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We investigated the contribution of low-level saliency to human eye movements in
complex dynamic scenes. Eye movements were recorded while naive observers
viewed a heterogeneous collection of 50 video clips (46,489 frames; 4—6 subjects
per clip), yielding 11,916 saccades of amplitude >2°. A model of bottom-up visual
attention computed instantaneous saliency at the instant each saccade started and at
its future endpoint location. Median model-predicted saliency was 45% the max-
imum saliency, a significant factor 2.03 greater than expected by chance. Motion
and temporal change were stronger predictors of human saccades than colour,
intensity, or orientation features, with the best predictor being the sum of all
features. There was no significant correlation between model-predicted saliency
and duration of fixation. A majority of saccades were directed to a minority of
locations reliably marked as salient by the model, suggesting that bottom-up sal-
iency may provide a set of candidate saccade target locations, with the final choice
of which location of fixate more strongly determined top-down.

Humans and other mammals make extensive use of rapid eye movements to
direct the highest-resolution region of their foveated eyes towards locations and
objects of current behavioural interest. A productive approach for gaining a
better understanding of foveated vision at the system level has been to use
eyetracking devices, to evaluate image statistics at the locations visited by the
eyes (Motter & Belky, 1998; Shen, Reingold, & Pomplun, 2000). In the context
of natural scenes, most such research has thus far largely focused on char-
acterizing local image properties at fixated locations. For instance, Zetzsche et
al. (Barth, Zetzsche, & Rentschler, 1998; Zetzsche, Schill, Deubel, Krieger,
Umkehrer, & Beinlich, 1998) inferred from human eyetracking recordings that
the eyes preferentially fixated regions with multiple superimposed orientations,
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like corners. These authors then proceeded to derive nonlinear local operators to
detect these regions. In a related study, Reinagel and Zador (1999) analysed the
local grey-level distributions along eye scanpaths generated by humans while
free-viewing greyscale images. They found the spatial contrast at fixated loca-
tions to be significantly higher than, on average, at random locations, and the
pairwise pixel correlations (image uniformity) to be significantly lower. A
complementary approach was proposed by Privitera and Stark (2000), who
computed the linear combination of a collection of image processing operators
(e.g., local cross detector, Laplacian of Gaussian, local entropy measure, etc.)
that maximized overlap between regions of high algorithmic responses and
regions fixated by human observers. Their study provided a new tool for creating
feature detectors that would capture some of the local image properties that
attracted the observer’s attention and eye movements.

One extension of these approaches, further investigated here, consists of
explicitly taking into account the long-range interactions across possibly distant
locations in the visual field, as extensively documented in monkey electro-
physiology and human psychophysics (Cannon & Fullenkamp, 1991; Gallant,
Connor, & van Essen, 1998; Gilbert & Wiesel, 1989; Li & Gilbert, 2002; Sil-
lito, Grieve, Jones, Cudeiro, & Davis, 1995; Polat & Sagi, 1993). That is,
instead of attempting to characterize fixated locations solely in terms of their
local image properties, computational models have been applied to correlate
human fixations to measures of context-dependent saliency (conspicuity) of
objects embedded within background clutter. A recent example is the study of
Parkhurst, Law, and Niebur (2002), which compared eye movement scanpaths
recorded from human observers presented with static colour scenes to a sal-
iency map derived from a computational model of bottom-up attention (Itti,
Koch, & Niebur, 1998). An important aspect of the model used in this study is
that it explicitly incorporates a spatial competition for saliency, by which foci
of high neural activity at possibly distant locations in the visual field compete
for representation in the saliency map (Itti & Koch, 2001b). Parkhurst et al.
found a significantly elevated model-predicted saliency at human fixations
compared to random fixations (also see Peters, Itti, & Koch, 2002, for related
results), an effect which was stronger for the first few fixations on a given
image than for subsequent fixations.

Bottom-up saliency is only one of the many factors that contribute to the
spatiotemporal deployment of attention and eye movements over complex
dynamic visual scenes (Henderson & Hollingworth, 1999; Itti & Koch, 2001a;
Rensink, 2000). The rapid understanding of the scene’s gist and rough layout is
also thought to provide priors on where objects of current behavioural interest
may be located and to facilitate their recognition; for example, a vase is likely to
be located on a tabletop (Friedman, 1979; Hollingworth & Henderson, 1998;
Oliva & Schyns, 1997; Potter & Levy, 1969; Torralba, 2003), but see (Bie-
derman, Teitelbaum, & Mezzanotte, 1983). Further, as specific objects are
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searched for, low-level visual processing may be biased for the features of these
objects (Ito & Gilbert, 1999; Moran & Desimone, 1985; Motter, 1994; Rey-
nolds, Pasternak, & Desimone, 2000; Treue & Martinez Trujillo, 1999; Treue &
Maunsell, 1996; Yeshurun & Carrasco, 1998). This top-down modulation of
bottom-up processing results in an ability to guide search towards targets of
interest (Wolfe, 1994, 1998; Wolfe, Cave, & Franzel, 1989). In more general
terms, task has been widely shown to affect eye movements (Peebles & Cheng,
2003; Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995; Yarbus, 1967),
and training and general expertise as well (Moreno, Reina, Luis, & Sabido,
2002; Nodine & Krupinski, 1998; Savelsbergh, Williams, van der Kamp, &
Ward, 2002). In addition, eye movements may often be executed in a purely
volitional manner; for example, recognizing one object and knowing its typical
spatial relationship to another target object may allow an observer to orient
towards the target. Reading is an important example where eye movements are
strongly influenced by the known spatial arrangement of words on a page and by
sentence parsing and comprehension processes (Legge, Hooren, Klitz, Mans-
field, & Tjan, 2002; Reichle, Rayner, & Pollatsek, 2003). Similarly, memorizing
the locations of objects found along an initial exploratory scanpath on a new
scene may allow observers to later orient back to some of these objects in an
efficient manner (Henderson & Hollingworth, 2003; Hollingworth, Williams, &
Henderson, 2001). Finally, eye movements from different observers exhibit
different idiosyncrasies, which may result from possibly different internal world
representations (Noton & Stark, 1971), different search strategies, and other
factors (Andrews & Coppola, 1999).

