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Abstract: Visually conspicuous, or so-called salient, stimuli often have the capability of attracting fo-

cal visual attention towards their locations. Several computational architectures subserving this bottom-up,

stimulus-driven, spatiotemporal deployment of attention are reviewed in this article. The resulting compu-

tational models have applications not only to the prediction of visual search psychophysics, but also, in the

domain of machine vision, to the rapid selection of regions of interest in complex, cluttered visual environ-

ments. We describe an unusal such application, to the objective evaluation of advertising designs.

One of the most important functions of selective visual attention is to rapidly direct our gaze towards ob-

jects of interest in our visual environment. From an evolutionary standpoint, this rapid orienting capability

is critical in allowing living systems to quickly become aware of possible preys, mates or predators in their

cluttered visual world. It has become clear that attention guides where to look next based on both bottom-up

(image-based) and top-down (task-dependent) cues (James, 1890/1981). As such, attention implements an

information processing bottleneck, only allowing a small part of the incoming sensory information to reach

short-term memory and visual awareness [Linking Attention to Learning, Expectation, Competi-

tion and Consciousness]. That is, instead of attempting to fully process the massive sensory input in

parallel, nature has devised a serial strategy to achieve near real-time performance despite limited compu-

tational capacity: Attention allows us to break down the problem of scene understanding into rapid series

of computationally less demanding, localized visual analysis problems.

Developing computational models of how attention is deployed onto complex visual scenes has been a long-

standing challenge for fundamental neuroscience, with additional motivation provided by numerous potential

applications in artificial vision, for tasks including surveillance, automatic target detection, navigational aids

and robotics control. Here we focus on biologically-plausible computational modeling of bottom-up guidance

of attention towards salient image locations, while [Attention and scene understanding] casts these

models within broader frameworks that combine bottom-up and top-down attention control signals.

1 Preattentive Features and Saliency Map

Development of computational models of attention started with the Feature Integration Theory of Treisman

& Gelade (1980), which proposed that only simple visual features are computed in a massively parallel
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manner over the entire visual field. Attention is then necessary to bind those early features into a united

object representation, and the selected bound representation is the only part of the visual world that passes

though the attentional bottleneck. This idea was further specified into a neurally-plausible computational

architecture by Koch and Ullman (Koch & Ullman, 1985) and later by Itti et al. (Itti et al., 1998) (Figure 1).

These models are centered around a “saliency map,” that is, an explicit two-dimensional topographic map

which encodes for stimulus conspicuity, or salience, at every location in the visual scene. The saliency map

receives inputs from early visual processing, and provides an efficient control strategy by which the focus of

attention simply scans the saliency map in order of decreasing saliency.

Several important lessons have been learned from these models and the empirical studies that helped

better specify them. First, different features contribute with different strengths to perceptual salience (Noth-

durft, 2000), and this relative feature weighting can be influenced in a task-dependent manner, top-down

(Wolfe, 1994) and through training. Second, at a given visual location, there is little evidence for strong

interactions across different visual modalities, such as color and orientation (Nothdurft, 2000). This is not

too surprising from a computational standpoint, as one would otherwise expect these interactions to also be

trainable and modulable top-down, resulting in the ability to learn to efficiently detect conjunctive targets,

which we lack (Figure 2). Third and most importantly, what appears to matter in guiding bottom-up

attention is feature contrast, not local absolute feature strength. Indeed, not only are most early visual neu-

rons tuned to some type of local spatial contrast (such as center-surround or oriented edges), but neuronal

responses are also strongly modulated by context, in a manner that extends far beyond the range of the

classical receptive field (Allman et al., 1985). In a first approximation, the computational consequences of

non-classical surround modulation are two-fold: First, a broad inhibitory effect is observed when a neuron

is excited with its preferred stimulus but that stimulus extends beyond the neuron’s classical receptive field,

compared to when the stimulus is restricted to the classical receptive field and the surrounding visual space

either is empty or contains non-preferred stimuli (Sillito et al., 1995). Second, long-range excitatory con-

nections in V1 appear to enhance responses of orientation-selective neurons when stimuli extend to form a

contour (Gilbert et al., 2000). These interactions are thought to play a critical role in perceptual grouping.

The net result is that activity in early cortical areas is surprisingly sparse when monkeys are free-viewing

natural scenes, compared to the vigorous responses that can be elicited by small laboratory stimuli presented

in isolation (Figure 2).

2 Implemented Architectures

Many successful models for the bottom-up control of attention are architectured around a saliency map.

