig. 1. This diagram shows the progression of the network from an initial unlearned state (0SL) to the desired state of each
competing neuron learning a unique modulatory input (2SL-Desired). Outgoing transition probabilities as well as the percentage of time spent in each state are shown for
both (a) Hebbian learning and (b) conflict learning, based on simulation. Conflict learning enters and remains in the 2SL-Desired state, having no outgoing transitions from
2SL-Desired. By contrast, Hebbian learning oscillates between 2SL-Desired, 1SL, and 2SL-Shared. The components of conflict learning essential for specific transitions are
labeled. The spreading component prevents the network from transitioning from the 1SL to the 2SL-Split state. Although the simple network under conflict learning cannot
make the transition from 1SL to the 2SL-Shared state (dashed arrow), this transition is possible in general, and made unstable by the unlearning and SLT components.

Fig. 3. Border ownershipmodel architecture. (a) Diagram of full architecture. A V1-like layer consisting of Gabor filters processes the input at four orientations (0, 45, 90, and
135◦). Each orientation neuron provides input to two border ownership cells, which are connected laterally to six others (for the three remaining orientations) at the same
retinotopic location within a column in the Border Ownership layer. The grouping layer pools BO column activation, receiving input from all BO cells within all columns in
a local receptive field. The grouping layer additionally sends feedback to those same cells. (b) Diagram of a single BO column. Column contains eight competing neurons,
two for each orientation, and internally have lateral inhibitory connections between each neuron. They also receive feedback from a local receptive field in the grouping
layer. (c and d) The effects of an example stimulus (dotted square, actual experiment uses solid input) on BO columns (cylinders) and grouping cells (circles labeled G).
(c) Feedforward connections from the perspective of a BO column. The column sends feedforward input to all grouping cells in its receptive field, but only the grouping cell
receiving input frommultiple columns is highly active (indicated by increased size). (d) Feedback connections from the perspective of a grouping cell. Feedback is sent to all
BO columns within its receptive field, but only those along the boundary of the object will be highly active. (e) Detailed relationship of competition between two BO neurons
with the same orientation. Each BO neuron eventually learns to project to and receive feedback from a grouping cell on only one side of its orientation.

This section focuses on reporting the results of the experiments;
full technical details on the experimental procedures is provided in
Appendix C. Intuition and further analysis of how each component
of conflict learning gives rise to the results shown is provided after
the results in Section 5.

4.1. Border ownership

The primary benefit of conflict learning is its ability to learn
in networks with modulatory feedback, a feature that allows it to
be used to learn a model of border ownership. As border own-
ership (BO) is a less familiar and more complicated process than

orientation selectivity, it is worth briefly revisiting its putative ar-
chitecture (illustrated in Fig. 3, also see the experimental methods
in Appendix C.2) to fully appreciate the results. The model we
develop is a derivative of the feedback model of Craft et al. (2007),
which as mentioned in the introduction, is one of multiple models
capturing the observed behavior of actual border ownership neu-
rons.

BO neurons are identified not just by an orientation, but also by
a polarity, which indicates to which side of their orientation the
figure (or background) lies (Zhou et al., 2000). The key challenge is
to develop receptive fields such that each BO neuron responds to
a single orientation with a single polarity, with full coverage over
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Fig. 4. Learned Feedback Receptive Fields for BO Neurons. Receptive fields are shown for all eight neurons of a single representative BO column for both Hebbian and
conflict learning rules. Each row of the figure represents a different orientation. Each BO neuron is marked by a blue pixel, and green pixels show feedback connections from
grouping neurons, with brightness corresponding to weight strength. Polarity represents the average degree to which every pair of neurons in a network learns feedback
from grouping neurons on opposite sides, a necessary requirement for consistent border ownership assignment. The conflict learning network successfully learn pairs of
competing polarity BO neurons without any a priori information regarding BO or grouping cells spatial position. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

all orientations and polarities. In our model, this relies on learn-
ing feedforward and modulatory feedback connections between
columns of BO neurons and a layer of so-called grouping neu-
rons which pool over multiple BO columns, integrating non-local
information. Learning these connections is especially challenging
because the multiple BO neurons that exist for each orientation,
destined to develop a specific polarity, must learn consistent and
opposite connection patterns. The network accomplishes this task
purely through experience, with no a priori spatial information —
not only are feedforward and feedback weights initially uniform,
but BO neurons within a column must also learn to specialize
their inhibitory lateral connections, a necessary requirement for
competition. While many other models of border ownership re-
quire explicit features for junction (e.g., L, T) detection, our learned
model requires only edge information.

Note that not all components of this model have been directly
observed in the brain. Although BO neurons and their responses to
various stimuli have been recorded (Zhou et al., 2000), grouping
neurons have yet to be explicitly discovered (Craft et al., 2007).
Grouping neurons can thus be seen as a computational general-
ization of a more complicated grouping process, for which there
is mounting evidence (e.g., Martin and von der Heydt, 2015;
Wagatsuma, von der Heydt and Niebur, 2016). This model is
nonetheless a good approximation of the current understanding of
border ownership circuits. Additionally, the structure of the border
ownership network fits within a standardmodel of computation in
visual cortex: it consists of competition followed by grouping, with
increasing receptive field size. This is reminiscent of alternating
simple and complex cells (Wiesel et al., 1963), which have formed
the basis of many models of visual cortex (e.g., Fukushima, 1980;
Serre, Wolf and Poggio, 2005). The connection from edge respon-
sive neurons (input in the model) to border ownership neurons is
a simplification for the model; we imagine a more realistic circuit
would have edge or contour responsive neurons directly compete
with each other over border ownership polarity.

4.1.1. Results
The learned feedback receptive fields for a representative BO

column taken from fully trained networks are shown in Fig. 4, and
the feedforward and lateral receptive fields are shown in Fig. 5
(the full details of training and other experimental procedures can
be found in Appendix C.2). Under conflict learning, each neuron
within a BO column learns to associate with grouping feedback
occurring on only one side of its orientation, with all orientations
and polarities represented. Additionally, the two BO neurons as-
sociated with each orientation learn to become competitive with
each other and learn opposite sides of feedback. This occurs be-
cause the opposite sides of grouping feedback come from distinct
populations of grouping neurons, and conflict learning, as was
shown in Section 3.1, strives to associate one competing neuron
to each population of modulatory input. The Hebbian learning
based rule, however, is unable to develop this partitioning of
modulatory feedback amongst competing neurons. The two BO
neurons for each orientation learn the same receptive fields as
each other, causing them to be unable to reliably associate with
objects occurring on a particular side of their orientation. When a
stimulus is presented to these neurons, the winner will be chosen
randomly instead of being chosen based on any border ownership
information.