Given all the factors that contribute to eye movements, it is hence expec-
ted and generally widely accepted that top-down influences may much
more strongly determine gaze allocation than bottom-up influences. Our
focus in this study is an attempt to quantify the contribution of low-level sal-
iency to human scanpaths over complex dynamic scenes, and to analyse
which low-level visual features contributing to saliency (such as colour, inten-
sity, motion) are more strongly correlated with human eye movements. Our
main contributions are two-fold: First, we study dynamic scenes (video
clips); previous work has focused on static scenes (still images). Adding a
temporal dimension brings a number of complications in trying to realisti-
cally predict saliency with a computational model. Also, when viewing nat-
ural video scenes in a realistic setting, top-down influences certainly are
expected to be the largely predominant factor in determining the next fixa-
tion location, such that it is unclear whether bottom-up saliency would play
a significant role at all. Second, we push the analysis beyond the observa-
tion that, overall, model-predicted saliency is elevated at the locations of
human eye fixations, in particular by analysing the distribution of saliency
at eye fixations and by attempting to tease out which low-level visual
features were strongest at locations fixated by humans.
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METHODS

We recorded eye movements from human observers watching a heterogeneous
collection of 50 video clips, and segmented the recordings into saccade, blink
and fixation/smooth-pursuit periods. For each human recording, we then
employed a neurobiological model of bottom-up attention to explicitly predict
bottom-up saliency at every scene location. At the beginning of each human
saccade, we sampled the model-predicted saliency around the location of the
future endpoint of that saccade. Our analysis focuses on comparing these sal-
iency samples at saccade targets to maximum and randomly sampled saliency
measures. These measures were analysed to determine the extent to which
humans tended to saccade towards locations in their visual field that the model
predicted were salient.

Our purpose in this study is not to attempt to maximize agreement between
humans and model, but to quantitatively estimate the contribution of bottom-up
processing to everyday eye movements. We hypothesized that if saliency was
higher at saccade targets compared to other locations in the visual field, it would
suggest that saliency may have contributed to choosing the saccade targets.
Because of the many other factors mentioned above that influence eye move-
ments, most of which are generally considered to be top-down, our starting
hypothesis was that the fraction of eye movements directed to the most salient
location in the scene would probably be very small—that is, top-down factors
would dominate in determining the spatiotemporal allocation of gaze. One of
our goals was to estimate that fraction in a quantitative manner. Here we
assumed that our available computational model was a reasonable approxima-
tion of bottom-up processing, but we did not attempt to tune it to the specific
data used in this study.

Human eye movement recording

Human subjects were naive to the purpose of the experiment and were USC
students and staff (three females, five males, mixed ethnicities, ages 23-32,
normal corrected or uncorrected vision). They were instructed to watch the
video clips, and to attempt to follow the main actors and actions presented in the
clips, as they would later be asked some general questions about what they had
watched. It was emphasized that the question would not pertain to small details
(e.g., specific small objects, colours of clothing, or text messages), but would
instead help us evaluate their general understanding of the contents of the clips.
These instructions had two main purposes. First, we avoided instructionless free
viewing, since in preliminary testing this had often yielded largely idiosyncratic
patterns of eye movements, as subjects would lose interest and disengage from
the experiment over time. Second, as mentioned in our introduction, our purpose
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in this study was not to attempt to maximize agreement between human eye
movements and model predictions, but rather to quantify the extent to which
low-level bottom-up saliency computed from responses of very simple feature
detectors may contribute to the guidance of eye movements in normal viewing
conditions. This is why we asked subjects to ‘‘follow the main actors and
actions”’ rather than to ‘‘attend to the most salient image locations’’, and why
we did not explain to subjects our computational notion of bottom-up saliency.
While the notion of main actor is essentially a top-down one, requiring an
evaluation of all actors and a decision of which one is the most interesting, our
data hence quantifies the extent to which low-level saliency may bias this
decision. While the bulk of our results should be interpreted carefully given our
task definition, we also tested one control subject to whom no other instructions
than to watch the video clips and enjoy were given (subject PA, not included in
any of the group analyses). The procedure was approved by USC’s Internal
Review Board, and informed consent was obtained from all subjects. A set of
calibration points and clips not part of the experiment were shown to familiarize
the subjects with the displays.

Stimuli were presented on a 22-inch computer monitor (LaCie Corp; 640
x 480, 60.27 Hz double-scan, mean screen luminance 30 cd/m?, room 4
cd/m?). Subjects were seated on an adjustable chair at a viewing distance
of 80 cm (28° x 21° usable field-of-view) and rested on a chinrest. A
nine-point eye-tracker calibration was performed every five clips. Each cali-
bration point consisted of fixating first a central cross, then a blinking dot
at a random point on a 3 x 3 matrix. The experiment was self-paced and
subjects could stretch before any nine-point calibration. For every video
clip, subjects fixated a central cross, pressed a key to start, at which point
the eyetracker was triggered, the cross blinked for 1206 ms, and the clip
started. Stimuli were presented on a Linux computer, under SCHED FIFO
scheduling (process would keep 100% of the CPU for as long as needed;
Finney, 2001). Each clip (MPEG-1 encoded) was entirely preloaded into
memory. Frame displays were hardware-locked to the vertical retrace of the
monitor (one movie frame was shown for two screen retraces, yielding a
playback rate of 30.13 fps). Microsecond-accurate (Finney, 2001) time-
stamps were stored in memory as each frame was presented, and later
saved to disk to check for dropped frames. No frame drop ever occurred
and all timestamps were spaced by 33,185 + 2 pus.

