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Abstract
This paper develops and tests a plane based simultaneous localization andmapping algorithm capable of processing the uneven
sampling density of Velodyne-style scanning LiDAR sensors in real-time. The algorithm uses an efficient plane detector to
rapidly provide stable features, both for localization and as landmarks in a graph-based SLAM. When planes cannot be
detected or when they provide insufficient support for localization, a novel constraint tracking algorithm selects a minimal
set of supplemental point features to be provided to the localization solver. Several difficult indoor and outdoor datasets,
totaling 6981 scans, each with ∼70,000 points, are used to analyze the performance of the algorithm without the aid of any
additional sensors. The results are compared to two competing state-of-the-art algorithms, GICP and LOAM, showing up to
an order of magnitude faster runtime and superior accuracy on all datasets, with loop closure errors of 0.14–0.95m, compared
to 0.44–66.11m.
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1 Introduction

The recent availability of high performance sensors suitable
for indoor range measurement such as RGB-D cameras and
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nodding LiDAR sensors has led to many successful simulta-
neous localization and mapping (SLAM) systems for indoor
environments. Outdoor environments have proven challeng-
ing as many of the algorithms designed for these indoor
sensors have difficulty when adapted to outdoor sensors,
which often collect data at much greater distances and lower
densities. As robotics applicationsmove out of the laboratory
and into the real world, the need for reliable outdoor-capable
algorithms is rising.

This work develops a fast online SLAM solution around
a Velodyne LiDAR, which is able to produce robust range
measurements both indoors and outdoors. The algorithm
leverages a fast plane detector to exploit structure in the
environment while maintaining the capability of selectively
sampling and integrating lower level features in less ordered
environments. The planar features are used as landmarks in
a global SLAM map to close the loop on several indoor and
outdoor datasets with varying degrees of planar structure.
The algorithm is able to operate on non-smooth trajectories,
and is suitable for use on humanoid and aerial robots without
the need for odometry measurements. An important contri-
bution in thiswork is the development of a constraint tracking
algorithm that minimizes the computational load of frame to
frame matching.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-018-9794-6&domain=pdf


Autonomous Robots

2 Related work

Point cloud driven SLAM solutions have been a heav-
ily researched topic in robotics for the past several years.
Approaches to the problem have ranged on a spectrum from
low level solutions, which continually match and integrate
entire scans into a global point cloud, to feature-based solu-
tions, which extract high level descriptors of the environment
to use as landmarks.

Given enough computational power, the former approach
has been shown to work well for small and medium sized
environments when using structured light sensors. For exam-
ple, the KinectFusion algorithm of Newcombe et al. (2011)
can create dense reconstructions of small indoor environ-
ments using a Microsoft Kinect (or equivalent RGB-D
sensor) and an array of high powered graphics process-
ing units (GPU). Later extensions by Whelan et al. (2012)
extend the map size by continually offloading map data from
GPU memory to system RAM. Although such algorithms
have set a high bar for indoor localization, the relatively
short range of current RGB-D sensors and their sensitiv-
ity to ambient infrared interference limits their applicability
to outdoor mapping. Additionally, such algorithms require
significant processing power in the form of high-end GPUs
that are currently rare on mobile robots due to their size
and power requirements. Other low-level solutions, such as
using sparse features, also exist for RGB-D sensors (e.g.,
Henry et al. 2012; Endres et al. 2012). While these algo-
rithms lower the computational burden by first extracting
keypoints from each frame before performing matching on
a limited subset of locations, they are still hindered by the
limitations of RGB-D sensors, which limits their applicabil-
ity to outdoor environments. Another recent RGB-D SLAM
implementation (Salas-Moreno et al. 2014) uses planes as
features. However, in addition to RGB-D sensor limitations,
it is intended primarily for indoor augmented reality applica-
tions and lacks capabilities (e.g., loop closure) that become
necessary in larger environments.

LiDAR sensors, which provide much longer range dis-
tance readings and have lower sensitivity to infrared interfer-
ence from sunlight, have proven popular for general indoor
and outdoor applications. Planar 2D LiDARs, which are able
to capture a slice of the environment in a single pass, have
proven very successful in real-time 2D SLAM (Hahnel et al.
2003; Grisetti et al. 2005, 2007). Such sensors can also be
mounted on a ‘nodding’ servo mechanism that allows for
full 3D scans of the environment. These scans can offer
very high resolution, though often with very slow scanning
speed. Additionally, these scans are typically captured in a
stop-scan-go fashion which hinders their ability to be used
for activities requiring real-time interaction with the envi-
ronment. Planar features have proven very useful for these
sensors, and have been integrated into several SLAM solu-

tions (Weingarten and Siegwart 2005, 2016; Pathak et al.
2010). However, due to the slow scanning speed of nod-
ding LiDAR sensors, which can take on the order of seconds
per scan, previous efforts have not required high speed algo-
rithms.

Continuously rotating 2D LiDAR, which capture a single
scanline in up to 360◦ degrees of rotation, can provide a large
benefit over their planar counterparts to real-time applica-
tions such as autonomous driving. These sensorswerewidley
used in in the DARPA Grand Challenge (Behringer et al.
2005; Urmson et al. 2007). However, the limited resolution
provided by a single scanline often necessitates combining
multiple 2D LiDAR along with a variety of other sensor
modalities (e.g.,Choi et al. 2012).

As an alternative to 2D LiDAR sensors, 3D scanning
LiDARs have recently become popular, due in part to their
applicability to autonomous driving, as demonstrated in the
DARPAGrandChallenges. By rotating several laser/receiver
units with fixed inclination around a central vertical axis,
these sensors can acquire full 3D scans at a rate of roughly
100 milliseconds per scan. The trade-off for this high speed
is a relatively low resolution in the inclination direction, with
one sample per laser/receiver pair, compared to their nodding
counterparts. Current models comprise 16, 32, or 64 lasers
spanning approximately 40◦ in inclination. Because of this
uneven sampling density, most systems designed for RGB-D
or nodding sensors, which collect uniformly dense measure-
ments, do not adapt well. The work of Moosmann and Stiller
(2011) has been directed specifically to Velodyne sensors
and operates in a spirit similar to the KinectFusion family of
algorithms, in that each current scan is matched against and
then integrated into a global point cloud map. Generalized
ICP (GICP) (Segal et al. 2009), when used with graph based
SLAM formulations, has shown some promise on Velodyne
derived datasets (Trevor et al. 2014). However, as will be
shown in Sect. 4, this strategy is often too slow for real-
time processing and requires additional information from
other sensors (e.g., IMU-derived odometry or GPS) to work
well. More recently, Ceriani et al. (2015) have developed
a Velodyne-capable SLAM algorithm using a point-plane
ICP that is refined by a sliding window optimizer, though
when using a global trajectory optimizer for loop closure, it
is not suitable for real-time processing. Additionally, LOAM
(Zhang and Singh 2014a) is a fast algorithm that uses line and
planar features extracted from point clouds to perform map-
ping. Real time performance is achieved by leveraging a fast
frame to frame odometry estimate along with a slower align-
ment to a global map. However, as will be seen in Sect. 4,
their approach seems sensitive to fast rotational motion as
well as less structured environments, and may need to be
supplemented with inertial data for robust operation.
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Fig. 1 System overview