Along with the sampled receptive fields, the average polarity
score for BO neurons of each orientation is shown. This score rep-
resents the degree to which a competing pair of BO neurons learns
feedback on opposite sides (see Appendix C.2). These averaged
scores, computed from all pairs of BO neurons, demonstrate that
the pictured examples are representative of the whole network.

Fig. 6 shows the results of running the trained conflict learning
network on common stimuli from the border ownership literature.
As the network was trained on single presentations of squares
(see Appendix C.2), every shape presented here is one to which
the network has never been exposed. The network in its current
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Fig. 5. Learned feedforward and lateral receptive fields for BO and grouping neurons. (a) Feedforward receptive fields for a grouping neuron, shown for both learning rules.
Successful learning entails a ring-like pattern of strong connectivity. (b) As in Fig. 5, the results are organized by the orientation of the BO neuron. For each orientation, the
learned outgoing feedforward projections are displayed first followed by a radial graph of the corresponding learned lateral inhibition strength for the same neurons. Lateral
connections project to other neurons within the BO column, colored by the preferred polarity of the inhibited neuron. For example, a red polarity corresponds to inhibition
towards a horizontal selective BO neuron with a preference for objects in the lower half of its receptive field. Under conflict learning, BO neurons learn to primarily inhibit
the other neuron sharing their orientation, as well as applying a small amount of inhibition to immediately adjacent orientations with overlapping polarities. This pattern of
inhibition not only ensures the creation of competing pairs of BO neurons, but also a winner-take-all like behavior amongst all orientations in a column. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

implementation has limited scale invariance, demonstrated by the
weak response at the vertices of the triangle input (Fig. 6e). The
responses to the tiled squares (Fig. 6a), the C pattern (Fig. 6d),
and the rounded squares (Fig. 6c) are especially interesting be-
cause local information may favor a globally incorrect polarity
assignment. The network, in all cases, is able to use feedback to
correct ambiguous feedforward input in order to reach the correct
assignment of border ownership. To our knowledge, this is the first
time a border ownership network has been learned, enabled by the
new conflict learning rule.

Finally, we investigate the contribution of each component of
conflict learning as it applies to learning the modulatory feedback
connections in the border ownership network. Fig. 7 shows recep-
tive fields taken from a vertically oriented BO pair for all variations
of rules tested. The receptive fields were chosen to be exemplars
of common failures (if they existed) for the various configurations.
Histograms of polarity scores over all vertical BO neurons show
typical network-level results. In Fig. 7i we compare the median
score across all configurations, showing that conflict learning re-
ceives benefit from the amalgamation of all of its components.
The results demonstrate that there is a non-linear relationship
between the introduction of a rule component and its effect on
the polarity score. However, we can still extract some general
conclusions with respect to the polarity score: while unlearning
on its own is very influential (C), the unlearning and spreading
components complement each other and together (G) account for
most of the improvement over Hebbian (A). The SLT component,
by slowly transitioning the network to reflect long-term statistics,
appears to have the effect of eliminating outliers and reducing the
variance of the distributions (e.g., histograms B versus F, C versus E,

and G versus H). Additional discussion on the contribution of each
component follows in the discussion (Section 5).

4.2. Orientation selectivity

Wenext apply conflict learning to a problem that can be seen as
a baseline for self-organizing networks of the brain — orientation
selectivity. The network, seen in Fig. 8, consists of an input layer,
a center–surround layer, and an output layer, like that used to
demonstrate the properties of GCAL (Stevens et al., 2013). The
connections between the input layer and the center–surround
layer are fixed; all learning in this network takes place between
the center–surroundneurons and the output neurons. Thenetwork
has no modulatory connections, such that the activation equation
for neurons reduces to (1). The desired goal of learning in this net-
work is to develop output neurons which are orientation selective
over all possible input orientations. Detailed information on the
network architecture, training, and experimental procedures are
provided in Appendix C.3.

4.2.1. Results
The primary goal of this experiment is to demonstrate that

the conflict learning rule, even when applied to networks lacking
modulatory feedback and compared against a learning rule tailored
for such an environment, produces similar biologically consistent
output.

Fig. 9a shows the output neurons, for both learning rules,
colorized by orientation selectivity after training on oriented bar
input. The learned maps show an arrangement that mimics phys-
iological maps of orientation selectivity in mammalian cortex



W.S. Grant et al. / Neural Networks 88 (2017) 32–48 39

Fig. 6. Border Ownership Assignments by a Network Trainedwith Conflict Learning. Black lines represent the stimulus and colored arrows represent BO assignments at those
locations. Each BO neuron is assigned a direction vector based on its learned polarity. Assignments are made by summing these direction vectors, weighted by activation.
All results are taken from a fully learned network naive to these example inputs. The network has complete position and orientation invariance. (a) The progression of BO
assignment over time. Feedback begins to arrive in iteration 3. (b–e) Settled (iteration 9) assignments for various stimuli. (c and d) These shapes have locally ambiguous
border ownership assignments that are resolved through modulatory feedback from the grouping neurons. (e) The network is not fully scale invariant because the BO to
grouping neuron connections exist only at a single radius, resulting in the corners being weakly activated. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

(e.g., pinwheels, which are singularities where orientation pref-
erence increases clockwise or counterclockwise; see Chapman,
Stryker and Bonhoeffer (1996)). To quantify this subjective sim-
ilarity, the pinwheel density metric of Stevens et al. (2013) is
computed for the maps. A pinwheel density of π pinwheels per
unit hypercolumn area (see Appendix C.3) has been found to be
consistent across a number ofmammalian species (e.g., tree shrew,
galago, cat, and ferret, see: Kaschube, Schnabel, Löwel, Coppola,
White et al., 2010; Keil et al., 2012), and may be a fundamental
constant of map organization (Stevens et al., 2013). Both learning
rules result in pinwheel densities within 3% of π .

In testing conflict learning, we also observed noteworthy be-
havior when varying amounts of noise were injected into the
input of the system. Fig. 9 also shows the results of simulating
the orientation selective network for both learning rules under
varying amounts of Gaussian noise applied to the input neurons
(by adjusting their activation noise term ϵ; see Appendix C.3 for
details). Fig. 9b shows an increased resistance to the effects of noise
in the conflict learning results. Hebbian learningmore quickly suc-
cumbs to a significant drop in the quality of learned receptive fields
compared to conflict learning, which only begins to be affected
by noise at very high standard deviations. The scoring metric for
selectivity is based onhowwell a receptive field can be represented
by any possible Gabor function for all neurons in the network (Ol-
shausen & Field, 1997). Real neurons are subject to many more
sources of noise and variability than is present in ourmodeling, and
handling that noise is a fundamental requirement for the nervous
system (Faisal, Selen & Wolpert, 2008). We discuss reasons why
conflict learning is less affected by noise in the discussion section.

