
Chapter 1
Modeling Primate Visual

Attention

1.1 Introduction

1.2 Brain Areas

1.3 Bottom-Up Control
1.3.1 Visual Search and Pop-Out
1.3.2 Computational Models and the Saliency Map

1.4 Top-Down Modulation of Early Vision
1.4.1 Are we blind outside of the focus of attention?
1.4.2 Attentional Modulation of Early Vision

1.5 Top-Down Deployment of Attention
1.5.1 Attentional Facilitation and Cueing
1.5.2 Influence of Task

1.6 Attention and Scene Understanding
1.6.1 Is scene understanding purely attentional?
1.6.2 Cooperation between Where and What
1.6.3 Attention as a component of vision

1.7 Discussion

1.1 Introduction

Selective visual attention is the mechanism by which we can rapidly direct our
gaze towards objects of interest in our visual environment [26, 52, 3, 51, 34, 6, 18, 5].
From an evolutionary viewpoint, this rapid orienting capability is critical in allowing
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living systems to quickly become aware of possible preys, mates or predators in their
cluttered visual world. It has become clear that attention guides where to look next
based on both bottom-up (image-based) and top-down (task-dependent) cues [26].
As such, attention implements an information processing bottleneck, only allowing
a small part of the incoming sensory information to reach short-term memory and
visual awareness [15, 12]. That is, instead of attempting to fully process the massive
sensory input in parallel, nature has devised a serial strategy to achieve near real-
time performance despite limited computational capacity: Attention allows us to
break down the problem of scene understanding into rapid series of computationally
less demanding, localized visual analysis problems.

These orienting and scene analysis functions of attention are complemented by a
feedback modulation of neural activity at the location and for the visual attributes of
the desired or selected targets. This feedback is believed to be essential for binding
the different visual attributes of an object, such as color and form, into a unitary
percept [52, 22, 41]. That is, attention not only serves to select a location of interest,
but also enhances the cortical representation at that location. As such, focal visual
attention is often compared to a rapidly shiftable spotlight [57, 7], which scans our
visual environment both overtly (with accompanying eye movements) or covertly
(with the eyes fixed).

Finally, attention is involved in triggering behavior, and consequently is intimately
related to recognition, planning and motor control [31]. Of course, not all of vision
is attentional, as we can derive coarse understanding from presentations of visual
scenes that are too brief for attention to explore the scene. Vision thus relies on so-
phisticated interactions between coarse, massively parallel, full-field pre-attentive
analysis systems and the more detailed, circumscribed and sequential attentional
analysis system.

In what follows, we focus on several critical aspects of selective visual attention:
First, the brain area involved in its control and deployment; second, the mecha-
nisms by which attention is attracted in a bottom-up or image-based manner towards
conspicuous or salient locations in our visual environment; third, the mechanisms
by which attention modulates the early sensory representation of attended stimuli;
fourth, the mechanisms for top-down or voluntary deployment of attention; and fifth,
the interaction between attention, object recognition and scene understanding.

1.2 Brain Areas
The control of focal visual attention involves an intricate network of brain areas,

spanning from primary visual cortex to prefrontal cortex. In a first approximation,
selecting where to attend next is carried out, to a large extent, by distinct brain struc-
tures from recognizing what is being attended to. This suggests that a cooperation be-
tween “two visual systems” is used by normal vision [16]: Selecting where to attend
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next is primarily controlled by the dorsal visual processing stream (or “where/how”
stream) which comprises cortical areas in posterior parietal cortex, whereas the ven-
tral visual processing stream (or “what” stream), comprising cortical areas in infer-
otemporal cortex, is primarily concerned with localized object recognition [56]. It is
important to note, however, that object recognition in the ventral stream can bias the
next attentional shift, for example via top-down control when an object is recognized
that suggests where the next interesting object may be located. Similarly, we will see
how attention strongly modulates activity in the object recognition system.