3 Approach

The algorithmdeveloped in this section is designed to address
the shortcomings of previous works: it is capable of running
indoors and outdoors, it can tolerate the uneven sampling
density of 3D scanning LiDAR sensors, and it is fast enough
to operate in real-time for use on mobile robotics platforms.
This is chiefly accomplished by observing that in many
human accessible environments, planar surfaces are abun-
dant. The algorithm thus exploits these planes to both speed
up processing and provide strong constraints on motion,
while maintaining the ability to integrate points when planes
are sparse or provide insufficient constraints.

3.1 System overview

The algorithm aims to reduce the computational load of tra-
ditional point based alignment schemes by leveraging planar
features extracted from structured environments. As such,
the first step of the system is to extract these features via a
fast and robust plane detector (Sect. 3.2) tuned specifically
for scanning LiDAR sensors (Grant et al. 2013). These plane
correspondences form the basis on which the rest of the algo-
rithm is computed.

Once all planar features have been extracted from two
consecutive frames, the constraint imposed by their cor-
respondences is evaluated by a unique constraint tracking
algorithm (Sect. 3.3). If the planes alone can satisfy the con-
straints and provide a correspondence solution, a fast closed
form algorithm is used to compute the transformation (Sect.
3.5.1). If the constraint tracking algorithm determines that
the solutionwould be under-constrained given only the avail-
able plane correspondences, a minimal number of additional
point correspondences are found (Sect. 3.4) to fulfill the
remaining alignment constraints. Both the plane and point
correspondences are then used to robustly estimate a rigid
body transformation between the two frames (Sect. 3.5.2).
This transformation estimation, along with the plane corre-
spondences, is used to build an online pose graph SLAMmap
(Sect. 3.6). A diagram of these operations is shown in Fig. 1,
and each operation is detailed separately in the following
sections.

Fig. 2 The physical design of the sensor causes it to create virtual
laser cones as it sweeps each of its lasers through θ (a). When a plane
intersects one of these cones, it generates a conic section of varying
curvature depending upon the inclination angle of the sensor and the
relative orientation of the plane (b). a Perspective view of laser cones
(red and blue) intersecting an actual, physical vertical plane (green). b
Frontal view (through plane) of laser scan-lines (black) intersecting the
physical plane (green) (Color figure online)

3.2 Plane detection and correspondence

The plane finding algorithm exploits knowledge of the sen-
sor geometry to quickly find planes: the 3D LiDAR sensor’s
rotating lasers, which form cones in space, inscribe conic sec-
tions onto planar objects, as illustrated in Fig. 2. Each conic
section found in a scanline of a sensor sweep is then allowed
to vote for all possible planes that could have produced it.
These votes are cast in a layered spherical accumulator,which
is parameterized with the inclination (φ) and azimuth (θ ) of
the normal vector and the offset (ρ) of the plane as described
in Borrmann et al. (2011).

Given a single conic section, the set of explanatory planes
is found by walking across all values of ρ in the accumulator
and solving for the two 〈θ, φ〉 pairs at each value of ρ. A vote
is then placed in the accumulator for each value weighted
by how well the putative plane fits into the curvature of the
section. A highly curved conic section will give a high score
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to planes that fit its points well, and a penalty to all others. A
conic section with lower curvature will give a more uniform
score to all planes. Once all voting has been completed, the
accumulator is thresholded to find candidate planes, and a set
of simple filtering steps is used to clean up the results. Planes
are considered in correspondence if for two planes pa and pb,
‖ρa n̂a − ρbn̂b‖ is minimized (where n̂ is the plane normal),
and the following two constraint equations are satisfied:

n̂a · n̂b > tdot (1)
|ρa − ρb|
(ρa + ρb)

< tdist (2)

A fully detailed description and analysis of this plane
detection algorithm, as well as of the plane correspondence
matcher and its parameters, can be found in Grant et al.
(2013).

3.3 Constraint analysis

While it has been shown that the above plane detection and
correspondence algorithms can be used to compute frame
to frame registration in well constrained indoor environ-
ments (Grant et al. 2013), outdoor environments prove to
be more challenging when planes are sparse. By detecting
when an alignment problem is under-constrainedby the avail-
able planes, a minimal set of points can be selected from the
remaining points (points not constituent of corresponding
planes) in the input cloud to fill in the missing constraints.

Fully constraining a 6D alignment problem using only
infinite planes requires at least three non-coplanar planes.
The level of constraint of the system can be visualized by a
3D ellipsoid, as shown in Fig. 3, in which the length of each
axis represents the amount of constraint along that direction.
For example, a circle in the X-Y plane would represent an
equal amount of constraint in the X and Y directions, with
no constraint in the Z, while a perfect sphere would represent
equal constraint in all directions. This ellipsoid can be param-
eterized by a 3×3 matrix that is called the Constraint Matrix
(C). Once the plane correspondences are discovered in the
scene, C is constructed from each plane normal as follows:

C =
N∑

i=0

γi ni n
T
i (3)

where γi is the number of points contained in the plane, and
ni is the plane normal vector.