Eye position was tracked using a 240 Hz infrared-video-based eyetracker
(ISCAN, Inc. model RK-464). Point of regard (POR) was estimated from
comparative tracking of both the centre of the pupil and the specular reflection
of the infrared light source on the cornea. This technique renders POR mea-
surements immune to small head translations (tested up to +10 mm in our
laboratory). Thus, no stricter restraint than a chinrest was necessary, which is
important as head restraint has been shown to alter eye movements (Collewijn,
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Steinman, Erkelens, Pizlo, & van der Steen, 1992). All analysis was performed
offline. Linearity of the POR-to-stimulus coordinate mapping was excellent, as
previously tested using a 7 x 5 calibration matrix, justifying the use of a4 x 3
matrix here. The eyetracker calibration traces were filtered for blinks, then
automatically segmented into two fixation periods (the central cross, then the
flashing point), or discarded if that segmentation failed a number of quality
control criteria. From the nine (or fewer) resulting calibration points, an affine
POR-to-stimulus transform was computed in the least-square sense, outlier
calibration points were eliminated, and the affine transform was recomputed. If
fewer than six points remained after outlier elimination, recordings were dis-
carded until the next calibration. A thin-plate-spline nonlinear warping algo-
rithm was then computed to account for any small residual nonlinearity
(Bookstein, 1989). Only 25% of the thin-plate-spline deformation was applied to
the data (0% would induce no warping, 100% would ensure a zero residual error
on all calibration points), as observers often slightly jittered around a given
calibration point. Thus, we assumed almost perfect linearity of the tracker, but
possible noise in individual calibration traces. Data was discarded until the next
calibration if residual errors greater than 20 pixels on any calibration point or 10
pixels overall remained. Eye traces for the five video clips following a cali-
bration were remapped to screen coordinates, or discarded if they failed some
quality control criteria (excessive eye-blinks, loss of tracking due to head motion
or excessive wetting of the eye, loss of corneal reflection due to excessive
squinting). Calibrated eye traces were visually inspected when superimposed
with the corresponding video clips, but none was discarded based upon that
subjective inspection.

Fifty video clips were selected from a database of eighty-five, with the only
selection criterion of maximizing diversity. All clips had been digitized from
analogue interlaced NTSC video sources using a consumer-grade framegrabber
(WinTV Go, Hauppage, Inc.) and no attempt was made at deinterlacing or
colour-correcting them. The clips included:

beverly: Daytime outdoors scenes filmed at a park in Beverly Hills
gamecube: Various video games (first-person, racing, etc.)

monica: Outdoors day/night scenes at the Santa Monica Promenade
saccadetest: A synthetic disk drifting on a textured background
standard: Daylight scenes filmed at a crowded openair rooftop bar
tv-action: An action scene from a television movie

tv-ads: Television advertisements

tv-announce: A television programmes announcement

tv-music: A music video interleaved with some football scenes
tv-news: Various television newscasts

tv-sports: Televised basketball and football games

tv-talk: Television talk-shows and interviews.
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Each clip comprised between 164 and 2814 frames (5.5-93.9 s), for a total of
46,489 distinct frames (25 min and 42.7 s). Selection of clips was made prior to
the experiments and was not altered after recording and data analysis. Subjects
viewed each clip at most once, to ensure that they were naive to its contents.
Five subjects viewed all clips and three only viewed a few; after our quality-
control criteria were applied, calibrated eye movement data was available for
four to six subjects on each clip, yielding a total of 235 calibrated eye movement
traces.

The calibrated eye movement data was further segmented into saccades, eye
blinks, and fixation/smooth pursuit periods (Sparks, 2002). In a preprocessing
step, eye blinks were eliminated from the recordings. Blinks were characterized
in our recordings by a measured pupil diameter falling to zero. These periods
were marked in the datasets, so that visual input to the model would be turned
off during blinks. Our dataset contained occurrences of blinked saccades, that is,
blinks (as defined by the measured pupil diameter of zero) with distant eye
position at the end of the blink period compared to its beginning. This slightly
complicated the extraction of saccades from the dataset, as, typically, high-
velocity saccadic eye motion preceded and followed these particular blinks (that
is, these blinks occurred within a fraction of the temporal extent of a saccade).
We note that, behaviourally, blinking during saccades seems an efficient strat-
egy in terms of minimizing the total amount of time during which visual
information will not be reliably exploitable by the central nervous system. For
this reason, in our preprocessing, we linearly interpolated eye position during
these blinked saccades, so that they could be detected as legitimate saccades in
the next processing step. Similarly, we also linearly interpolated eye position
during normal blinks, so that fixation periods could be reliably detected. Thus,
the output of this preprocessing step consisted of fully continuous eye position
traces, with blink periods marked so that visual input would be turned off in the
model.

The segmentation of saccades was based on instantaneous eye velocity
computed from a low-pass-filtered version of the blink-interpolated eye move-
ment traces. Although more sophisticated methods have been proposed (Sal-
vucci & Goldberg, 2000), this simple approach worked reliably with our high
sampling rate of 240 Hz. Periods of the recordings where smoothed eye velocity
exceeded 20°/s were marked as candidate saccade periods. The eye position at
the end of each saccade was considered the saccade target location in our
analysis. Candidate saccades of amplitude smaller than 2° (a threshold chosen
rather arbitrarily) were not considered as saccades in our analysis, but were
instead reverted to the pool of fixation/smooth pursuit periods. The rationale for
this decision to not consider very small saccades was that they were unlikely to
indicate a shift of foveation from one object to another (possibly salient) object,
but rather, we hypothesized, would mainly reflect small adjustments of eye
position onto various parts of a same object (no matter its saliency). Thus, very
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small saccades would be of little interest in determining whether humans tended
to orient towards salient objects or not.

In summary, our data recording and segmentation yielded a total of 11,916
saccades, for each of which the starting eye position, starting time, and target
location were known.