Among the brain regions participating to the deployment of visual attention in-
clude most of the early visual processing areas and the dorsal processing stream
(Figure 1). These include the lateral geniculate nucleus of the thalamus (LGN) and
cortical areas V1 (primary visual cortex) through the parietal cortex along the dorsal
stream [50]. In addition, overt and covert attention have been shown to be closely re-
lated, as revealed by psychophysical [47, 46, 19, 28], physiological [1, 29, 9, 44], and
imaging [10, 36] studies. Directing covert attention thus involves a number of sub-
cortical structures that are also instrumental in producing directed eye movements.
These include the deeper parts of the superior colliculus; parts of the pulvinar; the
frontal eye fields in the macaque and its homologue in humans; the precentral gyrus;
and areas in the intraparietal sulcus in the macaque and around the intraparietal and
postcentral sulci and adjacent gyri in humans.

1.3 Bottom-Up Control
One important mode of operation of attention is largely unconscious and driven by

the specific attributes of the stimuli present in our visual environment. This so-called
bottom-up control of visual attention can easily be studied using simple visual search
tasks as described below. Based on these experimental results, several computational
theories and models have been developed for how attention may be attracted towards
a particular object in the scene rather than another.

1.3.1 Visual Search and Pop-Out

One of the most effective demonstrations of bottom-up attentional guidance uses
simple visual search experiments, in which an odd target stimulus to be located by
the observer is embedded within an array of distracting visual stimuli [52]. Origi-
nally, these experiments suggested a dichotomy between situations where the target
stimulus would visually pop-out from the array and be found immediately, and situ-
ations where extensive scanning and inspection of the various stimuli in the display
was necessary before the target stimulus could be located (Figure 2). The pop-out
cases suggest that the target can be effortlessly located by relying on preattentive vi-
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Figure 1

Major brain areas involved in the deployment of selective visual attention. Al-
though single-ended arrows are shown to suggest global information flow (from
the eyes to prefrontal cortex), anatomical studies suggest reciprocal connections,
with the number of feedback fibers often exceeding that of feedforward fibers
(except between retina and LGN). Cortical areas may be grouped into two main
visual pathways: the dorsal “where/how” pathway (from V1 to DLPFC via
PPC) is mostly concerned with spatial deployment of attention and localiza-
tion of attended stimuli, while the ventral “what” pathway (from V1 to VLPFC
via IT) is mostly concerned with pattern recognition and identification of the
attended stimuli. In addition to these cortical areas, several subcortical areas
including LGN and Pul play important roles in controlling where attention is
to be deployed. Key to abbreviations: LGN: lateral geniculate nucleus; Pul:
Pulvinar nucleus; V1, V2, V4: early cortical visual areas; MT: Medial temporal
area; PPC: posterior parietal cortex; DLPFC: dorsolateral prefrontal cortex;
IT: inferotemporal cortex; VLPFC: ventrolateral prefrontal cortex.

sual processing over the entire visual scene. In contrast, the conjunctive search cases
suggest that attending to the target is a necessary precondition to being able to iden-
tify it as being the unique target, thus requiring that the search array be extensively
scanned until the target becomes the object of attentional selection.

Further experimentation has revealed that the original dichotomy between the fast,
parallel search observed with pop-out displays and slower, serial search observed
with conjunctive displays represent the two extremes of a continuum of search diffi-
culty [58]. Nevertheless, these experiments clearly demonstrate that if a target differs
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significantly from its surround (in ways which can be characterized in terms of visual
attributes of the target and distractors), it will immediately draw attention towards it-
self. Thus, these experiments evidence how the composition of the visual scene alone
is a potentially very strong component of attentional control, guiding attention from
the bottom of the visual processing hierarchy up.

1.3.2 Computational Models and the Saliency Map

The feature integration theory of Treisman and colleagues [52] that was derived
from visual search experiments has served as a basis for many computational models
of bottom-up attentional deployment. This theory proposed that only fairly simple
visual features are computed in a massively parallel manner over the entire incoming
visual scene, in early visual processing areas including primary visual cortex. Atten-
tion is then necessary to bind those early features into a more sophisticated object
representation, and the selected bound representation is (to a first approximation)
the only part of the visual world which passes though the attentional bottleneck for
further processing.

The first explicit neurally-plausible computational architecture of a system for the
bottom-up guidance of attention was proposed by Koch and Ullman [27], and is
closely related to the feature integration theory. Their model is centered around a
saliency map, that is, an explicit two-dimensional topographic map that encodes for
stimulus conspicuity, or salience, at every location in the visual scene. The saliency
map receives inputs from early visual processing, and provides an efficient control
strategy by which the focus of attention simply scans the saliency map in order of
decreasing saliency.