After the constraint matrix is built, the bounding ellip-
soid can be parameterized by a rotation matrix Rc and a set
of three radii rc0 , rc1 , rc2 . This parameterization is extracted

Fig. 3 A visualization of the constraint matrix C (blue ellipsoid) for an
arbitrary collection of scaled plane normals (black vectors). The black
sphere, parameterized by τ̂ , represents the threshold required for the
system to be considered well constrained. In this example, the system is
well constrained (ellipsoid exceeds volume of sphere) along theX andY
dimension, but lacks constraint in the Z dimension. Equation 8 provides
a numerical way of calculating how well constrained any particular
query vector is (Color figure online)

from C through singular value decomposition:

C SVD= U

⎡

⎣
r2c0 0 0
0 r2c1 0
0 0 r2c2

⎤

⎦Rc (4)

This formulation is similar to Principal Component Anal-
ysis, except that, rather than using a true normalized covari-
ance matrix, a weighted scatter matrix is used. Once the
constraint ellipsoid has been calculated, the system can (if
needed) be queried to determine how well constrained the
system is in the direction of a new candidate data point. If
the system is already fully constrained in that direction, the
data point can be skipped to save computation time. This
constraint checking is performed as follows: given a query
normal n of unit length, it is first transformed into the axis-
aligned frame of the ellipsoid:

ñ = RT
c n (5)

and is then converted into polar coordinates:

〈θ, φ〉 = 〈arctan (ñ1, ñ0) , arccos (ñ2)〉 (6)
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The spherical coordinate ellipsoid equation can then be
used to find the distance from the origin to the edge of the
ellipsoid in the direction of the query normal:

dq =
√
cos(θ)2 sin(φ)2

r2c0
+ sin(θ)2 sin(φ)2

r2c1
+ cos(φ)2

r2c2
(7)

If a fully constrained system is considered as a sphere of
radius τ̂ , then a score between 0 and 1 can be assigned to any
query vector to represent the utility of adding that vector to
the system:

sq = 1 − min

(
dq
τ̂

, 1

)
(8)

The value of τ̂ (as well as dq ) can also be thought of as
representing the number of points supporting one dimension
of the constraint matrix C , due to the scaling by γi in its
construction. This provides an intuitive guide for selecting a
value for τ̂ , which can be interpreted to mean the minimum
number of points from a sensor scan required to constrain one
dimension. In the later experiments, τ̂ is set to 1.4% (1000)
of the input points per scan (70,000). The ultimate value
chosen for this parameter depends mostly upon the sensor.
Choosing too large of a constraint threshold will mean the
inclusion of more points than necessary, increasing run-time,
while too small of a constraint limits the accuracy of the
solution. Although this constraint matrix algorithm provides
no theoretical guarantee of optimality, Sect. 3.4 presents a
detailed analysis of its practical value.

3.4 Choosing points

Once the constraint matrix has been constructed for all plane
correspondences in the current frame, point features may
need to be added to the system to provide sufficient con-
straints. To do so, points are treated as planelet features using
the covariance of local neighborhoods, with amatching func-
tion inspired fromGeneralized ICP (Segal et al. 2009).Due to
the high computational cost of this covariance computation
and cost function, a method utilizing the constraint ellipse of
Sect. 3.3 is used to keep the set of selected points is kept to
the minimum necessary to provide alignment constraint.

The method for this selection is shown in Algorithm 3.1.
In this algorithm, a very fast normal vector estimation is first
computed for each point in the input point setQ using the Fast
Approximate Least Squares (FALS) method of Badino et al.
(2011). This method was chosen over computing normals
precisely (i.e., using principle component analysis) because
it gives a dramatic runtime performance improvement at lit-
tle to no cost in the accuracy of computed normals. Next, for
each point in the input a utility score s is calculated for these
normals given the input constraint matrix C and threshold τ̂

Algorithm 3.1 The choosePoints algorithm - a subfunction
of IC3PO. This method chooses a subset of point features to
provide full rigid body constraints.
inputs

C a constraint matrix computed for all plane correspondences
Q an input point cloud
τ̂ a constraint threshold

local variables
N a list of normal vectors
S a list of scores
Q̃ the chosen points

1: N ← FALS(Q)
2: S ← ∅

3: for i in indices(N ) do
4: Calculate initial s given C, Ni , and τ̂ � Eq’s 5–8
5: Si ← s
6: end for
7: Sort Q and N in increasing order of S
8: Q̃ ← ∅

9: for i in indices(N ) do
10: Recalculate s given C, Ni , and τ̂ � Eq’s 5–8
11: if bernoulli(s) then
12: add Ni to C with γ = 1 � Eq. 3
13: calculateCovariance(Qi )
14: Q̃ ← Q̃ ∪ Qi
15: Calculate r2 from C � Eq. 4
16: if r2 > τ̂ then
17: break
18: end if
19: end if
20: end for
21: return Q̃

using Eqs. (5)–(8) on Lines 3–6. This provides an initial esti-
mate of the utility of each point. The points are then iterated
through in order of this initial utility estimate.

For each point, a new utility score s is calculated before
decidingwhether the point should be included in the returned
set Q̃. This new score is necessary because the algorithm
updates C with each included point. The decision to include
a point in Q̃ could be done inmultiple ways, such as choosing
points exceeding a threshold or accepting the top N points. A
Bernoulli distribution with p = s is sampled to determine if
the point is to be chosen - this is faster than repeatedly recom-
puting scores for sorting and gives preference to high scoring
points. If a point is chosen, it is inserted into Q̃ and a neigh-
borhood covariance matrix is computed for it and attached
as metadata on Algorithm Lines 13 and 14. The constraint
matrix C is also updated with the point. If the resulting small-
est radius of the constraint ellipse is greater than the constraint
threshold τ̂ , then the set of selected points is finalized and
returned.

Figure 4 provides a visualization of how the selection of
points adapts to the presence of planes, and how it differs
from a uniformly random selection of points. Algorithm 3.1
predominantly selects points that maximize the constraint
along the least constrained dimension, though the random
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Fig. 4 Comparison of points selected for iterative closest point in an
outdoor street scene for various algorithms. Points are shown in red for
all figures. Best viewed electronically with figure enlarged. a Picture of
scene. b Raw Velodyne data. Sensor position indicated by tricolor axis.
The sensor is located in front of the light pole on the left sidewalk, visible
in a. c Points selected by Algorithm 3.1 given the restraints of detected
planes (shaded polygons in figure). In this frame, the plane detector
has only provided a single plane (green plane in background) along the
X axis (red axis of sensor), which provides insufficient constraint, so
additional points are selected predominantly to constrain this direction.
This can be seen by the large number of point selections on surfaces
along this axis, which is perpendicular to the camera viewpoint. Points

can be seen on the walls of buildings to the right, as well as along the
tree trunk, light pole, and sign post near the bike rack to the left. d Points
selected by Algorithm 3.1 given no initial plane constraints. Selected
points most occur on flat, orthogonal surfaces of objects. The majority
of points occur either on the street (ground plane), the walls facing the
street, or on the same surfaces as selected in c. e A uniformly random
selection of points equal in number to those chosen by Algorithm 3.1
in d. Given the structure of the sensor data, the majority of these points
are chosen close to the origin. In addition, many of the points selected
occur on less structured portions of the data, such as on the leaves of
trees, and distant features are under represented due to the sparsity of
points on them

component to the algorithm does allow a small amount of
other points to be selected. Compare Fig. 4c, d to see how
planes provide constraints which drastically reduce the num-
ber of points that must be selected. Fig. 4d contrasts strongly
with Fig. 4e, which is a uniform selection of points. Due to
the structure of the rawdata (Fig. 4b), uniformly subsampling
points leads to an overabundance of points around the ori-

gin, points selected on ‘noisy’ landmarks such as the leaves
of trees, and an undersampling of distant but stable features
such as walls.