Bottom-up attention model

The model computes a topographic saliency map (Figure 1), which quantita-
tively predicts how conspicuous every location in the input scenery is. Its
implementation has been previously described in details (Koch & Ullman, 1985;
Itti & Koch, 2000, 2001a; Itti et al., 1998). Retinal input is processed in parallel
by 12 multiscale low-level feature maps, which detect local spatial dis-
continuities using simulated centre-surround neurons (Hubel & Wiesel, 1962;
Kuffler). The 12 neuronal features implemented are sensitive to colour contrast
(red/green and blue/yellow, separately), temporal flicker (onset and offset of
light intensity, combined), intensity contrast (light-on-dark and dark-on-light,
combined), four orientations (0°, 45°, 90°, 135°), and four oriented motion
energies (up, down, left, right) (Itti & Koch, 2001a; Itti et al., 1998). Centre and
surround scales are obtained using dyadic pyramids with nine levels (from level
0, the original image, to level 8, reduced by a factor 256 horizontally and
vertically). Centre-surround differences are then computed as pointwise differ-
ences across pyramid levels, for combinations of three centre scales (¢ = {2, 3,
4}) and two centre-surround scale differences (6 = {3, 4}); thus, six feature maps
are computed for each of the 12 features, yielding a total of 72 feature maps.
After long-range competition for salience, all feature maps are summed (Itti &
Koch, 2001b) into the unique scalar saliency map that guides attention. The
saliency map is at scale 4 (40 x 30 pixels given our 640 x 480 video frames).

Each feature map is endowed with internal dynamics that operate a strong
spatial within-feature and within-scale competition for activity, followed by
within-feature, across-scale competition (Itti & Koch, 2001b). These long-range
within-feature competitive interactions are a crucial component of our compu-
tational framework, as they are mainly responsible in the model for ‘“pop-out’’
effects observed behaviourally in visual search psychophysics (Treisman &
Gelade, 1980; Wolfe, 1998). In a first approximation, the computational effect
of these interactions is similar to applying a soft winner-take-all to each feature
map before it is combined into the saliency map (Itti & Koch, 2001b). Consider
for instance a simplistic scene with a single red disc and a single blue disc on a
black background. Our model would predict that both discs are equally salient, if
the red and blue colours are matched for luminance and their chrominances are
optimally tuned to the model’s red/green and blue/yellow feature detectors,
respectively. The red disc would be mainly represented in the red/green feature
maps with approximately matching centre-surround receptive field sizes, while
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the blue disc would mainly excite blue/yellow feature maps with matching
receptive field sizes. Starting from this baseline image, now consider the
addition of three additional red discs identical to the first one and placed at
distant locations from the initial two discs. The model’s long-range interactions
in the red/green feature maps would yield competition among the four red discs
present in this new display, resulting in reduced saliency for each of the red
discs. In contrast, no such competition would be triggered in the model’s blue/
yellow feature maps, and the blue disc would remain as salient as it initially was.
Resultingly, after the various feature maps are summed into the saliency map,
the blue disc would be more salient than any of the red discs, and would be the
most salient location in the display (pop-out effect). Thus, although our low-
level feature detectors do respond to local image properties, the addition of
nonlinear competition for saliency in our model renders the predicted saliency of
a given object dependent on every other object and on background clutter
present in the input images (Itti & Koch, 2001b).

We have previously proposed several implementations for these long-range
interactions (Itti & Koch, 2000, 2001b; Itti et al., 1998), yielding saliency maps
with different overall sparseness (Itti, 2004). While Parkhurst et al. (2002) used
fairly weak interactions, yielding relatively dense saliency maps where many
salient locations are highlighted (Itti et al., 1998), here we use one iteration of
the iterative scheme proposed by Itti and Koch (2001b), which yields much
sparser saliency maps that typically highlight only 3—5 locations in the entire
image.

The saliency map itself is modelled as a two-dimensional layer of leaky
integrator neurons (Itti & Koch, 2000). It receives as input the sum of all feature
maps, after that sum is subjected one more time to nonlinear competition for
saliency. Its main function is to provide temporal smoothing of the saliency
values, and no further interactions across distant locations are implemented at
this stage. Consequently, in this study we directly evaluate the saliency values at
current human eye position, even though some reaction delay exists between
appearance of a stimulus element and the possible decision to orient the eyes
towards that location. Thus, we here do not investigate in detail the effects of
stimulus-to-response latency, but instead temporally low-pass filter the saliency
map. The integrators are simulated using difference equations at a temporal
resolution of 0.1 ms of simulated time (Itti & Koch, 2000).

Comparing model predictions to human eye
movements

The computational model was used in the following manner to evaluate bottom-
up saliency at the target locations of human saccades. Each of the 235 human
eye movement recordings was considered in turn. For a given recording, the
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corresponding video clip was presented to the model, at the same resolution and
framerate as it had been presented to human subjects.

It is important to note that in this study we do not attempt to replicate many of
the details of human foveated active vision. In particular, the video images are
processed in their native frame of reference (as opposed to a retinal frame of
reference that would be centred at current human eye position), and previously
explored model components (Itti, Dhavale, & Pighin, 2003) for foveation, overt
inhibition-of-return (IOR), and saccadic suppression were not used here. The
rationale for this decision was that some of these factors may have top-down
components (e.g., IOR) which would make the interpretation of our results in
terms of bottom-up processing more difficult. Rather than employing a hybrid
framework (e.g., including foveation but not IOR nor coordinate transforms)
like, for example, Parkhurst et al. (2002) did, in the present study we attempt to
compute a pure form of stimulus saliency, which is an intrinsic property of the
video stimuli and is independent of the observer. It is understood that the actual
bottom-up computations performed by humans observers are modulated by
foveation, coordinate transforms, short-term visual memory, and other factors,
so that the internal representation of saliency may substantially differ from the
intrinsic image saliency computed here. Hence the saliency computed here does
not so much attempt to replicate the internal representation of saliency in the
human brain than the external intrinsic stimulus saliency.