This general architecture has been further developed and implemented, yielding
the computational model depicted in Figure 3 [24]. In this model, the early stages
of visual processing decompose the incoming visual input through an ensemble of
feature-selective filtering processes endowed with contextual modulatory effects. In
order to control a single attentional focus based on this multiplicity in the representa-
tion of the incoming sensory signals, it is assumed that all feature maps provide input
to the saliency map, which topographically represents visual salience, irrespectively
of the feature dimension by which a given location was salient. Biasing attention to
focus onto the most salient location is then reduced to drawing attention towards the
locus of highest activity in the saliency map. This is achieved using a winner-take-
all neural network, which implements a neurally distributed maximum detector. In
order to prevent attention from permanently focusing onto the most active (winner)
location in the saliency map, the currently attended location is transiently inhibited in
the saliency map by an inhibition-of-return mechanism. After the most salient loca-
tion is thus suppressed, the winner-take-all network naturally converges towards the
next most salient location, and repeating this process generates attentional scanpaths
[27, 24].

Many successful models for the bottom-up control of attention are architectured
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Figure 2

Search array experiments of the type pioneered by Treisman and colleagues.
The top two panels are examples of pop-out cases where search time (here
shown as the number of locations fixated before the target if found) is small
and independent of the number of elements in the display. The bottom panel
demonstrates a conjunctive search (the target is the only element that is dark
and oriented like the brighter elements); in this case, a serial search is initi-
ated, which will require more time as the number of elements in the display is
increased.

around a saliency map. What differentiates the models, then, is the strategy em-
ployed to prune the incoming sensory input and extract salience. In an influential
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Typical architecture for a model of bottom-up visual attention based on a
saliency map. The input image is analyzed by a number of early visual fil-
ters, sensitive to stimulus properties such as color, intensity and orientation, at
several spatial scales. After spatial competition for salience within each of the
resulting feature maps, input is provided to a single saliency map from all of
the feature maps. The aximum activity in the saliency map is the next attended
location. Transient inhibition of this location in the saliency map allows the
system to shift towards the next most salient location.

model mostly aimed at explaining visual search experiments, Wolfe [59] hypoth-
esized that the selection of relevant features for a given search task could be per-
formed top-down, through spatially-defined and feature-dependent weighting of the
various feature maps. Although limited to cases where attributes of the target are
known in advance, this view has recently received experimental support from studies
of top-down attentional modulation (see below).

Tsotsos and colleagues [55] implemented attentional selection using a combina-
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tion of a feedforward bottom-up feature extraction hierarchy and a feedback selective
tuning of these feature extraction mechanisms. In this model, the target of attention
is selected at the top level of the processing hierarchy (the equivalent of a saliency
map), based on feedforward activation and on possible additional top-down biasing
for certain locations or features. That location is then propagated back through the
feature extraction hierarchy, through the activation of a cascade of winner-take-all
networks embedded within the bottom-up processing pyramid. Spatial competition
for salience is thus refined at each level of processing, as the feedforward paths not
contributing to the winning location are pruned (resulting in the feedback propaga-
tion of an “inhibitory beam” around the selected target).

Itti et al. [25, 23, 24] recently proposed a purely bottom-up model, in which spatial
competition for salience is directly modeled after non-classical surround modulation
effects. The model employs an iterative scheme with early termination. At each
iteration, a feature map receives additional inputs from the convolution of itself by
a large difference-of-Gaussians filter. The result is half-wave rectified, with a net
effect similar to a winner-take-all with limited inhibitory spread, which allows only
a sparse population of locations to remain active. After competition, all feature maps
are simply summed to yield the scalar saliency map. Because it includes a complete
biological front-end, this model has been widely applied to the analysis of natural
color scenes [23]. The non-linear interactions implemented in this model strongly
illustrate how, perceptually, whether a given stimulus is salient or not cannot be
decided without knowledge of the context within which the stimulus is presented.