What differentiates the models, then, is the strategy employed to prune the incoming sensory input and

extract salience.
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One strategy proposed by Wolfe (1994) has been to rely on top-down knowledge to emphasize those

features which may distinguish a target item being searched for from surrounding clutter: if you are searching

for a red object, emphasize the contribution of color to your saliency map, while toning down the influence of

orientation. The FeatureGate model of Cave et al. provides a full neural network implementation of a system

that combines this idea with bottom-up mechanisms [The FeatureGate Model of Visual Selection],

so that a target may attract attention based on combined bottom-up salience and top-down expectations. In

a similar vein, Rao et al. [Probabilistic Models of Attention based on Iconic Representations

and Predictive Coding] have proposed that saliency could be computed from the Euclidean distance

between a target feature vector (that is, a target signature, in terms of respective amounts of various colors,

orientations, etc present in the target) and feature vectors extracted at every location in the visual input.

Extending these ideas in a Bayesian framework, Torralba has proposed that a coarse global analysis of the

entire scene’s gist may provide contextual guidance cues [Contextual Influences on Saliency]: for

example, when searching for cars, rapidly realizing that you are looking at a city scene and having coarsely

understood its layout may help you more rapidly focus onto street surfaces, where cars are likely to be.

Studying richer interactions between low-level vision and a saliency map, Tsotsos and colleagues [The

Selective Tuning Model of Attention] implemented attentional selection using a combination of a

feedforward bottom-up feature extraction hierarchy and a feedback selective tuning of these feature extraction

mechanisms. In this model, the target for attention focusing is selected at the top level of the processing

hierarchy (the equivalent of a saliency map), based on feedforward activation and on possible additional top-

down biasing for certain locations or features. That location is then propagated back through the feature

extraction hierarchy, through the activation of a cascade of winner-take-all networks embedded within the

bottom-up processing pyramid. Spatial competition for salience is thus refined at each level of processing,

as the feedforward paths not contributing to the winning location are pruned (resulting in the feedback

propagation of an “inhibitory beam” around the selected target).

In view of the affluence of models based on a saliency map, it is important to note that postulating

centralized control based on such map is not the only computational alternative for the bottom-up guidance

of attention. For example, Zhaoping [The primary visual cortex creates a bottom-up saliency

map] proposed that salience may not necessarily be computed in a separate brain area from the low-level

visual features, and that instead it may be expressed as a modulation onto feature responses observed in

V1. Similarly, Desimone and Duncan (Desimone & Duncan, 1995) argued that salience is not explicitly

represented by specific neurons, but instead is implicitly coded in a distributed modulatory manner across

the various feature maps. Attentional selection is then performed based on top-down weighting of the

bottom-up feature maps that are relevant to a target of interest. Several models have successfully applied

this strategy to synthetic stimuli [How the detection of objects in natural scenes constrains
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attention in time], [A Neurodynamical Model of Visual Attention].

Although originally a theoretical construct supported by sparse experimental evidence, the idea of a

unique, centralized saliency map appears today to be challenged by the multiplicity of candidate neural

correlates recently unraveled, including areas in the lateral intraparietal sulcus of the posterior parietal

cortex, the frontal eye fields, the inferior and lateral subdivisions of the pulvinar and the superior colliculus

(Kustov & Robinson, 1996; Gottlieb et al., 1998). One possible explanation for this multiplicity could be

that some of the neurons in all those areas indeed are concerned with the explicit computation of salience,

but are found at different stages along the sensory-motor processing stream. For example, other functions

have also been assigned to the posterior parietal cortex, such as that of mapping retinotopic to head-centered

coordinate systems and of memorizing targets for eye or arm movements (Andersen et al., 1990; Dominey &

Arbib, 1992). More detailed experimental studies are thus needed to tell apart possible subtle differences in

the functions and representations found in those brain areas. Most probably, the main difference between

those brain regions is the balance between their role in perception and action [Dissociation of Selection

from Saccade Programming].

3 Attention and recognition

So far, we have reviewed computational modeling and supporting experimental evidence for a basic archi-

tecture concerned with the bottom-up control of attention: Early visual features are computed in a set of

topographic feature maps; spatial competition for salience prunes the feature responses to only preserve

a sparse representation of the few most conspicuous locations; all feature maps are then combined into a

unique scalar saliency map; and, finally, the saliency map is scanned by the focus of attention through the

interplay between winner-take-all and inhibition-of-return. While such simple computational architecture

may accurately describe how attention is deployed within the first few hundreds of milliseconds following the

presentation of a new scene, it is obvious that a more complete model of attentional control must include

top-down, volitional biasing influences as well. The computational challenge, then, lies in the integration of

bottom-up and top-down cues, such as to provide coherent control signals for the focus of attention, and in

the interplay between attentional orienting and scene or object recognition.