Using the same stability metric as Stevens et al. (2013), we
compare how similar learned receptive fields are at any given time
to the final state of the network (Fig. 9c). Conflict learning reaches a
higher plateau of stability at earlier iterations compared toHebbian
learning. As stability may be important for the development of

downstream brain regions (Stevens et al., 2013), earlier stability
could decrease the delay between a reliable orientation selective
representation and further visual processing. Additional experi-
ments comparing stability across a greater number of iterations
did not show any appreciable difference in the time it took to
reach stability or the final values. When looking at stability over
increasing levels of noise, we again see a resistance to noise in
conflict learning that only gives way at high standard deviations.

5. Discussion

Typically a learning rule is devised with a specific activation
function in mind, so it may not seem surprising that the Hebbian
learning rule we compare against was unable to learn a model of
border ownership dependent on modulatory connections. How-
ever, the orientation selective network, in which there is no source
of modulatory input, served as a comparison of the two learning
rules in a setting where the activation function was as expected by
the Hebbian rule, yet was still compatible with conflict learning,
which was designed around the presence of modulatory input. In
Section 2.1, Appendices A.2 and A.3, we demonstrated that unlike
conflict learning, for even a minimal network with modulatory
connections, neither the normalized Hebbian rule, the Generalized
Hebbian Algorithm, nor BCM is capable of stably learning modula-
tory weights.

We suggest that this is because all of these variants of Hebbian
learning are based on a core principle of associative learning,which
alone seems incompatible with modulatory input. Our computa-
tional experiments suggest that a synapse does not have enough
information as to how a weight should be adjusted using only
incoming activation compared with the output activation of the
cell. Even learning rules like BCM, which control plasticity via an
adaptive threshold based on expected activation, do not solve the
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Fig. 7. Contribution of rule components. (a–h) Representative receptive fields from a vertical BO neuron pair taken from various configurations of conflict learning as well
as Hebbian learning. Histograms depict the polarity scores of all vertical BO neurons for a given configuration, with the median denoted by a red line. Configurations are:
(a) Hebbian, (b) spreading component only, (c) unlearning component only, (d) SLT component only, (e) conflict learning without spreading, (f) conflict learning without
unlearning, (g) conflict learning without SLT, (h) full conflict learning. (i) Median scores for (a–h) with error bars indicating 95th percentile cutoffs. Conflict learning (h) is
significantly higher with respect to all other configurations (a–g). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

problem, because they do not draw on any additional sources of
information. We hypothesize that additional control signals are
required to support modulatory connections, where the incoming
activation may be coincident with the firing of the cell, but not
relevant. Conflict learning uses two additional sources of informa-
tion for these signals: the activation of strongly learned synapses
within the cell, and inhibitory input driven by competing neurons.
Strongly learned connections identify relevant firing, while inhibi-
tion partitions firing by indicating that a neuron is losing a local
competition amongst connected neurons.

We demonstrated through computationalmodels that using in-
hibition as a control signal results in a partitioning of correlated fir-
ing in modulatory input amongst competing neurons. Our results
(e.g., Fig. 7) suggest that lowering activation through inhibition

is insufficient to prevent unwanted learning from taking place —
inhibitionmust actively drive the partitioning of modulatory input
through unlearning.

Additionally, we also demonstrated that restricting learning
based on the activation of strongly learned connections results in
a successful clustering of correlated firing amongst modulatory
input to an individual neuron. This behavior is complementary to
the partitioning performed by the inhibitory control signal, result-
ing in neurons which compete over correlated firing of incoming
connections, regardless of whether they are sourced from driving
or modulatory input.

These two components of conflict learning, togetherwith short-
and long-term learning, will be discussed and related to experi-
ment in detail in the following section of the discussion.
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Fig. 8. V1-like feedforward network. Center–surround layers perform a difference-
of-Gaussian like computation either preferring the center (On–Off) or the surround
(Off–On). The orientation selective layer receives input from both On–Off and Off–
On neurons and forms lateral connections within some radius. The connections
between center–surround layers and the orientation selective layer are learned.
Figure depicts actual model responses from a learned network.

Although it may be the case that a different learning rule could
govern driving versus modulatory connections, we think there is
some elegance in a single set of principles being compatible with
both types of excitatory connections. Conflict learning does not
directly address the plasticity of inhibitory connections, which
likely do operate with a different set of mechanisms. In fact, con-
flict learning cannot be used for learning inhibitory connections
because of its reliance on inhibition as a control signal (see Ap-
pendix B.2.2).

5.1. Analyzing the rule

The results demonstrate that for certain patterns of connections
and firing, traditional Hebbian learning mechanisms are ill-suited
for adapting synaptic weights. This was seen directly in learning a
model of border ownership, where only conflict learning was able
to properly learn the requiredmodulatory feedback connections to
perform the computation correctly. Additionally, conflict learning
operates in a biologically consistent manner even in situations
lacking these types of connections, with the pinwheel density of
the learned orientation selective networkmatching biology aswell
as other learning rules. The orientation selective network experi-
ments also show interesting properties with regard to increased
stability and robustness to noise. All of these results are a product
of the three complementary components that make up conflict
learning, introduced in Section 3, which we now discuss in detail.

5.1.1. First component — spreading
The first component of conflict learning states that neurons can-

not strengthen their connectionweights unless an already strongly
learned connection is currently active. In the border ownership
experiments, the spreading component helps prevent neurons of a
border ownership pair from associating with grouping neurons on
both sides of their oriented edge. While populations of grouping
neurons on both sides are individually co-active with a BO neuron,
there is little to no correlation between the firing of the distant
populations themselves. A Hebbian neuron cannot detect this dis-
tinction, whereas a conflict learning neuron can. This is illustrated
most clearly in the learned receptive fields of the border ownership
experiment, seen in Fig. 4, as well as by the simple network of
Section 3.1.