RESULTS

At the beginning of each human saccade, several measurements were made on
the model’s current internal state, to quantify the extent to which that human
saccade was aimed towards a location of high model-predicted saliency. The
following samples were taken:

e S Saliency at human eye position, computed as the maximum over a cir-
cular aperture of diameter 5.6° (nine pixels in the saliency map) of the
model’s dynamical saliency map sampled at the moment a saccade starts and
around the location of the future endpoint of that saccade. Thus, a high value
of S, indicates that, when it starts, a saccade is targeted towards a location
that is highly salient at that moment.

e S, Saliency at a random location, computed in exactly the same manner as S,
except that a random endpoint within the image (with uniform probability) is
considered rather than a given human saccade endpoint. Thus, a high value of
S, indicates that, at the moment a saccade starts, saliency is high around a
randomly chosen location within the image. This provides a control for the
evaluation of human saccades, by estimating the overall spatial density of
active locations in a saliency map, i.e., the degree of sparseness or selectivity
of the map.
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® S..x: Maximum saliency over entire frame, computed as the maximum over
the spatial extent of the entire dynamical saliency map, at the same instant as
the other measurements were taken. This provides a very strict test on the
saliency of a saccade target, in that Sj, = S, if and only if the saccade is
directed towards the currently most salient location in the entire visual field.
It also allows us to compare saliency values across frames and video clips, by
normalizing S;, and S, relative to Syax.

Analysis by saccade amplitude

A first observation concerns the distribution of saccade amplitudes, which shows
a strong bias for shorter saccades (Figure 2). Given this bias, we next asked
whether saccade length would be a factor in our measures of saliency at the
endpoint of saccades. Figure 3a shows a histogram of the ratios of saliency
sampled, at the time each human saccade began, around the location of the
future saccade endpoint (S),), compared to the maximum saliency over the entire
saliency map at the same moment (Sy,.x). For comparison, the histogram of the
same ratios but using the saliency at random saccade endpoint locations (S,) is

4,000 H

total n = 11,916

2,000 -

Number of saccades

2.4 6°..8 10°..12° 14°..16°

Saccade amplitude (degrees of visual angle)

Figure 2. The distribution of observed saccade amplitudes during our experiments shows a strong
bias for shorter saccades. Saccades shorter than 2° were treated as fixation/smooth-pursuit in our
analysis. The count for each bar is inclusive of the lower bound but exclusive of the higher bound
(e.g., the bar labelled 8°..10° shows the number of saccades where 8° < amplitude < 10°).
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2.4 6.8 10°..12° 14°..16°
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Figure 3. Distribution, by saccade amplitude, of the ratios of saliency at human saccade target
locations to the maximum saliency (S;/Smax; panel a), and of the ratios of saliency at random
locations to the maximum saliency (S,/Smax; panel b). For each saccade, all measurements were taken
at the moment the saccade began. Overall, S;/Sp.x Was higher than S,/S,.x, in a highly significant
manner (see text). Shorter and longer human saccades show slightly higher S,/S,,.x (significant effect
in a one-way ANOVA; see text), but random saccades do not. Note that the histogram in panel b is
indexed by human saccade amplitude like that of panel a (so that a given amplitude range includes
the same number of saccades in both panels), not by random saccade amplitude.
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shown in Figure 3b. Looking at the first order statistics of the plotted dis-
tributions, saliency around saccade endpoints was higher than around random
locations, with a median S;,/S;,.x of 0.45 over all 11,916 saccades, compared to a
median S,/Sp.x of 0.22 (Table 1). A paired-sample nonparametric sign test
rejected the null hypothesis that the samples S;/S.x and the samples S,/Spax
could have been drawn from distributions with same medians, in a highly sig-
nificant manner (p < 1023, This difference was also highly significant for all
saccade amplitude ranges shown in Figure 3. That is, the sign test suggested a
significant difference with p < 107'% or better also when applied only to saccades
with amplitudes between 2° and 4°, as well as when applied to saccades with
amplitudes in any of the ranges shown in Figure 3. A one-way ANOVA sug-
gested that human saccade amplitude (binned into the eight ranges of Figure 3)
had a significant effect onto S/Smax, F(7,11908) = 5.22, p < 107>, eight groups
and 11,916 saccades, but not onto S,/Spax, F(7, 11908) = 1.86, n.s. Indeed, very
short and very long saccades tended to exhibit slightly higher S,/Sp,ax, but that
trend was not present in the S,/S,,., data.

A breakdown of the data into various subsamples is shown in Table 1.
Overall, for all subsamples except one (the clip tv-announce), median S;,/Spax
was still significantly elevated compared to median S,/Syax. This breakdown as
well as the previous breakdown by saccade amplitude suggest that our main
finding of an overall elevated S;/Sy.x compared to S,/S.x Was not primarily
driven by a subset of the recorded saccades; instead, significant differences
between humans and random were found for all saccade amplitudes, all
observers, and all but one classes of video clips. This suggests a strong con-
tribution of intrinsic image saliency, as defined by our computational model, to
human eye movements in a wide range of situations. In particular, the first, first
five, and first ten saccades onto a given video clip corresponded to higher ratios
of medians, indicating a stronger correlation between bottom-up saliency and
human saccade targets during the first few seconds of viewing a new video clip.
Further comparisons between the various subgroups of saccades presented in
Table 1 are presented in the following sections.

Our control subject (PA in Table 1), studied independently and not part of
any of the group analyses, was given no instruction to follow the main actors and
actions in the video clips, yet fell within the range of variability of other sub-
jects. However, this subject showed slightly higher overall saccade frequency
(approximately 2.4 saccades/s on average while the average of all other subjects
was approximately 1.7 saccades/s). This seems reasonable as the instruction of
““following”’ the main actors and actions may have incited the other subjects to
lock onto these scene elements for extended periods of time.

This first set of results confirms with dynamic scenes previous studies which
suggested that, overall, humans look are image regions of higher saliency than
would be expected by chance (Parkhurst et al., 2002). To summarize, median S,/
Smax Was about twice the median S,/S,,.x, a factor significantly greater than unity.