To test the efficacy of Algorithm 3.1 in isolation, it was
used to select points to perform alignment between two point
clouds using GICP. One hundred frames were randomly
selected from an outdoor dataset used in the later experi-
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Fig. 5 The decrease of mean squared error (MSE) in alignment when
using Algorithm 3.1 to select points versus a uniformly random selec-
tion of points. The error was calculated by comparing the alignment
solution using either algorithm to a ground-truth solution, generated by
transforming 100 randomly sampled frames from the Parkside dataset
(an outdoor dataset, see Sect. 4). Error bars depict the standard error,
with markers indicating significance for a one-tailed t-test checking
whether the difference of MSE was significantly above zero

ments (Parkside, see Sect. 4). The frames were subjected to a
random transformation to establish a ground truth correspon-
dence; frames were rotated and then translated along the X,
Y, and Z axes independently (sampled from N (0, 5◦) and
N (0, 0.15m), respectively), and Gaussian noise was added
independently to each point. A uniformly random selection
of points was used as a baseline for comparison. Fig. 5 shows
the average difference in mean square error between the ran-
domly selected points and those selected via Algorithm 3.1.
The experiment was run over increasing amounts of additive
Gaussian noise, showing that the algorithm gives a signif-
icant improvement in mean squared error (MSE) until the
noise obscures the original data (1m standard deviation).

3.5 Computing transforms

To compute a minimum cost transformation between one
frame to the next, a new algorithm called Iterative Closet
Point Plus Plane Optimization (IC3PO) has been developed.
This algorithm, detailed in Algorithm 3.2, takes as input a
set of plane correspondences Pab, two point clouds Qa and
Qb, and the previously discussed constraint threshold τ̂ .

The algorithm first computes the constraint ellipse for the
set of plane correspondences, weighting each plane normal
by the number of points that contributed to that plane. If
the plane correspondences produce a constraint ellipse that
passes the threshold τ̂ in all dimensions, then the lowest cost
transform can be computed in closed form by decoupling
the rotation and translation estimation, similar to the meth-

ods of Pathak et al. (2010). When a lack of detected planes
gives insufficient constraints for a closed form solution, more
features are added to the system and an iterative solution is
found. The plane correspondences Pab are fixed through-
out the iterative point fitting, though the algorithm could be
extended to recompute planar correspondences at each iter-
ation depending on time constraints.

3.5.1 Plane constrained estimation

If the constraint ellipse passes threshold in all dimensions,
the translation and rotation components of the transformation
can be computed in closed form:

Translation estimation The decoupled translation estima-
tion between frames a and b is solved by the following least
squares estimation:Mt = d.M is a stacked matrix of the N
plane normals from frame a, scaled by the inverse variance:

M =

⎡

⎢⎢⎢⎣

nTa1/
(
σa1 + σb1

)

nTa2/
(
σa2 + σb2

)

...

nTaN /
(
σaN + σbN

)

⎤

⎥⎥⎥⎦ (9)

The vector d is constructed by stacking the differences in
plane offsets, and scaling by the same inverse variance:

d =

⎡

⎢⎢⎢⎣

(
da1 − db1

)
/
(
σa1 + σb1

)
(
da2 − db2

)
/
(
σa2 + σb2

)

...(
daN − dbN

)
/
(
σaN + σbN

)

⎤

⎥⎥⎥⎦ (10)

Here, σai and σbi are the estimated variances of the first and
second frame offsets as found by the plane detector (see also
the appendix of Pathak et al. 2010).

The translation can then estimated by use the Moore-
Penrose pseudo-inverse ofM:

t̃ = M+d (11)

Note that all translation estimation is performedusingonly
the infinite representations of the planes, rather than consid-
ering the overlap of their hulls. Hull estimation was found to
be too noisy in general to be of much use to provide good
estimates for translation.

Rotation estimation Determining the optimal rotation
between a set of corresponding vector observations has been
well studied in aerospace engineering for the application of
star trackers, and is known as Wahba’s problem (Shuster
2006). The quaternion based solution derived by Davenport
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(1968), known as the “q-method,” is used here. For this, a
matrix B is constructed as the sum of the product of all nor-
mal vector pairs:

B =
N∑

i=0

nai n
T
bi(

σai + σbi
) (12)

where σai and σbi are the decoupled variances of the plane
normals found by the plane detector. A matrix K is then
constructed as follows:

K =
[
B + BT − I tr (B) Z

ZT tr (B)

]
(13)

with

Z =
⎡

⎣
B23 − B32

B31 − B13

B12 − B21

⎤

⎦ =
N∑

i=0

nai × nbi(
σai + σbi

) (14)

The best fit rotation can then be found by computing
the eigenvectors of K through eigendecomposition. The
eigenvector corresponding to the maximum eigenvalue is
a quaternion representing the best possible rotation. Note
that within the aerospace literature, (e.g., Ainscough et al.
2014), this decomposition is typically performed using an
iterative algorithm such as QUEST (Shuster and Oh 2012).
An excellent treatment of the subject of rotation estimation,
with an overview of many alternative methods may be found
in Markley and Mortari (2000).