Spreading is similar to the concept of associative LTP (long-
term potentiation), where the strong firing of a learned synapse
supports the strengthening of a weaker one (Linden & Connor,

1995; Shouval, Samuel & Wittenberg, 2010). There has been dis-
cussion on the spatial requirements (Engert & Bonhoeffer, 1997)
as well as temporal constraints (Levy & Steward, 1983) of synapses
involved in associative LTP, suggesting that it is both a spatially and
a temporally local process. Since we do not model the physics of
our synapses, we use only a temporal constraint. This means that
once a neuron has begun to associate with certain connections,
any further connections it strengthens must co-occur with the
existing ones, which forces connectionweights to smoothly spread
outward through feature space from an initially learned pattern.
In situations where initial conditions allow competing neurons to
learn the same set of connections (analogous to the 2SL-Shared
state described in Section 3.1), the spreading component, if used
without the unlearning component, would make it impossible for
the neurons to disentangle their learned features. In Fig. 7b, the
two BO neurons are correctly learning on only one side of the
boundary, but have no mechanism to prevent them from learning
and spreading to the same features. This effect is exacerbatedwhen
combined solely with the long-term statistics used by the SLT
component (Fig. 7f), which compounds the mistaken initialization
over time.

Our method of labeling connections within a single neuron as
strongly learned (8) is a simple abstraction intended to capture
the behavior, but not the exact biological implementation, of such
a mechanism. It has been demonstrated that the soma can back-
propagate signals to its dendrites for the purpose of manipulat-
ing thresholds (e.g., Larkum, 2013) and that individual dendrites
display a wide array of active properties such that one synapse
can affect the behavior of many others (Major, Larkum & Schiller,
2013). Such mechanisms could also be responsible for the manip-
ulation of a learning threshold affecting synaptic plasticity. There-
fore the spreading component, in a real neuron, would likely be
implemented through a variety of adaptable thresholds as opposed
to the simple activation strength based product that we employ.

In the context of modulatory connections, the spreading com-
ponent is essential to enabling a neuron to identify a population
hidden within the many correlated activations of its inputs. In
networks withoutmodulatory feedback, the spreading component
gives increased resistance to the effects of noise (Fig. 9) by lessen-
ing the impact of spurious activation as it is unlikely to consistently
coincide with the strongly learned connections.

5.1.2. Second component — unlearning
In conflict learning, inhibition, in addition to reducing the acti-

vation of a neuron, causes the neuron to directly unlearn its active
connections. This is in contrast to a typical Hebbian learning rule
which still allows positive learning to take place, dependent on
the activation. It is also distinct from examples of explicit synaptic
weakening in BCM-like rules or STDP, which use activation or
timing to control the unlearning. In conflict learning, a neuron
can be strongly active but still undergo unlearning if its inhibitory
input is high enough. In the border ownership experiments, inhi-
bition primarily occurs between pairs of border ownership cells
competing over feedback from grouping cells on either side of
their local oriented boundary. Unlearning helps correct mistaken
assignments within a BO pair, ultimately resulting in a near even
split along the polarity boundary (Fig. 4). Mistaken activation close
to the boundary will be frequently contested and thus unlearned
by both cells in the pair.

There is significant evidence of complex interactions between
inhibition and excitation in the brain. Wang and Maffei (2014)
found that inhibition controlled the sign of excitatory plasticity in
rat visual cortex, which is remarkably similar to our unlearning
component, via crosstalk between inhibitory and excitatory signal-
ing. Fino, Paille, Cui, Morera-Herreras, Deniau et al. (2010) found
that the presence or lack of inhibition could reverse the classic
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Fig. 9. Orientation selectivity results. (a) Orientation maps for both learning rules, colored according to the preferred orientation of each neuron. Pinwheel locations are
determined algorithmically and denoted by white circles. Both learning rules result in a biologically plausible pinwheel density within 3% of π . (b) Average selectivity for
both learning rules while training with input data corrupted with increasing amounts of Gaussian noise. Selectivity is based on how well a neuron’s receptive field can be
modeled by any Gabor function. (c) Stability for both learning rules as a function of learning iteration for a range of input noise values. Stability is based on the correlation
between the current and final (iteration 20,000) maps. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

STDPwindow, causing either LTP or LTD (long-term depression) to
occur. Additionally, in a recent review on inhibitory plasticity, Vo-
gels et al. (2013) emphasize the increasing evidence that excitation
and inhibition are deeply intertwined, with inhibition potentially
providing a mechanism that allows selective learning to occur.

Unlearning through inhibition allows one neuron to force an-
other to unlearn common connections between the two, causing
the inhibited neuron to return to an initial unlearned state, at
which point it is possible to learn a different population of input.
This was first seen in analysis of the simple network (Appendix
A.1), where the unlearning component is the primary mechanism
by which a 2SL-Shared state is made unstable. A consequence of
this component is that when a neuron competes for features it
actively weakens competitors, leading to a greater separation in
feature space (weight values) between the neurons (Fig. 7c). When
combined with the spreading component in competitive groups
of neurons (such as the mutually inhibitory groups of neurons
in a column), neurons learn in a smooth yet competitive fashion
(Figs. 7g and 7h). The neurons identify populations in the feature
space and slowly expand their receptive fields until they have
no more correlated connections to learn or they are faced with
competition from another neuron. In the orientation selectivity
experiment, unlearning enforces a greater difference in connection
weight strength between the features learned by each neuron,
meaning responses are more stable and higher levels of noise can
be introduced without confusing the input pattern.

5.1.3. Third component — short and long term
In conflict learning, all neurons have an externally visible short-

term weight as well as an internal long-term weight. The two
weights constantly pull on each other until they settle to the same
value, with the rates at which they move towards each other con-
trolling how quickly a neuron adapts its weights and how steadfast

it becomes in its decisions. This short- and long-term learning,
or SLT, allows neurons to quickly associate with populations in
their input while remaining sensitive to long-term trends. In the
border ownership network, this ability to be initially flexible but
stable in the long run leads to more neurons learning significantly
better separation along BO neuron boundaries (Fig. 7i). We found
SLT to be especially beneficial for feedforward connections, where
capturing long-term statistics is useful (e.g., BO feedforward con-
nections). SLT, used alone, works essentially like Hebbian learning
(Fig. 7d), but when combined with the other two portions of the
rule, leads to a significant improvement and consistency of learned
receptive fields (Fig. 7h). This increased consistency can also be
seen in Fig. 7e compared to Fig. 7c, which differs only by the
inclusion of SLT.

The physiological underpinnings of multi-timescale learning
are notably discussed by Zucker andRegehr (2002),who review the
dynamics of short-term learning, Abbott and Nelson (2000), who
review synaptic redistribution and the interplay between short-
and long-term potentiation, and Grossberg (2013), throughout his
extensive development of adaptive resonance theory.