An very interesting example of integration in a model was recently provided by Schill et al. [A Model

of Attention and Recognition by Information Maximization]. Their model aims at performing

scene (or object) recognition, using attention (or eye movements) to focus on those parts of the scene being

analyzed which are most informative in disambiguating its identity. To this end, a hierarchical knowledge

tree is trained into the model, in which leaves represent identified objects, intermediary nodes represent more

general object classes, and links between nodes contain sensorymotor information used for discrimination

between possible objects (i.e., bottom-up feature response to be expected for particular points in the object,
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and eye movements targeted at those points). During the iterative recognition of an object, the system

programs its next fixation towards the location which will maximally increase information about the object

being recognized, in that it will best allow the model to discriminate between the various current candidate

object classes.

Rybak et al. [Attention-Guided Recognition Based on “What” and “Where” Representa-

tions: A Behavioral Model] proposed a related model, in which scanpaths (containing motor control

directives stored in a “where” memory and locally expected bottom-up features stored in a “what” memory)

are learned for each scene or object to be recognized. When presented with a new image, the model starts

by selecting candidate scanpaths based on matching bottom-up features in the image to those stored in the

“what” memory. For each candidate scanpath, the model deploys attention according to the directives in

the “where” memory, and compares the local contents of the “what” memory at each fixation to the local

image features. This model has demonstrated strong ability to recognize complex grayscale scenes and faces,

in a translation, rotation and scale independent manner.

A more extreme view at the basis of the models just mentioned is the “scanpath theory” of Stark (Noton

& Stark, 1971), in which the control of eye movements is almost exclusively under top-down control. The

theory proposes that what we see is only remotely related to the patterns of activation in our retinas, as

suggested by our permanent illusion of crisp perception over our entire visual environment, although only

the central 2◦ of our foveal vision provide such crisp sampling of the visual world. Rather, the scanpath

theory argues that a cognitive model of what we expect to see is the basis for our percept; the sequence of eye

movements which we make to analyze a scene, then, is mostly controlled top-down by our cognitive model of

that scene. This theory has had a number of successful applications to robotics control, in which an internal

model of a robot’s working environment was used to restrict the analysis of incoming video sequences to a

small number of circumscribed regions important for a given task [Scanpath Theory, Attention and

Image Processing Algorithms for Predicting Human Eye Fixations].

One important challenge for combined models of attention and recognition consists of finding suitable

neuronal correlates. Despite a biological inspiration in their architectures, the models just reviewed in

this section, indeed, do not relate in much detail to biological correlates of object recognition. Although

a number of biologically-plausible models have been proposed for object recognition in the ventral “what”

stream [Object recognition in cortex: Neural mechanisms, and possible roles for attention],

their integration to biological models mostly concerned with attentional control in the dorsal “where” stream

remains an open issue. This integration will, in particular, have to account for the increasing experimental

support for an object-based rather than purely spatial focus of attention [Neural Evidence for Object

Based Attention].
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4 Applications

Attention is a desirable mechanism not only for biological organisms, but also for efficient allocation of

resources in artificial systems [Saliency in Computer Vision]. Several chapters in the present volume

indeed explore how an attentional component may serve to build better sensing machines [Attentive

Wide-Field Sensing for Visual Telepresence and Surveillance], [Neuromorphic Selective

Attention Systems], [the role of visual attention in the control of locomotion], [Attention

Architectures for Machine Vision and Mobile Robots], [Attention for Computer Graphics

Rendering].

Here we relate a rather anecdotical but unusual application of attention models, to the quantitative

evaluation of advertising designs. In particular, we explore the problem of selecting among several candidate

images for a magazine’s cover. In creative and advertising design, current evaluation and selection criteria

for candidate artwork creations mostly relies on focus groups, where groups of expert and/or naive human

subjects compare the qualities and drawbacks of several competing design proposals. A question which arises,

then, is whether a more objective metric could be developed to rank competing proposals. One such metric,

particularly popular in the 1980s, has been to use eye-tracking devices to monitor eye movements of human

subjects viewing the candidate designs. However, the high cost and difficulty of implementation of such

evaluation has limited its applicability, and few advertising agencies appear to have developed eye-tracking

setups in-house.

Computational models of attention, to the extent to which they may indeed relatively well predict the

visual attractiveness of different locations in an artwork piece, may provide a simpler and more cost-effective

solution to the problem of developing rapid, objective and unbiased evaluation criteria. The assumption is

that locations marked as highly salient by the model ought to attract the gaze of a majority of potential

customers. A better design, then, is one where information which matters to the advertiser is conveyed at

these locations.