3.5.2 Iterative closet point plus plane optimization

When a lack of detected planes results in insufficient con-
straints for a closed form solution, more features must be
added to the system. These points are selected as per Sect.
3.4 from the input point cloud after first removing all points
associated with detected planes as found in Sect. 3.2. Once
the points are chosen, a solution inspired by the Generalized
Iterative Closest Point algorithm is used, additionally incor-
porating the planar correspondences. The method iteratively
switches between a correspondence finding phase, and a
transformation solving phase. After transforming point cloud
Qa by the current transform estimation, correspondences
between the clouds are found using a fast nearest neighbors
search optimized for point clouds (Blanco and Rai 2014).
These point correspondences as well as the plane correspon-
dences are then used as inputs into a nonlinear optimization
problem to be solved by the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) quasi-Newton method (Wright and Nocedal

Algorithm 3.2 The IC3PO algorithm, which combines pla-
nar features with a minimal number of point features to
compute a rigid body transform between two scans
inputs

Pab corresponding planes from frames a and b
Qa,Qb point clouds from frames a and b
τ̂ a constraint threshold

local variables
C a constraint matrix
γ a plane correspondence weight
r2 the smallest radius of a constraint ellipsoid
Q̃a points chosen from cloud a
T a transformation matrix
Qab a set of point correspondences

1: C ← 03×3
2: for 〈pa, pb〉 in Pab do
3: γ ← (|pa | + |pb|) /2
4: add pa to C with γ � Eq. 3
5: end for
6: Calculate r2 from C � Eq. 4
7: if r2 > τ̂ then
8: return closed form T
9: end if
10: Q̃a ← choosePoints (C,Qa) � Alg. 3.1
11: T ← I
12: while not converged do
13: Qab ← findCorrespondences(TQ̃a,Qb)

14: T ← findTransform(Pab,Qab)

15: end while
16: return T

1999) using a Cauchy loss function as implemented in the
Google Ceres library (Agarwal et al. 2016). Although point
to point alignment can be solved in closed form (e.g., Horn
1987; Umeyama 1991), using a nonlinear optimizer allows
the algorithm to behave similarily to GICP in the absense of
planes and follows current trends in point alignment which
utilize nonlinear optimization (e.g., Segal et al. 2009; Zhang
and Singh 2014b). Furthermore, these optimizers can often
be more robust and accurate than direct methods (Fitzgibbon
2003).

The optimization problem is set up to minimize the fol-
lowing error function:

min
x

1

2

(
ρα

(
‖ fα (x) ‖2

)
+ ρβ

(
‖ fβ (x) ‖2

))
(15)

which describes the total error over two residual blocks: point
alignments (α) and plane alignments (β), with loss functions
ρα and ρβ . This error is evaluated given a candidate trans-
formation (x), which is represented as a 6D se(3) vector:

x =
(
t
ω

)
(16)

where t is a 3D translation vector, and ω is a 3D angle-axis
rotation vector.
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The point alignment block α is as described in the original
GICP paper (Segal et al. 2009), and evaluates the point-wise
error as:

fα(x) =
N∑

i=0

(exp(x)qai − qbi )T Mi (exp(x)qai − qbi )

(17)

where qai and qbi are the i th corresponding points from
framesa and b, and exp(x) is the SE(3)matrix representation
of the se(3) rigid body transformation vector x. M is the
inverse of the frame aligned sum of the covariance matrices
of the neighborhoods around the two points, which turns Eq.
(17) into a Mahalanobis-like distance metric:

Mi =
(
RCaiRT + Cbi

)−1
(18)

whereCai andCbi are the neighborhood covariancematrices
of the two points, and R is the rotation block of T from
the previous iteration of Algorithm 3.2. The intuition behind
this distance metric is that if the two point neighborhoods
are planar, then Eq. (17) will only penalize errors normal
to that plane, but will allow the points to slide relative to
each other in the plane (Segal et al. 2009). In practice this
minimizes the effect of incorrect correspondences as well
as the fact that, due to various sources of sensor noise, two
corresponding points are rarely sampled at exactly the same
physical location.

The plane residual block fβ (x) produces a vector describ-
ing the alignment error over each element of the Hessian
normal form for every plane correspondence:

fβ (x) =

⎛

⎜⎜⎜⎝

d0
d1
...

dN

⎞

⎟⎟⎟⎠ (19)

where each sub-block di is then defined as follows:

di =
(

RTnbi − nai
tTnbi + obi − oai

)
(20)

R and t are the rotation matrix and translation vector
extracted from the exponential map of x:

exp(x) =
[
R t
0 1

]
(21)

The Jacobian for each of the sub blocks shown in Eq. 20
is as follows:

Ji =
[

∂n
∂t

∂n
∂!

∂o
∂t

∂o
∂!

]
=

[
03×3

[
RTnbi

]
×(

RTnbi
)T

01×3

]
(22)

with the operator [·]× producing the cross-product matrix
given a vector:

[a]×
de f=

⎡

⎣
0 −a3 a2
a3 0 −a1

−a2 a1 0

⎤

⎦ (23)

3.6 SLAM

By chaining the transformation estimates found in the previ-
ous subsections together, the trajectory of the sensor through
the world can be roughly estimated. Unfortunately, due to
noise in the sensor readings this approach will eventually
lead to unacceptable drift in the pose estimates. To com-
bat this, a SLAM solution is implemented which uses the
detected planar features as landmarks. The solution is con-
structed as a factor graph optimization problem using the
iSAM2 framework of Kaess et al. (2011).

3.6.1 Graph formulation

The factor graph, as seen in Fig. 6, consists of two types of
variable nodes, representing (1) the pose at each time step,
and (2) the plane equation of each planar landmark. Poses are

x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22

z1

z7 z9

z10 z11

z12

Fig. 6 Example graph from the IC3PO+SLAM formulation. Red vari-
able nodes (xi ) represent estimated poses, while blue variable nodes (zi )
represent detected planar landmarks. Measurement factors (not shown)

exist along each edge, either representing a computed odometry mea-
surement or a plane measurement. Note that some landmark nodes have
been removed for clarity of the figure (Color figure online)
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represented in the system as se(3) vectors, while planes are
represented in their Hessian normal form as

[
nx , ny, nz, ρ

]
.

Connections between these nodes are made by two types of
factors (not shown explicitly in Fig. 6): odometry factors that
describe the transformation from one sensor location to the
next, and 2) “observation” factors that describe the obser-
vation of a single planar feature from a pose. Although in
general both types of factors arise at least in part from plane
measurements and hence do not always have independent
noise (which is an assumption of iSAM2), both types are
needed to allow the developed framework to handle envi-
ronments in which available planes (if any) do not provide
sufficient constraints; the results in Sect. 4 demonstrate excel-
lent performance in practice.

Odometry factors provide the following error function,
which takes as input two poses (xa and xb), and computes
the error given an odometry measurement (u):

e(xa, xb|u) = u − x−1
a xb (24)

Note that all coordinates are represented as 6D se(3) vec-
tors, and thus the subtraction operator represents the distance
between u and x−1

a xb on the Lie manifold positioned around
u.