5.2. Implications for plasticity

Our results, accompanied by physiological evidence for the
mechanisms we have described, suggest that similar mechanisms
are likely used in the brain for the learning of modulatory connec-
tions. By acting as an error signal to instigate unlearning, inhibi-
tion can dynamically alter plasticity and encourage diversification
amongst competing neurons, and by requiring strongly learned
connections to be active for learning, spreading allows for the
detection of correlated clusters of activation within non-driving
inputs. Our model of primary visual cortex shows that such mech-
anisms do not interfere with learning in more traditional contexts
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lacking modulation. We therefore predict that neurons likely have
the key mechanisms of conflict learning: the ability to adjust their
plasticity based on a concept of synaptic strength, and the usage of
inhibition as a control signal for unlearning. These concepts could
be tested in actual neurons with a series of simple experiments on
single neurons. For all of these proposed experiments, we assume
that a single neuron has learned a preferred stimulus such that it
has increased synaptic strength towards the inputs associatedwith
that stimulus. Inhibition is assumed to originate through interac-
tion with other neurons (e.g., inhibitory interneurons Markram,
Toledo-Rodriguez, Wang, Gupta, Silberberg et al., 2004). Conflict
learning predicts that inhibition has additional effects on plasticity
if its presence lowers the activation without completely suppress-
ing its firing.

If inhibition serves as a signal that unlearning should occur, the
strength of the synapses associated with the learned input should
decrease when inhibition is applied simultaneously to the driving
input. As noted in Section 5.1.2, there is existing evidence that this
is indeed a potential role for inhibition. A classical Hebbian theory,
such as any of the rules discussed in Section 2.1, or STDP, would
predict no decrease in synaptic strength in such a situation.

To establish the existence of a behavior similar to the spreading
component, a new, independent source of input could be applied
while artificially activating the neuron. Conflict learning predicts
that the lack of activation of the already learned input will prevent
or significantly impair the learning of the novel input. Existing
Hebbian rules predict that synaptic strength towards thenew input
should increase unimpeded.

Finally, the interaction of these two components could be tested
in a combination of the two experiments.While driving the neuron
via its preferred stimulus and supplying a sufficient source of
inhibition, additionally apply a new, independent source of input.
In this situation, conflict learning predicts that the neuron will not
increase synaptic strength towards the novel input, even though it
is presented simultaneously to the learned input. This prediction
arises from the proposed role of inhibition, which in this situation
would cause all active inputs to the neuron to have their synaptic
strength decreased. A classical Hebbian rule here would predict
that the synaptic strength to the novel input would increase.

Furthermore, if inhibition is indeed a necessary component
for learning modulatory connections, it follows that modulatory
connections (and thus amajority of feedback)must develop toma-
turity alongside inhibition. The balance between excitation and in-
hibition is a drawn-out process controlled by experience (Froemke,
2015), and a potential additional reason for this delayed matura-
tion could be explained by a dependence between inhibition and
feedback.

5.3. Learning border ownership

As mentioned in 4.1, the border ownership network architec-
turewe present is not fully drawn fromphysiological observations.
Our results do not definitively rule out that a Hebbian based rule,
under some alternative network configuration, could reproduce
the behavior of border ownership. However, given the prevailing
theory that the computation of border ownership is dependent
upon feedback (Kogo & van Ee, 2014), along with the argument
presented in Section 2 demonstrating Hebbian learning’s incom-
patibility with modulatory connections, it seems unlikely that a
Hebbian learning rule could learn a feedback-based border own-
ership network. Additionally, through our experiences developing
conflict learning, we believe that any network configuration com-
patible with purely Hebbian learning would be overwhelmingly
complex and likely not support stimulus driven learning.

As briefly discussed in 4.1, the network architecture used here,
although only applied to border ownership, is not specifically tied
to computing this one feature. The network has no a priori infor-
mation about borders or specific relationships between neurons.
Border ownership is instead an emergent property of the network
given competition over orientation responses coupled with higher
level grouping. A deepened hierarchy composed of the same type
of competition and grouping may potentially lead to the compu-
tation of higher level features more akin to proto-objects (for a
discussion of proto-objects, see von der Heydt, 2015), and is a
target for future work.

6. Conclusion

In developing conflict learning, we have shown how existing
mechanisms already found in the brain can interact together to
provide substantial benefits in learning and allow the learning
of modulatory connections. We have demonstrated the effective-
ness of conflict learning by showing, for the first time, how a
model of border ownership might be learned through experience.
This new rule could additionally be beneficial for modeling many
brain functions, including figure-ground segmentation, top-down
attention, and object recognition, which may all benefit from top-
down modulation. As we uncover more details of the mechanisms
governing neural plasticity, models capable of incorporating this
new information, such as conflict learning, become increasingly
necessary.
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Appendix A. Stability of modulatory connections

This section details the possible transitions that occur in the
network of Fig. 1 using various learning rules. The nomenclature
used for the various states of the network is the same as introduced
in Section 3.1.

A.1. Conflict learning transitions

Traditionally this type of stability analysis is performed by
analyzing the properties of the Jacobian. The discontinuous na-
ture of the spreading component (8) of conflict learning, which is
caused by the categorization of neurons as strongly learned or not,
precludes writing a single equation for the individual components
of the Jacobian. Given the analyzed network, this would mean
creating a distinct Jacobian for each state and categorization of
neurons, which would only serve to complicate the presented
analysis.We instead continue in the same fashion as in Sections 2.1
and 3.1.

Transitions out of 0SL.
When the network is in its initial unlearned state 0SL, there is no

association between modulatory input and competitive neurons,
so regardless of which neuron wins or which modulatory input
is active, the update occurs in the same fashion. Without loss of
generality, let N1 and M1 be the active neurons. The updates from
M1 are then:

δM1N1 = ηxM1xN1 > 0 (A.1)
δM1N2 = −βηxM1xN2 < 0 (A.2)
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which transitions N1 into being strongly learned towardsM1. Con-
nection weights fromM2 are unchanged becauseM2 is inactive.

Transitions out of 1SL.
Once in a state where one of the competing neurons has a

strongly learned connection, there are four possible scenarios of
activation. We will again assume, without loss of generality, that
N1 has strongly learned connections from M1, and that N2 has no
strongly learned connections.

• N1 and M1 active: δM1N1 is the only positive update, so
the weight changes proceed as they did under the same
conditions in the initial state, keeping the network in the 1SL
state.

• N1 and M2 active: Because N1 is strongly learned towards
M1, κN1 will be 0 asM1 is inactive. Thus none of N1’s weights
can change and the network remains in the same state, the
spreading component preventing the network from transi-
tioning into the 2SL-Split state. N2 receives inhibition from
N1, causing it to unlearn towards the active modulatory
neuron M2, which results in no effective change as wM2N2 is
already wmin.

• N2 andM1 active: In this simple example, the existing feed-
back from the strongly learned connection between N1 and
M1 overrides the driving input to N2, so N1 becomes active
and N2 inactive, which we have already seen results in no
change to the state.