Many other models have been proposed, which typically share some of the com-
ponents of the three models just described. In view of the affluence of models based
on a saliency map, it is important to note that postulating centralized control based
on such map is not the only computational alternative for the bottom-up guidance
of attention. In particular, Desimone and Duncan [15] argued that salience is not
explicitly represented by specific neurons, but instead is implicitly coded in a dis-
tributed modulatory manner across the various feature maps. Attentional selection is
then performed based on top-down weighting of the bottom-up feature maps that are
relevant to a target of interest. This top-down biasing (also used in Wolfe’s Guided
Search model [59]) requires that a specific search task be performed for the model to
yield useful predictions.

1.4 Top-Down Modulation of Early Vision
The general architecture for the bottom-up control of attention presented above

opens two important questions on the nature of the attentional bottleneck. First, is it
the only means through which incoming visual information may reach higher levels
of processing? Second, does it only involve one-way processing of information from
the bottom-up, or is attention a two-way process, also feeding back from higher
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centers to early processing stages?

1.4.1 Are we blind outside of the focus of attention?

Recent experiments have shown how fairly dramatic changes applied to a visual
scene being inspected may go unnoticed by human observers, unless those changes
occur at the location currently being attended to. These change blindness experi-
ments [38, 40] can take several forms, yielding essentially the same conclusions.
One implementation consists of alternatively flashing two versions of a same scene
separated by a blank screen, with the two versions differing very obviously at one
location (for example, a scene in which a jet airplane is present and one of its reac-
tors has been erased from one of the two photographs to be compared). Although the
alteration is obvious when one directly attends to it, it takes naive observers several
tens of seconds to locate it. Not unexpectedly, instances of this experiment which are
the most difficult for observers involve a change at a location that is of little interest
in terms of understanding and interpreting the scene (for example, the aforemen-
tioned scene with an airplane also contains many people, who tend to be inspected
in priority).

These experiments demonstrate the crucial role of attention in conscious vision:
unless we attend to an object, we are unlikely to consciously perceive it in any detail
and detect when it is altered. However, as we will see below, this does necessarily
mean that there is no vision other than through the attention bottleneck.

1.4.2 Attentional Modulation of Early Vision

A number of psychophysical end electrophysiological studies indicate that we are
not entirely blind outside the focus of attention. At the early stages of processing,
responses are still observed even if the animal is attending away from the receptive
field at the site of recording [54], or is anesthetized [21]. Behaviorally, we can also
perform fairly specific spatial judgments on objects not being attended to [6, 14],
though those judgments are less accurate than in the presence of attention [30, 61].
This is in particular demonstrated by dual-task psychophysical experiments in which
observers are able to simultaneously discriminate two visual stimuli presented at two
distant locations in the visual field [30].

While attention thus appears not to be mandatory for early vision, it has recently
become clear that it can vigorously modulate, top-down, early visual processing,
both in a spatially-defined and in a non-spatial but feature-specific manner [33, 53,
2]. This modulatory effect of attention has been described as enhanced gain [54],
biased [32, 35] or intensified [30] competition, enhanced spatial resolution [61], or
as modulated background activity [8], effective stimulus strength [42] or noise [17].

Of particular interest in a computational perspective, a recent study by Lee et
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al. [30] measured psychophysical thresholds for five simple pattern discrimination
tasks (contrast, orientation and spatial frequency discriminations, and two spatial
masking tasks; 32 thresholds in total). They employed a dual-task paradigm to mea-
sure thresholds either when attention was fully available to the task of interest, or
when it was poorly available because engaged elsewhere by a concurrent attention-
demanding task. The mixed pattern of attentional modulation observed in the thresh-
olds (up to 3-fold improvement in orientation discrimination with attention, but only
20% improvement in contrast discrimination) was quantitatively accounted for by a
computational model. It predicted that attention strengthens a winner-take-all com-
petition among neurons tuned to different orientations and spatial frequencies within
one cortical hypercolumn [30], a proposition which has recently received additional
experimental support.

These results indicate that attention does not implement a feed-forward, bottom-
up information processing bottleneck. Rather, attention also enhances, through feed-
back, early visual processing for both the location and visual features being attended
to.