Observation factors provide an error function which takes
as input a pose value (x) and a plane value (p), and describes
the difference between the measurement that would have
been taken at x of p to the actual measurement z:

e(x, p|z) = z − x−1 p (25)

Note here that both x and p are in a global coordinate system,
thus the operation x−1 p generates a hypothetical plane mea-
surement in the local coordinate system to be compared with
z. Planes are optimized in their Hessian normal form, though
recent work has shown that a more minimal representation
can be used to improve run-time performance and allow a
wider range of optimizers to be used (Kaess 2015).

3.6.2 Graph construction

Once the variables and factors have been defined for the
SLAM problem, it is a matter of bookkeeping to imple-
ment a full SLAM algorithm. Taking as input a sequence
of transformation estimates and plane correspondences, the
IC3PO SLAM (IC3PO + SLAM) algorithm iterates through
the sequence to generate a globally consistent factor graph
representing both the scene and the sensor’s path through it.
The design of iSAM2 allows each update iteration to take
place online, resulting in an algorithm which is suitable for
use on a robot.

At each time step, the algorithm inserts a new pose node
into the graph and links it to the previous one by a factor

created using the estimated transform of Sect. 3.5. Then, a
new observation factor is inserted between this pose node
and a landmark node for each plane correspondence. If a
correspondence is between two planes that are not known
by the map, a new landmark node is created for the plane
before the factor is inserted, conditioned on the correspon-
dence being observed for a sufficient number of consecutive
iterations. Otherwise, if the correspondence is known to the
map, the factor is made between the new pose and the known
landmark. Correspondence calculation is detailed in the next
section.

3.6.3 Plane correspondence

Correspondences to planes in the map is stricter than the
algorithm used for correspondence during frame to frame
registration (Sect. 3.2).

For a pair of planes pa and pb, first check if they sat-
isfy both constraints required of planes for frame to frame
registration (Eqs. 1 and 2).

If these basic constraints are met, calculate their mean
plane p̄ab by averaging the plane normals and offsets. Let
Hpa and Hpb denote the convex hulls created by projecting
the points belonging to pa and pb, respectively, onto their
mean plane p̄ab. The intersection and union of these hulls can
then be calculated: Iab = Hpa ∩ Hpb andUab = Hpa ∪ Hpb .

The two planes are considered to be in correspondence
if either the area of their intersection over union exceeds a
threshold:

area(Iab)/area(Uab) > ti_u (26)

or if the ratio of their intersection over their minimum area
exceeds a threshold, along with a stricter test for Eqs. (1 and
2):

area(Iab)/min(Hpa , Hpb) > ti_m (27)

where ti_u and ti_m are thresholds in square meters.

3.6.4 Loop closure and plane merging

Once all factors and nodes are inserted into the graph, the
iSAM2 optimizer finds the least cost solution for all nodes
given the factors. Following this, a loop closure and merg-
ing step is applied to the map, where any similar planes are
merged together. To accomplish this, a graph is createdwhere
nodes represent landmark planes and edges exist if the planes
are considered similar enough. To determine similarity, the
correspondence test of Sect. 3.6.3 is used. The creation of
this graph has quadratic time complexity in the number of
planes. In practice the number of planes, even in larger envi-
ronments, is generally small enough that this step does not
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add a detrimental amount of time to the SLAM algorithm
(see Sect. 4, Fig. 16 for a timing example).

The graph is then collapsed using its connected compo-
nents,with each component beingmerged into a single planar
landmark. The hulls of each plane are combined, and the fac-
tors associated assigned to a single landmark node, with the
merged nodes being removed. This loop closure operation
both detects actual loop closures as well as merges similar
plane insertions.

4 Experimental evaluation

To test the effectiveness of the system, a Velodyne HDL-32E
sensor with 32 rotating laser/receiver pairs was mounted on
a backpack and walked through four different environments.
Due to the plane finding algorithm used, it is essential that
the data in the resultant pointcloud can be traced back to the
individual laser scanline it originated from. The algorithm
was implemented as a single threaded C++ application using
the iLab Neuromorphic Robotics Toolkit (Itti et al. 2016).
The four datasets were as follows, with raw data, source code
(and parameters), video, and reconstructions available on the
authors’ website (Grant et al. 2016):

1. Parkside: an 80m × 45m “L” shaped path in an outdoor
courtyard of a residential building.

2. Tutor: a 65m × 40m loop around the exterior of a build-
ing in a busy campus center.

3. Alley: a 40m forward and back path through an outdoor
alleyway.

4. RTH: a 10m × 40m loop through an indoor office hall-
way.

These datasets capture environments in which a variable
number of planes are present. The RTH dataset, which is
indoors, has many consistent planar features in all dimen-
sions. The Alley dataset, which is outdoors, lacks many
planes perpendicular to the direction ofmotion. The Parkside
dataset consists of a building next to a large open court-
yard, which offers no planar constraints. The Tutor dataset
is the most mixed environment, consisting of passageways
between buildings, large open courtyards with many pedes-
trians present, and open areas with trees and grass. Figure
7 shows example reconstructions using the IC3PO+SLAM
algorithm for two of these datasets.

For each dataset, the sensor was walked in a closed loop
such that the final position was equal to the starting posi-
tion. The IC3PO algorithm was tested on both its frame
to frame performance as well as its performance in a full
SLAM configuration (IC3PO + SLAM). For the frame to
frame testing, it was compared to using only planar corre-

Fig. 7 Examples of maps created using the IC3PO+ SLAMalgorithm.
aFinal planarmap for theRTHdataset createdwith the IC3PO+SLAM
algorithm. The convex hulls of each plane are shown, colored according
to their plane normal. Planes floating away from the main corridors are
adjacent buildings visible through windows. b A snapshot of the Tutor
dataset in progress, showing the transition into the less structured part of
the environment, which consists of an open pathway bounded by trees.
Both planes as well as the integrated point cloud are shown

spondences (Plane) and to using only point features (GICP).
The Plane and GICP algorithms were implemented by turn-
ing off the appropriate features of IC3PO (e.g., for GICP,
no planes were used and the constraint matrix was con-
structed such that all points were used). For the SLAM
configuration, it was compared against the Omnimapper
implementation of Generalized ICP SLAM (Trevor et al.
2014), which also uses afactor graph formulation, as well
as against the ROS implementation of the LOAM algorithm
(Zhang and Singh 2014b). It should be noted that although
LOAM does maintain a global map of the environment, it
does not perform global optimization over that map should
a loop closure be detected; rather it uses the map to perform
continuous local optimization over several pose estimates.
LOAM therefore lies somwhere in between the pure frame
to frame algorithms and the SLAM algorithms with global
optimization.
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(a)