• N2 and M2 active: N2 has no strongly learned connections,
thus κN2 = 1 and N2 can learn towards the active modula-
tory inputM2. N2 becomes strongly learned towardsM2 and
the network enters the 2SL-Desired state.

In more complex networks, it is possible to transition from the
1SL state to the 2SL-Shared state. In these networks, in place of a
single neuron, modulatory input comes from correlated popula-
tions of neurons. Depending on the activation of the population,
a particular competitive neuron may only be able to learn a subset
of connections to a populationwhile one of its competitors learns a
different subset. Alternatively, theremay be overlap between pop-
ulations of modulatory inputs, meaning that some of the neurons
that are learned belong to both populations, resulting in a sharing
of strongly learned connections.

Transitions out of 2SL-shared.
When a network is in this state, more than one competitive

neuron has a strongly learned connection to the same modulatory
population. In this case, the unlearning component in conjunction
with the SLT component work to make this an unstable state and
move the network back to 1SL: the less active competitive neuron
will actively unlearn its connection to the active population, while
the more active one strengthens its connection. Over time this
will result in one of the neurons losing its strongly learned status
to that population, allowing it to return to an initial unlearned
state. The SLT component allows initial changes to happen quickly
and creates momentum via long-term statistics once one neuron
begins to consistently win versus the other.

Consider the behavior of the simple network of Fig. 1 if placed
into the 2SL-Shared state: because N1 and N2 both have strongly
learned connections to M1, the following applies identically to
either N1 or N2:

• If M1 becomes active, either N1 or N2 will be more active,
depending on noise. The winner will update its weights
further towards M1 while the loser will unlearn its weights
towardsM1. IfN1 were thewinner, this differential inweight
value will cause N1 to win versus N2 in future cases of M1

being active, maintaining these weight updates until the
system returns to the 1SL state:

δM1N1 = (1 − (0))ηxM1xN1 (1) − (0) ∗ βηxM1xN1

= ηxM1xN1 > 0
(A.3)

δM1N2 = (1 − (1))ηxM1xN2 (1) − (1) ∗ βηxM1xN2

= −βηxM1xN2 < 0.
(A.4)

• IfM2 becomes active, neitherN1 norN2 will performpositive
learning because they are strongly learned towards M1 and
κN1 = κN2 = 0.

A.2. Generalized Hebbian algorithm

The Generalized Hebbian Algorithm (GHA) can be shown to be
unstable for the network of Fig. 1 using the same procedure as was
used for the normalization based Hebbian learning rule (4). GHA
adjusts weights as follows:

∆wij = η

(
xjxi − xj

j∑
k=1

wikxk

)
. (A.5)

Here we assume most of the same network assumptions as
2.1. This means the network is already in the desired state and
wM1N1 = wM2N2 = wmax and wM2N1 = wM1N2 = wmin. However,
we assume M2 and N2 will be highly active instead of M1 and N1.
Now, replacing (4) with (A.5) yields:

∆wM2N1 = η
(
xN1xM2 − xN1

(
wminxN1

))
. (A.6)

As we are only interested in the sign of ∆wM2N1 , and because
η > 0 and xN1 > 0, we have:

sgn
(
∆wM2N1

)
= sgn

(
η
(
xN1xM2 − xN1

(
wminxN1

)))
= sgn

(
xM2 − wminxN1

)
.

(A.7)

Because M2 is highly active while N1 is being inhibited, xM2 > xN1 .
Considering this along with the fact that 1 > wmin ≥ 0, it must
be true that ∆wM2N1 > 0, indicating that the system is not in a
steady-state.

Results for simulating this learning rule for the network of
Fig. 1 can be seen in Fig. A.10a. The simulation confirms that 2SL-
Desired is not a stable state for this learning rule and shows that
the network enters an oscillation between multiple states.

A.3. BCM

We can also demonstrate that the BCM rule, another variant of
Hebbian learning, is not guaranteed to converge to thedesired state
of the network of Fig. 1. BCM uses a Hebbian update modulated by
a dynamic threshold to control explicit synaptic weakening:

∆wij = ηxixj
(
xj − θj

)
(A.8)

where θj is the expected value (long-term average) of x2j .
The value of θj directly controls whether this rule is stable in

the desired state of the simple network. Let us assume that the
network is in the desired state 2SL-Desired, and M1 is the current
active modulatory neuron, implying xN1 = xactive, xN2 = xinhibited,
and xactive > xinhibited. The sign of each weight update is then
dependent solely on the (xj − θj) term of (A.8). For the system to
remain in the stable state, ∆wM1N1 ≥ 0 and ∆wM1N2 ≤ 0 must
hold, as these updates maintain the same assignment of strongly
learned connections. The system must simultaneously satisfy the
case when M2 is the active modulatory neuron, which sets up a
similar set of requirements: ∆wM1N1 ≤ 0 and ∆wM1N2 ≥ 0.
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Fig. A.10. State diagram for the simple network of Fig. 1 for the Generalized
Hebbian Algorithm (Sanger’s Rule) and BCM. This diagram shows the progression
of the network from an initial unlearned state (0SL) to the desired state of each
competing neuron learning a unique modulatory input (2SL-Desired), much like
Fig. 2 did for a normalized Hebbian learning rule and conflict learning. Outgoing
transition probabilities as well as the percentage of time spent in each state are
shown for both (a) the Generalized Hebbian Algorithm (GHA) and (b) BCM, based
on simulation. States which were not reached by a learning rule have been omitted
for clarity. The 3SL state corresponds to exactly three strongly learned connections
between modulatory (M1 and M2 in Fig. 1) and competitive neurons (N1 and N2),
regardless of which set of three connections is strongly learned. The 3SL state was
not reachable by either rule shown in Fig. 2, either due to weight normalization
or various components of conflict learning. Although GHA can spend time in the
2SL-Desired state, it is not stable in that configuration and oscillates between four
different states. BCM is stable in the 2SL-Desired state, but is also stable in the
2SL-Split state. Using BCM, the transition out of 1SL is essentially random, and the
system cannot reliably end up in the desired state.

Arranging all requirements and substituting xactive and xinhibited
where appropriate, we get:

xN1 = xactive ≥ θN1
xN2 = xinhibited ≤ θN2
xN1 = xinhibited ≤ θN1
xN2 = xactive ≥ θN2

(A.9)

which is satisfied if and only if xactive > θ > xinhibited.
However, the BCM rule has another stable state which it can

reach, 2SL-Split, which is the state where both modulatory neu-
rons are associated with a single competitive neuron. Once in the
2SL-Split state, the competitive neuron with two strongly learned
connectionswill always activatemore strongly than and inhibit the
other because it is receiving additional feedback input regardless of
which modulatory neuron is active.