TABLE 1
Average and median S,/Snax and S,/Smax for various subsamples of our overall pool
of saccades

Samples n Median Median Sign Ratio of  Kullback-Leibler
Si/Smax S,/Smax test medians distance
All 11,916 045 0.22 p <1022 2.03 0.195 + 0.006
First 235 0.57 024 p<4x107'6 232 0.414 + 0.062
First 5 1,173 0.48 0.21 p<3x10°? 231 0.279 + 0.021
First 10 2322 049 022 p<2x10° 225 0.278 + 0.015
cz 2,369 046 022 p<5x10°° 2.12 0.219 + 0.016
JC 1,527 041 023 p<8x10* 1.76 0.147 + 0.011
\v4 1,965 0.44 0.21 p<9x10°® 2.10 0.186 + 0.015
NM 578 047 022 p<3x102* 219 0.267 + 0.031
ND 1,602 045 023 p<2x10*® 2.00 0.197 + 0.014
RC 3,006 047 022 p<7x10% 2.12 0.218 + 0.013
VN 731 048 023 p<2x10% 207 0.237 + 0.027
vC 138 028 0.20 p<7x10* 1.42 0.101 + 0.041
beverly 593 0.55 015 p<6x107% 371 0.522 + 0.045
gamecube 3,442 0.50 017 p<2x10"° 287 0.281 + 0.014
monica 770 0.52 0.23 p<2x10* 2.28 0.303 + 0.029
saccadetest 72 1.00 0.00 p<2x10 8 0 1.284 4+ 0.338
standard 876  0.43 027 p<3x10" 1.58 0.116 + 0.014
tv-action 105 053 0.22 p<6x10° 243 0.408 + 0.101
tv-ads 844 045 026 p<4x10® 1.73 0.161 + 0.017
tv-announce 153 0.38 0.35 n.s. 1.08 0.083 4+ 0.028
tv-music 244 041 0.34 p<.02 1.23 0.146 + 0.030
tv-news 2,556 037 023 p<8x10* 1.60 0.114 + 0.009
tv-sports 1,292 046 026 p<2x10¥ 1.76 0.145 + 0.015
tv-talk 989  0.46 0.23 p<107* 1.98 0.233 + 0.020
PA 3395 043 022 p<6x107® 1.99 0.172 + 0.011

Sign test: Significance level with which the null hypothesis was rejected that the samples S;/Siax
and S,/Smax could have been drawn from distributions with equal median, as tested with a
nonparametric paired-sample sign test. Ratio of medians: Ratio of the median S,/S,.x to the median
S,/Smax- Kullback-Leibler distance: KL distance between the histogrammed distributions of S;,/Smax
and of S,/Smax (higher distances indicate more different distributions). All: All 11,916 saccades
recorded in our experiments. First: all the first saccades of our 235 individual recordings (50 clips
and 4-6 subjects per clip). First 5, First 10: All the first five and first ten saccades of our 235
recordings (some recordings had fewer than five or ten saccades). CZ to VC: Breakdown by human
subject. beverly to tv-talk: Breakdown by category of video clips. Median S;/Syax 18 significantly
higher than median S,/S,,,x for all but one clip (tv-announce). PA: Data from a control subject (not
included in any other analysis) who was given no instructions before watching the video clips.
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Analysis by ratios to maximum saliency

The observation of elevated median saliency at human saccade targets compared
to random targets is a fairly crude measure that does not take into account
possible differences in the shapes of the human and random distributions that
would not affect the median.

Hence, we further pushed our analysis to determine the fraction of saccades
that had been made to locations of various saliency relative to the maximum
saliency. In Figure 4, saccades were binned by their saliency ratio to the max-
imum saliency, both for human and corresponding random saccades. One
striking feature in this figure is that the number of saccades made to absolutely
not salient locations was much lower for human than random saccades; con-
versely, the number of saccades made to the single most salient location in the
display was much higher for human than random saccades.

To quantify these differences in shape of distributions, we computed the
Kullback-Liebler distance between the histogrammed distribution of S;,/S;ax
values and that of S,/Sp.x values. The Kullback-Leibler (KL) distance is a
general metric by which shape similarity between two arbitrary distributions
may be measured (Kullback, 1959). For two discrete distributions X and ¥ with
probability density functions x; and y;, the KL distance between X and Y is
nothing else than the relative entropy of X with respect to Y:

KL(X,Y) = xclog (;‘—’;) (1)
k

Note that this actually is not a distance, as it is not symmetric. Hence, in what
follows, the shorthand denomination of ‘‘KL distance’” always refers to the
KL distance from the human S;,/S.. distribution (X) to the random S,/Sp,.x
distribution (Y).

Table 1 (rightmost column) reports the KL distance for all saccades as well as
the various subgroups of saccades studied. A larger KL distance indicates that
the distribution of relative saliency at human saccade targets (as shown, for
example, in Figure 4a for all saccades) was more different from the distribution
of relative saliency at random saccade targets (as shown in Figure 4b for all
saccades). A KL distance of zero indicates no difference between the two dis-
tributions under consideration. To obtain an estimate of the relevant accuracy at
which the KL distances should be interpreted, we repeated the random saccade
generation process 100 times, and each time measured the corresponding KL
distances; the standard deviation computed over the 100 repeated distance
measurements for each subgroup of saccades then quantifies the dependence of
the KL metric onto the random saccade generation process.