Post-sales market analysis in the domain of magazine sales have revealed that what sells a given magazine

issue is not the quality or beauty of the artwork present on the cover, but the catchy text messages which

tease casual viewers about the contents of the magazine (source: Peter Walker of McCann-Erickson, a

large multinational advertising agency). This allows one to set a fairly simple quantitative criterion for the

evaluation of various cover proposals: whichever candidate design has the highest average model-predicted

salience over the important text messages wins. An example of such application is shown in Figure 3. While

in one design most of the text messages are reliably marked as salient by the model, in the other approximately

the lower half of the text is ignored, because of its low contrast against a textured background.

This simple application certainly has limitations, in particular because a purely bottom-up model with

no object recognition or text reading capability was here used to evaluate the covers, but helps in opening
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the horizon of potential applications for attention models. In a similar vein, such models could also be used

to assist merchandising experts in optimally arranging their products on supermarket shelves, or to assist

product placement experts in optimizing the exposure of sponsor products in films or televised sports.

5 Summary and Conclusion

We have reviewed recent work on biologically-plausible computational models of attention, with a particular

emphasis on bottom-up control of attentional deployment. While much progress has been made in the past

few decades, the field of attention modeling still is very young and appears full of promises. In particular,

one of the grand challenges for the coming years will be in further developing system-level models where

attention interacts with object recognition, gist analysis, symbolic knowledge and top-down task demands

during complex goal-driven scene understanding [Attention and Scene Understanding]. Yet, already

today, attention modeling enjoys many exciting applications which also deserve to be further explored, from

automatic target detection to advertising design.
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Figure 1: (a) Koch and Ullman’s (1985) proposal for a computational model of bottom-up attention. Early
visual features are computed, in a massively parallel manner, in a set of pre-attentive feature maps receiving
retinal input. Activity from all feature maps is combined at each location, giving rise to responses in
the topographic saliency map. A winner-take-all network detects the most salient location and directs
attention towards it, such that only features from this location are routed towards further analysis and central
representation. (b) Extended architecture of such scheme proposed by Itti et al. (1998). It directly builds
on the architecture proposed in (a), but provides a complete implementation of all processing stages. Visual
features are computed using linear filtering at eight spatial scales, followed by center-surround differences
among six pairs of scales, which compute local spatial contrast in each feature dimension, for a total of
42 maps. An iterative lateral inhibition scheme instantiates non-classical surround competition for salience
within each feature map. After competition, feature maps are combined into a single “conspicuity map” for
each feature type. The seven conspicuity maps then are summed into the unique topographic saliency map.
The saliency map is implemented as a 2D lattice of artificial leaky integrator neurons. The winner-take-all
(WTA), also implemented using leaky integrators, detects the most salient location and directs attention
towards it. An Inhibition-of-Return mechanism transiently suppresses this location in the saliency map, such
that attention is autonomously directed to the next most salient image location.
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Figure 2: Model performance on noisy versions of pop-out and conjunctive tasks of the type pioneered by
Treisman and Gelade (1980). Dark and light bars in the figure represent isoluminant red and green colored
bars in the original displays, with strong speckle noise added. Dashed lines show chance value, based on
the size of the simulated visual field and the size of the candidate recognition area (corresponds to the
performance of an observer who would scan, on average, half of the distractors prior to finding the target).
Solid lines (mean±S.D.) show performance of the model. The typical search slopes of human subjects in
feature search and conjunction search, respectively, are successfully reproduced by the model: search is easy
and slopes are flat in the pop-out cases (when the target differs from the distractors in one feature dimension,
e.g., color), while search is more difficult and search time increases with the number of items in the display
when the target differs from the distractors by a conjunction of two features (e.g., here the target is the only
bar which is both light and tilted counter-clockwise from vertical). Each stimulus was drawn inside a 64×64
pixels box, and the radius of the focus of attention was fixed to 32 pixels. For a fixed number of stimuli, we
tested twenty randomly generated images in each task; the saliency map and winner-take-all were initialized
to zero (corresponding to a uniformly black visual input) prior to each trial.
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Figure 3: Example application to the quantitative evaluation of advertising designs. Each row shows, from
left to right, the first 10, 20 and 30 attention shifts predicted by our model. For the cover shown on the
top row, good coverage of all text messages is predicted after 30 shifts, indicating that the text is likely to
attract attention and gaze. Under the assumption that these text messages are what sells the magazine,
the top cover hence is evaluated as a good design by the model. In contrast, after 30 attention shifts
on the cover of the bottom row, large regions of text have remained unvisited by the model. This is not
too surprising, as the ignored portions of text are masked by the strongly textured background and are
hard to read. Nevertheless, both of the covers shown here have actually been published in two different
issues of the British magazine “Good Housekeeping.” Hence, current quality control and design selection
processes, mostly based on subjective evaluations by focus groups, could benefit from the addition of an
objective measure like average saliency of text regions in the images. Photographs courtesy of Peter Walker,
McCann-Erickson.
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