1.5 Top-Down Deployment of Attention
The precise mechanisms by which voluntary shifts of attention are elicited remain

elusive, although several studies have narrowed down the brain areas primarily in-
volved [20, 11, 24]. Here we focus on two types of experiments that clearly demon-
strate how, first, attention may be deployed on a purely voluntary basis onto one of
several identical stimuli (so that none of the stimuli is more salient than the others),
and, second, how eye movements recorded from observers inspecting a visual scene
with the goal of answering a question about that scene are dramatically influenced
by the question being answered.

1.5.1 Attentional Facilitation and Cueing

Introspection easily reveals that we are able to voluntarily shift attention towards
any location in our visual field, no matter how inconspicuous that location may be.
More formally, psychophysical experiments may be used to demonstrate top-down
shifts of attention. A typical experiment involves cueing an observer towards one of
several possible identical stimuli presented on a computer screen. The cue indicates
to the observer where to focus on, but only at a high cognitive level (e.g., verbal cue),
so that nothing in the display would directly attract attention bottom-up towards the
desired stimulus. Detection or discrimination of the stimulus at the attended location
are significantly better (e.g., lower reaction time or lower psychophysical thresholds)
than at uncued locations. These experiments hence suggest that voluntarily shifting
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attention towards a stimulus improves the perception of that stimulus.
Similarly, experiments involving decision uncertainty demonstrate that if a stimu-

lus is to be discriminated by a specific attribute that is known in advance (e.g., dis-
criminate the spatial frequency of a grating), performance is significantly improved
compared to situations where one randomly chosen of several possible stimulus at-
tributes are to be discriminated (e.g., discriminate the spatial frequency, contrast or
orientation of a grating). Thus, we appear to also be able to voluntarily select not
only where to attend to, but also the specific features of a stimulus to be attended.
These results are closely related to and consistent with the spatial and featural nature
of attentional modulation mentioned in the previous section.

1.5.2 Influence of Task

Recording eye movements from human observers while they inspect a visual scene
has revealed a profound influence of task demands on the pattern of eye movements
generated by the observers [60]. In a typical experiment, different observers exam-
ine a same photograph while their eye movements are being tracked, but are asked
to answer different questions about the scene (for example, estimate the age of the
people in the scene, or determine the country in which the photograph was taken).
Although all observers are presented with an identical visual stimulus, the patterns
of eye movements recorded differ dramatically depending on the question being ad-
dressed by each observer. These experiments clearly demonstrate that task demands
play a critical role in determining where attention is to be focused next.

Building in part on eye tracking experiments, Stark and colleagues [37] have pro-
posed the scanpath theory of attention, according to which eye movements are gen-
erated almost exclusively under top-down control. The theory proposes that what
we see is only remotely related to the patterns of activation of our retinas; rather, a
cognitive model of what we expect to see is at the basis of our percept. The sequence
of eye movements which we make to analyze a scene, then, is mostly controlled top-
down by our cognitive model and serves the goal of obtaining specific details about
the particular scene instance being observed, to embelish the more generic internal
model. This theory has had a number of successful applications to robotics control,
in which an internal model of a robot’s working environment was used to restrict the
analysis of incoming video sequences to a small number of circumscribed regions
important for a given task.

1.6 Attention and Scene Understanding
We have seen how attention is deployed onto our visual environment through a co-

operation between bottom-up and top-down driving influences. One difficulty which
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then arises is the generation of proper top-down biasing signals when exploring a
novel scene; indeed, if the scene has not been analyzed and understood yet using
thorough attentional scanning, how can it be used to direct attention top-down? Be-
low we explore two dimensions of this problem: First, we show how already from
a very brief presentation of a scene we are able to extract its gist, basic layout, and
a number of other characteristics. This suggests that another part of our visual sys-
tem, which operates much faster than attention, might be responsible for this coarse
analysis; the results of this analysis may then be used to guide attention top-down.
Second, we explore how several computer vision models have used a collaboration
between the where and what subsystems to yield sophisticated scene recognition al-
gorithms. Finally, we cast these results into a more global view of our visual system
and the function of attention in vision.