The KL distance basically followed the same trend as the ratio of medians
for the saccade subgroups shown in Table 1 (although it will not always be the
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Figure 4. Distributions, by ratios S,/Sp.x (panel a) and S,/Si.x (panel b) of human and random
saccades. Each bar includes the lower bound and excludes the higher bound (e.g., the bar between 0.4
and 0.5 is for 0.4 < ratio < 0.5). In lighter shades are those saccades with ratio < 0.1 where the
absolute saliency was zero (noted as ‘“=0.0"’; saccades to an absolutely not salient location), and
those saccades with ratio > 0.9 where the absolute saliency was S;,.x (noted as “‘=1.0"’; saccades to
the single most salient location). The histogram for human saccades show a largely increased number
of saccades to the most salient location and a largely decreased number of saccades to not salient
locations, compared to the random saccades, as further analysed in Table 2.
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case in following sections). All KL distances in the table were significantly
higher than zero (stest, p < .01 or better). The first few saccades showed
higher KL distance in addition to the higher ratios of medians noted above.
Distributions of saliency at saccade targets for every observer taken individu-
ally were also significantly different from the random distributions. The same
result was observed with subgroups of video clips. The saccadetest clip con-
sisted of a single coloured disc jumping to various places on a uniformly tex-
tured blue background, and provided a simple control as there always was only
salient location to look at. For this clip, median S,/Sp,.x was 1.0, indicating that
more than half of the human saccades had been directed to the single most
salient location in the display (the jumping disc); in contrast, median S,/Spax
was 0.0, indicating that more than half of the random saccades had been made
to locations of zero model-predicted saliency. The corresponding KL distance
was 1.284 + 0.338, which gives an estimate of the values that may be obtained
in ideal conditions. Values obtained for other subgroups were generally lower,
indicating again that, although strong, bottom-up influences were clearly not
the only driver of eye movements, and top-down influences also played a
strong role as most other clips contained many potentially interesting objects
and actors.

A breakdown by ratios to maximum saliency is presented in Table 2. For a
given threshold value (0.25, 0.75, or 1.00), this table shows the number of
human and of random saccades targeted to regions with relative saliency above
threshold. A first interesting point from this analysis is that the frequency of
saccades directed to the single most salient location in the saliency map was
small, only 11.5% of all saccades. This suggests that a simple strategy consisting
of directing the eyes to the most active location in our saliency map would only
account for a small fraction of the observed eye movement traces, though in a
very reliable manner (only 4.0% of the random saccades were targeted to the
most salient location, a factor of almost three times smaller than the human
saccades). Given the sparseness of our saliency maps, as exemplified in Figures
5 and 6, it is reasonable to consider that a relative saliency value of 0.25 or more
indicates a location that was reliably detected by the model as salient (regions
with relative saliency below 0.25 essentially appear as black in the figures).
Considering all saccades, 72.3% of the human saccades were targeted towards
regions above that threshold, compared to 46.6% of random saccades. While it
probably is a wrong conclusion that all of these human saccades were primarily
driven bottom-up, certainly it seems that by and large human subjects were more
likely to target regions marked by the model as salient than would be expected
by chance. Further considerations of bottom-up compared to top-down influ-
ences are presented in the Discussion.

A second message of our study, thus, is that the proportion of saccades to the
most salient location in the display was small (11.5%) but overall much greater
than what would have been expected by chance alone. The proportion of human
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TABLE 2
Breakdown by ratios S;/Smax and S,/Siax
S/z/Smax S)/Smax
Samples n > 025 > 075 = 1.00 > 025 > 075 = 1.00
All 11,916 72.3% 24.5% 11.5% 46.6% 10.6% 4.0%
First 235 85.1% 33.2% 14.9% 49.4% 12.3% 5.1%
First 5 1,173 77.7% 26.6% 13.2% 44.8% 10.6% 4.3%
First 10 2,322 77.6% 26.9% 13.2% 46.3% 10.7% 4.3%
CzZ 2,369 72.8% 26.9% 12.7% 46.2% 11.7% 4.7%
IC 1,527 69.9% 21.0% 8.8% 47.9% 10.3% 3.5%
JZ 1,965 71.5% 24.2% 11.9% 45.5% 10.0% 3.0%
NM 578 74.7% 28.2% 13.0% 45.8% 10.0% 4.2%
ND 1,602 72.5% 23.5% 12.1% 47.3% 11.1% 4.2%
RC 3,006 73.1% 25.2% 11.6% 46.7% 10.0% 4.1%
VN 731 76.3% 23.9% 11.4% 47.2% 10.7% 4.5%
vC 138 54.3% 7.2% 2.2% 42.0% 10.1% 5.1%
beverly 593 79.1% 35.4% 21.1% 39.3% 9.9% 4.4%
gamecube 3,422 70.5% 29.5% 16.0% 41.2% 10.1% 4.0%
monica 770 81.0% 28.3% 10.1% 47.0% 11.2% 4.2%
saccadetest 72 68.1% 65.3% 54.2% 12.5% 8.3% 6.9%
standard 876 72.8% 17.8% 5.0% 53.0% 11.6% 4.0%
tv-action 105 86.7% 32.4% 8.6% 46.7% 11.4% 3.8%
tv-ads 844 74.2% 22.7% 8.8% 51.4% 10.7% 3.2%
tv-announce 153 69.3% 9.2% 2.6% 61.4% 14.4% 5.2%
tv-music 244 77.0% 17.2% 5.3% 61.1% 11.9% 3.3%
tv-news 2,556 67.9% 18.0% 8.1% 47.2% 10.7% 4.4%
tv-sports 1,292 74.1% 21.8% 8.6% 50.9% 11.1% 3.6%
tv-talk 989 72.9% 25.2% 12.0% 48.4% 9.5% 3.8%
PA 3,395 69.6% 23.8% 10.5% 45.5% 10.0% 3.7%

The row labels are the same as in Table 1.

saccades directed to overall salient locations was large (72.3%) and also much
larger than expected by chance (a factor of 1.55).

Contributions of individual low-level features

To study whether particular features in the model would be better predictors of
human saccadic targeting than others, we repeated the analysis, but using var-
iants of the model which only included one feature channel. The feature
channels thus considered separately were: color contrast (red/green and blue/
yellow double opponencies, combined), intensity contrast (light on dark and
dark on light, combined), orientation 0°, 45°, 90°, and 135°, combined), flicker



Figure 5. Example frames from our video clips. From left to right: Input to the model, input plus
explanatory markers generated by the model, and instantaneous saliency map. From top to bottom:
beverlyOl (frame 31/490), gamecube04 (frame 914/2083), monica03 (frame 483/1526), saccadetest
(frame 63/516), standard03 (frame 112/515), and tv-action01 (frame 142/567). During each frame
shown here, a human saccade was initiated, which would in subsequent frames follow the arrow
shown on each frame. Yellow circle at arrowhead (and also white circle in saliency map) shows the
circular aperture within which saliency at the future location of saccade target was sampled.