(b) (c)

(d) (e)

Fig. 8 Frame to frame results for the Parkside Dataset: an 80m × 45m
“L” shaped path in an outdoor residential courtyard. Legend applies to
all subfigures. a 3D view (comparison), all units meters. b Top view
(comparison). c Z position (comparison). d IC3PO timing. e Frame rate
(comparison)

Figures 8, 9, 10, 11, 12, 13, 14 and 15 show the results of
the testing. Each figure contains five subfigures, showing (a)
a 3D isometric viewof the paths of the tested algorithms, (b) a
top-down view of the paths overlaid onto a grayscale satellite
image for outdoor datasets, (c) the Z position of the estimated
pose over time (because all paths were approximately planar,
large deviations from Z = 0 signal alignment errors), (d) the
path of either IC3PO or IC3PO + SLAM, colored by frame
rate, and (e) a plot of each algorithm’s frame rate over time.
Solid lines depict smoothed frame rate, with transparent lines
used for actual frame rates. For (e), only algorithms with
variable frame rates are displayed. The LOAM and GICP
+ SLAM algorithms are implemented in such a way that
they operate at a fixed frame rate, dropping any frames they
cannot process. The algorithms were run at the fastest frame
rate for which there was no appreciable benefit to running
slower, which was 1 Hz for GICP + SLAM and 5 Hz for
LOAM. The original LOAM paper runs the algorithm at 10
Hz, but this caused the non-blocking algorithm to drop too
many frames resulting in poor performance. GICP + SLAM

(a)

(b) (c)

(d) (e)

Fig. 9 SLAM and LOAM results for the Parkside Dataset: an 80m
× 45m “L” shaped path in an outdoor residential courtyard. Legend
applies to all subfigures. a 3D view (comparison), all units meters. b
Top view (comparison). c Z position (comparison). d IC3PO+SLAM
timing. e IC3PO + SLAM frame rate

was attempted at 5 Hz, but suffered from the same issues,
with 1 Hz being optimal.

Table 1 shows the distance between the start and end posi-
tions reported by all algorithms for each dataset. Because
each datasetwas a loop, numbers closer to zero indicate better
performance. Table 2 provides detailed timing information
for each algorithm. Looking at the timing for IC3PO and
IC3PO+SLAMversus Planes, it is evident that finding planes
provides a rough lower bound on the runtime of either algo-
rithm. Optimizing the plane finding and registration is thus
an obvious target for future optimization work. The results of
these tables are best viewed in conjunction with the specific
dataset result from Figs. 8, 9, 10, 11, 12, 13, 14 and 15 to
provide context.

In all four datasets, the IC3PO algorithm was able to pro-
vide an accurate path reconstruction and to close the loop
between the starting and ending poses when using SLAM.
Competing algorithmswere able to provide good reconstruc-
tions for portions of the paths, but often made catastrophic
errors fromwhich theywere unable to recover. Some of these
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(a)

(b) (c)

(d) (e)

Fig. 10 Frame to frame results for the Tutor Dataset: a 65m × 40m
loop around the exterior of a campus center building. Legend applies
to all subfigures. a 3D view (comparison), all units meters. b Top view
(comparison). c Z position (comparison). d IC3PO timing. e Frame rate
(comparison)

errors may be due to the large swaying motion of the sen-
sor induced by the walking gait of the human carrying it
combined with the uneven sparsity of the point clouds. The
algorithm’s ability to handle such situations highlight the
robustness of using planes for odometry and SLAM. How-
ever, the tested algorithms, including IC3PO+SLAM, cannot
meaningfully recover from a drastic mistake in estimated
trajectory, as each algorithm relies on matching its current
location to a global map to perform loop closure or other-
wise optimize thepose.WhileGICP+SLAMandLOAMmap
localized features in their current pose to localized features in
a subset of their global map, IC3PO+SLAM uses an infinite
plane based formulation that allows the algorithm to always
leverage the full structure of the global plane map during
loop closure. A practical result of this is that IC3PO+SLAM
tends to perform constant refinments to the estimated pose
instead of the large instant rectification typically associated
with loop closure.

When operating without the SLAM component, the
IC3PO algorithm clearly shows benefits over either a planes
only or purely GICP solution, being the most accurate of

(a)

(b) (c)

(d) (e)

Fig. 11 SLAM and LOAM results for the Tutor Dataset: a 65m× 40m
loop around the exterior of a campus center building. Legend applies
to all subfigures. a 3D view (comparison), all units meters. b Top view
(comparison). c Z position (comparison). d IC3PO + SLAM timing. e
IC3PO + SLAM frame rate

the three. Although using only planes can be very fast,
environments lacking sufficient constraints (see Figs. 8, 10)
cause severe errors to accumulate. Integrating point features
prevents this from being a problem, providing results that
generally show little drift over time.

It is useful to compare points of failure in GICP+SLAM
and LOAM to not only IC3PO+SLAM, but against its
operation without the SLAM component. For example, in
situations where LOAM veered dramatically off the actual
trajectory, the IC3PO algorithm rarely made comparible
mistakes. The LOAM algorithm relies on the extraction
of structured edge and planar features so it is perhaps not
unsurprising that the datasets where it performs most poorly,
Parkside and Tutor (Figs. 9, 11), are those with large open
areas that can lack strong planar constraints. Indeed similar
mistakes, often more severe, can be seen in the Planes algo-
rithm which is completely dependent on structure found in
the point cloud. Looking at the points of failure for LOAM
more closely (video walktrhoughs provided on the authors’
website, Grant et al. 2016), the Tutor dataset drifts off course
during the transition to the open pathway flanked by trees
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(a)

(b) (c)

(d) (e)

Fig. 12 Frame to frame results for theAlleyDataset: a 40m forward and
back path through an outdoor alleyway. Legend applies to all subfigures.
a 3D view (comparison), all units meters. b Top view (comparison). c
Z position (comparison). d IC3PO timing. e Frame rate (comparison)

and grass. Even in the RTH dataset, which is an indoor
office environment, mistakes in trajectory come at a point
where the sensor passes by windows which causes much of
the point data to come from distant, less structured objects.
These results, in conjunction with the Planes results, show
that relying purely on structure found in the point cloud is
not robust to all environments. When structured features are
readily available, they perform remarkably well, but their
absence can cause catostrophic trajectory errors. The results
also demonstrate that relying purely on points misses out on
valuable constraints that highly structured components such
as large planar surfaces and edges provide. This is most evi-
dent looking at the Z trajectories of GICP + SLAM, which
occasionally makes large errors that a ground plane can pre-
vent.