1.6.1 Is scene understanding purely attentional?

Psychophysical experiments pioneered by Biederman and colleagues [4] have
demonstrated how we can derive coarse understanding of a visual scene from a sin-
gle presentation that is so brief (80 ms or less) that it precludes any attentional scan-
ning or eye movement. A particularly striking example of such experiments consists
of presenting to an observer a rapid succession of unrelated photographs of natural
scenes at a high frame rate (over 10 scenes/s). After presentation of the stimuli for
several tens of seconds, observers are asked whether a particular scene, for exam-
ple an outdoors market scene, was present among the several hundred photographs
shown. Although the observers are not made aware in advance of the question, they
are able to provide a correct answer with an overall performance well over chance
(Biederman, personal communication). Furthermore, observers are able to recall a
number of coarse details about the scene of interest, such as whether it contained
human persons, or whether it was highly colorful or rather dull.

These and many related experiments clearly demonstrate that scene understanding
does not exclusively rely on attentional analysis. Rather, a very fast visual subsystem
which operates in parallel with attention allows us to rapidly derive the gist and
coarse layout of a novel visual scene. This rapid subsystem certainly is one of the
key components by which attention may be guided top-down towards specific visual
locations.

1.6.2 Cooperation between Where and What

Several computer vision models have been proposed for extended object and scene
analysis that rely on a cooperation between an attentional (where) and localized
recognition (what) subsystems.

A very interesting instance was recently provided by Schill et al. [45]. Their
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model aims at performing scene (or object) recognition, using attention (or eye
movements) to focus on those parts of the scene being analyzed which are most
informative in disambiguating its identity. To this end, a hierarchical knowledge tree
is trained into the model, in which leaves represent identified objects, intermediary
nodes represent more general object classes, and links between nodes contain senso-
rimotor information used for discrimination between possible objects (i.e., bottom-
up feature responses to be expected for particular points in the object, and eye move-
ment vectors targeted at those points). During the iterative recognition of an object,
the system programs its next fixation towards the location which will maximally in-
crease information gain about the object being recognized, and thus will best allow
the model to discriminate between the various candidate object classes.

Several related models have been proposed [43, 48, 49, 13, 24], in which scan-
paths (containing motor control directives stored in a “where” memory and locally
expected bottom-up features stored in a “what” memory) are learned for each scene
or object to be recognized. The difference between the various models comes from
the algorithm used to match the sequences of where/what information to the visual
scene. These include using a deterministic matching algorithm (i.e., focus next onto
the next location stored in the sequence being tested against the new scene), hidden
Markov models (where sequences are stored as transition probabilities between lo-
cations augmented by the visual features expected at those locations), or evidential
reasoning (similar to the model of Schill and colleagues). These models typically
demonstrate strong ability to recognize complex grayscale scenes and faces, in a
translation, rotation and scale independent manner, but cannot account for non-linear
image transformations (e.g., three-dimensional viewpoint change).

While these models provide very interesting examples of cooperation between a
fast attentional cueing system and a slower localized feature analysis system, their
relationship to biology has not been emphasized beyond the general architectural
level. Teasing apart the brain mechanisms by which attention, localized recognition,
and rapid computation of scene gist and layout collaborate in normal vision remains
one of the most exciting challenges for modern visual neuroscience [39].

1.6.3 Attention as a component of vision

In this section, we have seen how vision relies not only on the attentional sub-
system, but more broadly on a cooperation between crude preattentive subsystems
for the computation of gist, layout and for bottom-up attentional control, and the at-
tentive subsystem coupled with the localized object recognition subsystem to obtain
fine details at various locations in the scene (Figure 4).

This view on the visual system raises a number of questions which remain fairly
controversial. These are issues of the internal representation of scenes and objects
(e.g., view-based versus three-dimensional models, or a cooperation between both),
and of the level of detail with which scenes are stored in memory for later recall and
comparison to new scenes (e.g., snapshots versus crude structural models). Many
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Figure 4

Simplified architecture for the understanding of visual scenes, extended from
Rensink’s (2000) triadic model. The incoming visual scene is analyzed by low-
level visual processes (top) in a massively-parallel, full-field and pre-attentive
manner up to a fairly simple “proto-object” representation. Building on this
representation, gist and layout of the scene are computed in a fast, probably
feedforward and non-iterative manner (left). Also building on this represen-
tation, the saliency map describes potentially interesting locations in the scene
(right). Guided by saliency, gist, layout, and behavioral goal specifications, fo-
cal attention selects a region of the scene to be analyzed in further details. The
result of this localized object recognition is used to incrementally refine the cog-
nitive understanding of the contents of the scene. This understanding as well as
the goal specification bias the low-level vision through feedback pathways.
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of these issues extend well beyond the scope of the present discussion of selective
visual attention. Nevertheless, it is important to think of attention within the broader
framework of vision and scene understanding, as this allows us to delegate some of
the visual functions to non-attentional subsystems.