Let us investigate the dynamics of the network in the 1SL state,
before it reaches either 2SL-Split or 2SL-Desired. Without loss of
generality, assume N1 has strongly learned connections from M1,
and that N2 has no strongly learned connections. Consider what
happens when the threshold, θ , falls within the required bounds
for stability in 2SL-Desired, such that the winning neuron with
activation xactive will do positive learning, and the inhibited neuron
with activation xinhibited will do negative learning. The interesting
case is what happens when M2 is the active modulatory neuron,
which has no existing strongly learned connections (i.e. wM2N1 =

wM2N2 = wmin). N1 and N2 thus receive identical input, so the
winner is decided by noise. Due to the value of the threshold,
the winner will increase its weight towards M2, and the loser will
decrease its weight towards M2. If the winner happens to be N1,
the systemwill transition into 2SL-Split. IfN2 wins, the systemwill
transition to 2SL-Desired.

This result can be seen in the simulation results presented in
Fig. A.10b,where the network under the BCM rule has two terminal

states: 2SL-Desired and 2SL-Split. To achieve this, we specifically
initialized the adaptive threshold to a value between the activation
values of activation and inhibition for the network.

Appendix B. Learning rule details

B.1. Activation

For all experiments, all model neurons use the same activation
function regardless of learning rule. A neuron j has a continuous
firing rate x based on integrating weighted inputs:

xj = f
(
FF + Lat + (FB ∗ FF2) + ϵ

1 + Inhib
, θj

)
(B.1)

where FF, Lat, and FB represent the sum of weighted inputs of
all excitatory (weight w ≥ 0) feedforward, lateral, and feedback
inputs, respectively. Each sum is calculated as:

∑
i∈typewijxi, where

wij is the weight between neurons i and j. Note that feedback is
gated by feedforward input; it cannot activate a neuron in the
absence of feedforward driving input.

Inhib is calculated by taking the weighted sum of all inhibitory
inputs from more strongly active neurons.

ϵ is a noise term sampled from a normal distribution:
N (0, σ 2

noise).
f (x, θ ) sets the output to zero if it is less than a threshold

value. Thresholds are updatedwhenever a neuron is active and not
inhibited:

θ =

{
s ∗ FF + ((1 − s)θ ) FF ≥ θff and Inhib < θInhib
0 else (B.2)

where s is a smoothing parameter, θff a threshold for considering
a neuron active, and θInhib a threshold for considering a neuron
inhibited.

Thresholds are further bound between a minimum (θmin) and
maximum (θmax) value. The minimum is set such that the noise
term ϵ is unlikely to spuriously activate the neuron.

B.2. Learning

In the experiments, each model neuron, under either learning
rule, learns each type of connection (i.e. feedback, feedforward, and
lateral) independently.

B.2.1. Hebbian learning
Our experiments use a slightly modified version of GCAL (Bed-

nar, 2012)where the thresholdworks as described inAppendix B.1,
instead of a global target activation based threshold such as that
described in Stevens et al. (2013). This change to the threshold
resulted in better performance and easier system tuning for both of
our experiments. The rule is otherwise the same, using purely Heb-
bian logic, i.e. (4), to determine weight updates, and the activation
function described above (Appendix B.1).

B.2.2. Conflict learning
Conflict learning neurons adapt their weights as described

in Section 3. Neurons additionally have an accumulator of life-
time short-term weight updates which is used for computing the
smoothing factor sltm for the long-term weight update:

accij(t + 1) = accij(t) + δij. (B.3)

The smoothing factor for the long-term update, sltm, is com-
puted by comparing this neuron’s proportion of long-term weight
against its proportion of lifetime accumulator value (normalized
wltm

ij (t) versus accij(t + 1)). When the wltm
ij (t) update would move

the long-term weight proportion towards that of the accumulator,
sltm is decreased, proportional to the remaining distance between
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them. In cases where the wltm
ij update would move the proportion

away from the accumulator, sltm is increased.
The smoothing factor for the short-term update, sstm, is con-

stant, with smaller values preferring the short-term weight.
Short-term and long-term weights are divisively normalized

independently, as in the Hebbian update. Weights initially start
lower than their allowed totals and are not normalized until they
have grown to exceed it.

The full conflict learning rule is not used for learning inhibitory
connections as they serve as control signals for the rule itself.
Instead, these connections have a single weight based upon a
normalized lifetime accumulation of weight updates:

acclat−ij (t + 1) = acclat−ij (t) + xixjwlat−
ij (1 − Inhib) (B.4)

wlat−
ij (t + 1) =

acclat−ij (t + 1)∑
k acc

lat−
kj (t + 1)

. (B.5)

Appendix C. Experimental methods

C.1. Simple network

The simple network of Fig. 1 is used to demonstrate the insta-
bility of variants of Hebbian learning when modulatory connec-
tions are present. The results for simulating the network for both
weight re-normalizationHebbian learning and conflict learning are
presented in Fig. 2. Additional simulations using the Generalized
Hebbian Algorithm and the BCM rule are presented in Fig. A.10.

All connection weights are fixed to 1 with the exception of in-
comingmodulatory input to the competitive neurons,which adjust
their weights using the learning rule being tested. Competition is
implemented through lateral inhibition between neurons N1 and
N2. All tested learning rules use the same network parameters.

The results are averaged over 30 simulations. Each simulation
contains 100 presentations of input, which each consists of a uni-
formly randommodulatory input being active (activation set to 1)
while the driving input to both competitive neurons is simultane-
ously active (set to 1). The non-active modulatory input is set to
0. The network is exposed to each presentation for 100 iterations,
followed by 10 iterations of all zero-valued input before the next
presentation. State transitions are computed based on the state the
network is in before and after the presentation of an input.

A connection is considered strongly learned if it meets the
conditions of the spreading component of conflict learning (8).

C.2. Border ownership network architecture

To analyze our learning rule in feedback contexts, we focus on a
model of border ownership similar to that developed by Craft et al.
(2007). The network is organized into four layers of cells arranged
retinotopically: the input, orientation selective, BO, and grouping
layer (Fig. 3). For the main BO experiments, we used 40 × 50 grids
of cells. As training time scales with network size, the smallest
network that would still allow interesting stimuli to be presented
was used.

The network is given grayscale input. The orientation layer
receives input from the input layer, and uses fixed log Gabor
filters (Field, 1987), parameterized by θgabor = π and f =

√
π , to

compute four orientation maps (0, 45, 90, and 135◦) representing
a simplified V1-like layer. There are four orientation selective
neurons per grid space, giving a total of 8,000 neurons.