One interesting feature of the IC3PO algorithm is its vari-
able runtime, which depends upon the complexity of the
surrounding environment. When the environment is well
ordered and planes are numerous, the algorithm is able to
run at a very high frame rate, as much as 14x faster than

(a)

(b) (c)

(d) (e)

Fig. 13 SLAM and LOAM results for the Alley Dataset: a 40m for-
ward and back path through an outdoor alleyway. Legend applies to
all subfigures. a 3D view (comparison), all units meters. b Top view
(comparison). c Z position (comparison). d IC3PO + SLAM timing. e
IC3PO + SLAM frame rate

GICP. However, when insufficient planes are present, the
algorithm smoothly lowers the frame rate without sacrificing
accuracy as it begins to integrate points, while still maintain-
ing a frame rate that exceeds GICP. The lower right corner of
the Tutor dataset shown in Fig. 10d demonstrates this feature
very well. In this part of the path, there were very few visible
planar surfaces in the north and south directions causing a
drop in frame rate as more point features needed to be pro-
cessed. Figure 16 shows a detailed timing plot for the Tutor
dataset which breaks down the timing of each frame by the
stages of the algorithm. As can be seen in the figure, the
nearest neighbors selection from IC3PO causes a large spike
in computation time near frame 1500 where the environ-
ment becomes under constrained. Should strict time budgets
be a concern, the implementation could easily be adjusted
to drop frames in a similar fashion to the GICP+SLAM
and LOAM competitors. The current implementation could
also be extended for parallelism, as it is currently single
threaded.

123



Autonomous Robots

(a)

(b) (c)

(d) (e)

Fig. 14 Frame to frame results for the RTH Dataset: a 10m × 40m
loop through an indoor office hallway. Legend applies to all subfigures.
a 3D view (comparison), all units meters. b Top view (comparison). c
Z position (comparison). d IC3PO timing. e Frame rate (comparison)

5 Conclusion

In this work, a new solution to the SLAM problem for
scanning LiDAR sensors was developed. The solution has
a variable runtime, allowing it to exploit the structure of
man made planar environments when available. When such
structure is unavailable, the algorithm smoothly transitions
to a more computationally intensive mode without sacri-
ficing accuracy. The system has been shown to perform
well on datasets taken in a variety of indoor and outdoor
environments, beating state of the art competitors. As scan-
ning LiDAR sensors become more inexpensive and readily
available, algorithms such as this will allow mobile robots
to traverse human environments with the greatest possi-
ble speed. A benefit of the algorithm is that it produces
plane detections as a by-product. These planes can be used
by higher-level processes for point cloud compression and
semantic reasoning. While the algorithm was implemented

(a)

(b) (c)

(d) (e)

Fig. 15 SLAM and LOAM results for the RTH Dataset: a 10m × 40m
loop through an indoor office hallway. Legend applies to all subfigures.
a 3D view (comparison), all units meters. b Top view (comparison). c Z
position (comparison). d IC3PO + SLAM timing. e IC3PO + SLAM
frame rate

and tested as a single threaded application, many of its com-
ponents are easily parallelizeable.

Future work will focus on improving the speed of the
algorithm through multithreading and refining the SLAM
formulation. For example, taking inspiration from LOAM
and incorporating vertical landmarks into both the frame to
frame registration as well as the SLAM map could greatly
help in environments that lack sufficient planar constraint,
but still contain stable vertical features such as traffic signs
or street lamps. Such featureswould likely reduce the reliance
on point features and provide both a computational speed up
as well as stable landmarks. Additionally, the optimization
of transformations between point and plane correspondences
should be explored further. A closed form solution may pro-
vide superior performance, and the effect of different loss
functions should be investigated.

123



Autonomous Robots

Table 1 Distance between start
and end positions using all
tested methods for each dataset
in meters

Planes IC3PO IC3PO + SLAM GICP GICP + SLAM LOAM # of scans

Tutor 47.17 7.78 0.14 41.06 11.43 46.66 2372

Parkside 28.05 34.63 0.95 8.99 9.43 66.11 2273

Alley 4.81 4.99 0.21 12.00 0.44 2.69 1124

RTH 5.24 4.82 0.23 27.11 1.68 0.85 1212

Because each dataset consists of a loop, numbers closer to zero generally indicate better performance. An
exception to this is the GICP result for the Parkside dataset, which does not accurately reflect the failure of the
registration that can be seen in Fig. 8b. These results are best considered in conjunction with the individual
results of Figs. 8, 9, 10, 11, 12, 13, 14 and 15

Table 2 Total runtime, in seconds, followed by average framerate, in hertz, for all tested methods for each dataset

Planes IC3PO IC3PO + SLAM GICP GICP + SLAM LOAM Real time

Tutor 187.23 (12.84) 359.26 (6.69) 479.25 (5.02) 3947.54 (0.61) 2372 (1.00) 474.40 (5.00) 237.2 (10.0)

Parkside 209.20 (10.86) 274.49 (8.28) 410.27 (5.54) 4191.03 (0.54) 2273 (1.00) 454.60 (5.00) 227.3 (10.0)

Alley 96.70 (11.62) 106.36 (10.57) 121.66 (9.24) 1154.58 (0.97) 1124 (1.00) 224.80 (5.00) 112.4 (10.0)

RTH 103.72 (11.69) 123.86 (9.79) 150.91 (8.03) 259.70 (4.67) 1212 (1.00) 242.40 (5.00) 121.2 (10.0 )

Note that the runtimes for GICP + SLAM and LOAM were fixed to framerates for which there was no appreciable benefit for running any slower,
as discussed in Sect. 4. No restrictions were placed on the other algorithms, which took as long as necessary to analyze every frame. These results
are best considered in conjunction with the individual results of Figs. 8, 9, 10, 11, 12, 13, 14 and 15

Fig. 16 Detailed timing of
Tutor dataset showing the time
required for each state in the
IC3PO+SLAM system. The y
axis shows the total time for
each frame, broken down into
constituent steps of the
algorithm. When planes provide
sufficient constraint (e.g., frames
0 to about 1250), the runtime for
the algorithm can exceed the
data rate of the sensor (10Hz).
When points must be integrated
into the frame to frame
registration (e.g., around frame
1400), the algorithm adapts but
still maintains a relatively high
frame rate
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