1.7 Discussion
We have reviewed some of the key aspects of selective visual attention, and how

these contribute more broadly to our visual experience and unique ability to rapidly
comprehend complex visual scenes.

Looking at the evidence accumulated so far on the brain areas involved with the
control of attention has revealed a complex interconnected network, which spans
from the earliest stages of visual processing up to prefrontal cortical areas. To a large
extent, this network serves not only the function of guiding attention, but is shared
with other subsystems, including the guidance of eye movements, the computation
of early visual features, the recognition of objects and the planning of actions.

Attention is guided towards particular locations in our visual world under a com-
bination of competing constraints, which include bottom-up signals derived from the
visual input, and top-down contraints derived from task priority and scene under-
standing. The bottom-up control of attention is clearly evidenced by simple visual
search experiments, in which our attention is automatically drawn towards targets
that pop-out from surrounding distractors. This bottom-up guidance is certainly the
best understood component of attention, and many computational models have been
proposed which replicate some of the human performance at exploring visual search
stimuli. Most models have embraced the idea that a single topographic saliency map
may be an efficient centralized representation for guiding attention. Several of these
models have been applied to photographs of natural scenes, yielding remarkably
plausible results. One of the important theoretical results derived from bottom-up
modeling is the critical role of cortical interactions in pruning the massive sensory
input such as to extract only those elements of the scene that are conspicuous.

In part guided by bottom-up cues, attention thus implements an information pro-
cessing bottleneck, which allows only select elements in the scene to reach higher
levels of processing. But not all vision is attentional, and even though we may easily
appear blind to image details outside the focus of attention, there is still substantial
residual vision of unattended objects. That is, the attentional bottleneck is not strict,
and some elements in the visual scene may reach our conscious perception if they are
sufficiently salient, even though attention might be engaged elsewhere in the visual
environment.

In addition, attentional selection appears to be a two-way process, in which not
only selected scene elements are propagated up the visual hiererchy, but the represen-
tation of these elements is also enhanced down to the earliest levels of the hierarchy
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through feedback signals. Thus attention not only serves the function of selecting
a subset of the current scene, but also profoundly alters the cortical representation
of this subset. Computationally, one mechanism for this enhancement which enjoys
broad validity across a variety of visual discrimination tasks is that attention may
activate a winner-take-all competition among visual neurons representing different
aspects of a same visual location, thus making more explicit what the dominant char-
acteristic of that location is. Top-down attentional modulation can be triggered not
only on the basis of location, but also towards specific visual features.

Introspection easily makes evident that attention is not exclusively controlled bottom-
up. Indeed, we can with little effort focus attention onto any region of our visual
field, no matter how inconspicuous. Volitional shifts of attention are further evi-
denced by psychophysical experiments in which improved performance is observed
when subjects know in advance where or what to look for, and hence presumably
use a volitional shift of attention (across space or feature dimensions) in preparation
for performing a visual judgement. The exact mechanisms by which volitional atten-
tion shifts are elicited remain rather elusive, but it has been widely demonstrated that
high-level task specifications, such as a question asked about a visual scene, have
dramatic effects on the deployment of attention and eye movements onto the scene.

Finally, it is important to consider attention not as a visual subsystem of its own
that would have little interaction with other aspects of vision. Indeed, we have seen
that it is highly unlikely, or impossible under consitions of very brief presentation,
that we analyze and understand complex scenes only through attentional scanning.
Rather, attention, object recognition, and rapid machanisms for the extraction of
scene gist and layout cooperate in a remarkable multi-threaded analysis which ex-
ploits different time scales and levels of details within interacting processing streams.
Although tremendous progress has been made over the past century of the scientific
study of attention, starting with William James, many of the key components of this
complex interacting system remain poorly understood and elusive, thus posing ever
renewed challenges for future neuroscience research.
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