The output of each of the four angles in the orientation layer
below provides input to two BO neurons at the same retinotopic

location. These BO neurons are grouped into a column at each
location with eight neurons, for a total of 16,000 BO neurons. The
neurons within a column have inhibitory lateral connections, ini-
tiallywith equally distributedweight. BOneurons in a columnhave
no concept of their physical position relative to any other neuron,
nor their border ownership polarity (i.e. left/right, up/down, etc.).
Initially, without any learning for the lateral connections, neurons
within a column are unaware of the neuron with which they will
most directly compete to form a BO pairing.

Each BOneuron provides feedforward input to all grouping cells
within a radius r of its retinotopic position, and receives feedback
from the same set of grouping cells. This radius r determines the
scale of objects that can be handled by the network. Both the feed-
forward and feedback connections between these two layers are
learned. The grouping layer is much more sparsely populated than
both the input and border ownership layers, with roughly 1000
neurons placed randomly using a Poisson-disc algorithm (Bridson,
2007). Finally, there are lateral connections between groupingneu-
rons in a center–surround fashion, extending to 0.6r for excitation,
3r for inhibition.

Training involves the repeated presentation of a moving square
with length 10, chosen to be slightly smaller than the grouping
neuron receptive field diameter 2r (see Figs. 3c and d). Squares
are given a random initial position, orientation, and scaled up or
down by up to 10% in size. Once placed, squares move in a random
linear path across the FOV until no longer visible. Each positioning
of a square is presented for 10 time steps to allow the network to
settle. The network is given a blank input for 10 time steps after
the square is no longer visible. Training is terminated after 40,000
squares are presented, a sufficient amount to show a plateau in the
polarity scoring metric, described next.

For evaluation, we compute a polarity vector for each BO neu-
ron, which represents the strength and preferred polarity direc-
tion of a neuron. The polarity vector is calculated as the sum of
retinotopic vectors, each from theBOneuron to one of the grouping
neurons providing it feedback (scaled by weight strength), mul-
tiplied by 1 or −1 depending on which side of the BO neuron’s
orientation they fall. The median absolute difference between the
magnitude of polarity vectors for BOneurons of opposite polarity is
then aggregated across all neurons of each orientation preference,
to give the overall polarity score shown in Fig. 4. Significance is
established with a Wilcoxon signed rank test. The polarity vectors
are also used in Fig. 6, where the polarity vectors from neurons in
the same column areweighted by activation and summed together
to provide the resulting response vectors.

Finally, to compare the Hebbian learning rule versus all possible
variants of conflict learning, a smaller 30 × 30 network is trained
for each configuration (Fig. 7), using the same methodology as
the larger network. For each configuration, we use the vertical
orientation as an exemplar, computing a histogram of polarity
scores across all vertical BO neurons. The medians for each score
are then compared and tested for significance with a Wilcoxon
signed rank test.

C.3. Orientation selective network architecture

The orientation selective network (Fig. 8) has three layers: an
input layer, a center–surround layer, and an orientation selective
layer, like that used to demonstrate the properties ofGCAL (Stevens
et al., 2013). The center–surround layer consists of both on–off and
off–on preferential cells. In order to avoid anti-aliasing issues and
a bias towards diagonals caused by square pixels, the resolution
of the input is scaled by some amount, s, for the center–surround
convolution. On–off cells have a difference-of-Gaussians receptive
field, with a sigma of 0.33s for the larger Gaussian and 0.4s for the
smaller one. The receptive field for an off–on cell is the negation of
an on–off cell.
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Table C.1
Parameter listing.

Parameter Value Description

σnoise 0.01 Standard deviation of noise distribution.
θff 4σnoise Threshold of driving input for neuron to be considered active.
θInhib 0.2 Threshold of inhibition for neuron to be considered inhibited.
s 0.1 Smoothing factor for threshold update.
θmin 4σnoise Minimum threshold value.
θmax 0.5 or 0.7 Maximum threshold value. Larger value used for orientation selective

network.
η 0.01 or 0.001 Learning rate. Lower value used by Hebbian learning.
β 1.0 Balances positive versus negative learning for conflict learning.

Orientation selective neurons receive feedforward input from
a disc of center–surround neurons (on–off and off–on) within
some radius r , initially with equally distributed weight. Learning
these connections creates the orientation selective behavior of the
neurons. Orientation neurons further have lateral connections in
a center–surround fashion to promote grouping and competition.
Excitation extends to 0.27r , inhibition to 0.73r . Center–surround
and orientation selective neurons are placed randomly using the
same Poisson-disc algorithm as used for grouping neurons in the
border ownership experiment. The center–surround and orienta-
tion selective layers have approximately 1,600 (800 + 800) and
3200 neurons, respectively, depending on the randomness of the
Poisson-disc algorithm.

Training involves the repeated presentation of an oriented line
segment spanning the width of the input layer. Lines are given a
random initial position, orientation, and are translated across the
field of view (FOV) in a random direction until no pixel of the
line can be seen. Each position is held for 10 time steps, which is
sufficient for the network to settle. The network is given a blank
input for 10 time steps after the line is no longer visible in the FOV.
Training is terminated after 20,000 lines are presented, a sufficient
amount of time to maximize the selectivity score for a non-noisy
network.

Orientations are assigned to neurons by finding the best fit-
ting Gabor function and taking its orientation and coefficient of
determination (r2) values, using the MATLAB library knkutils by
Kendrick Kay. The orientation is used for the hue in generating the
color maps, whereas the coefficient of determination is used for
determining selectivity. Pinwheel density is computed on orienta-
tion maps using code adapted from Topographica (Bednar, 2015)
using the methods described in Stevens et al. (2013).

For the noise and stability measurements, noise is introduced
by adjusting the standard deviation of the neuron activation noise
term, ϵ, to σnoise in the input layer (see results Fig. 9 for noise values
used). The noise score is the average of the r2 coefficients across
all orientation selective neurons. For stability, the scoringmetric is
identical to the metric used by Stevens et al. (2013). We perform a
paired-sample t-test to test for significance.

C.4. Parameter listing and source code

Key parameters for the learning and activation functions for
both Hebbian learning and conflict learning are displayed in Ta-
ble C.1. All parameters were tuned for each experiment to maxi-
mize performance with both rules in mind.

The experiments were performed using a custom framework
written in C++ explicitly for conflict learning, with some analysis
of results performed using MATLAB or Python scripts. All learning
rules tested were implemented in this same framework. Source
code is available on thewebsite for conflict learning (Grant, Tanner
& Itti, 2016).
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