1112



Figure 6. More example frames from our video clips. Format is identical to Figure 5. From top to
bottom: tv-ads02 (frame 209/387), tv-announced01 (frame 18/434), tv-musicO1 (frame 909/1022),
tv-news03 (frame 70/1444), tv-sportsO1 (frame 379/579), and tv-talkO1 (frame 121/1651).
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TABLE 3
Comparison among models

Model Median Median Sign Ratio of Kullback-Leibler
Si/Smax S,/Smax test medians distance
CIOFM 0.45 0.22 p<102*? 2.03 0.195 + 0.006
C 0.29 0.13 p<5x 1074 2.20 0.075 4+ 0.003
I 0.33 0.15 p<3 x 107 2.14 0.089 + 0.003
(¢} 0.32 0.16 p<2 x 1079 1.98 0.084 + 0.004
F 0.33 0.09 p<102*? 371 0.178 + 0.005
M 0.34 0.09 p <1023 3.70 0.176 + 0.005

CIOFM: Model with all feature channels. C: Colour only; I: Intensity only; O: Orientation only;
F: Flicker only; M: Motion only. Columns are a subset of those in Table 1.

(absolute difference between successive frames), and motion energy (up, down,
left, and right, combined).

Results are presented in Table 3. Flicker and motion each taken separately
yielded higher ratios of medians and KL distances than intensity, colour, and
orientation taken separately. In fact, the ratios of medians for flicker and motion
were even higher than for the full model which includes all features. To a large
extent, this was due to the increased sparseness of the motion and flicker sal-
iency maps compared to the full-model saliency maps. Indeed, the number of
human saccades targeted to the most salient location was similar (12.1% for the
motion-only model and 12.1% for the flicker-only, compared to 11.5% for the
full model reported in Table 2, with random saccades all around 4.0%). In
contrast, there were many more random saccades targeted to nonsalient loca-
tions, hence driving the median saliency at random saccade endpoints down, and
the ratio of medians up. The KL distance is useful here to provide a finer
analysis of which version yielded the largest differences in saliency distribution
between human and random scanpaths. Motion and flicker, each individually,
yielded KL distances quite close to that obtained with the full model, although
significantly lower, as shown in Table 4. These results indicate that motion and
image transients are much more reliable predictors of human saccadic targeting
than colour, intensity, or orientation contrasts, with the best predictor being the
sum of all these features.

Duration of subsequent fixations

A last analysis was to determine whether the duration of a fixation following a
saccade would correlate with the saliency at that saccade’s endpoint. With our
video clips, average duration of fixation was short, approximately 135 ms
(although with a long tail towards longer durations). Figure 7 shows the average
duration of fixation following saccades to locations with given model-predicted
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TABLE 4
Contributions of features

CIOFM c I 0] F M
CIOFM —
C p<4x10” —
I p<4x10% p<3x10? —
0 p<4x10* p<3x10™® p<4x10® —
F p<1x102 p<4x10® p<4x10? p<4x10?
M pP<3x10% p<4x10? p<4x10? p<4x10? ns.

Reported are the p values with which the null hypothesis was rejected for a #-test that any two
model variants had yielded the same KL distance. All model variants were significantly different
from each other, except for M (motion) compared to F (flicker). Notations are as in Table 3.

saliency, grouped in 10 bins by saliency. A one-way ANOVA suggested no
significant effect of saliency onto duration, both for human saccades,
F(9,11906) = 0.75, n.s., 11,916 saccades and 10 bins, and for random saccades,
F(9,11906) = 1.64, n.s. Only considering the 2306 saccades with duration
200 ms or more did not alter this conclusion: Human, F(9,2296) = 0.76, n.s.;
random: F(9,2296) = 1.68, n.s. Hence, for our video clips, subjects, and viewing
instructions, we found no correlation between the model-predicted saliency of a
saccade target location and the duration of the subsequent fixation onto that
location.

DISCUSSION

Our study confirms previous findings that humans overall tend to look at salient
objects in their visual environment. In particular, our study confirms and rein-
forces, under conditions of sustained viewing and dynamic colour scenes, the
findings of Parkhurst et al. (2002) using an earlier version of our model and
static scenes. In addition, we here have pushed the analysis further, by speci-
fically counting those saccades that were made to the single most salient loca-
tion in the scene, and using the KL distance to quantify how the distributions of
saliency at human and random saccade endpoints differed. With the simulation
framework used here, we found that occurrences of saccades to the most salient
location in the scene were rare, although much more frequent than expected by
chance. Motion and flicker were found to be better correlated with human
saccades than colour, intensity, and orientation, but not as good as all features
combined in terms of KL distance. No correlation was found between the
model-predicted saliency of a location and the amount of time during which that
location was subsequently fixated. Subjective visual analysis of the eye move-
ment traces yielded a number of additional observations, illustrated in Figures 5
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Figure 7. Distribution of the durations of fixations (mean + standard deviation) following saccades
targeted towards locations of a given saliency. We found no significant effect of target saliency onto
subsequent fixation duration (one-way ANOVA; see text).
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and 6 and discussed here, which may serve as guidelines for extensions of the
present study.

We used a fairly small saliency sampling window (5.6° diameter), and in
some instances it was clear that the observer had saccaded towards a salient
object, but had targeted such part of the object that the saliency sample at the
saccade endpoint had partially missed the representation of the object in our
low-resolution saliency map (e.g., second and fifth rows of Figure 5). Using a
larger sampling window would certaintly address this problem, but at the cost of
possibly artificially increasing the saliency reading when observers had sac-
caded to a nonsalient object (e.g., a larger radius of the circle in the first or
second rows of Figure 6 would increase the sampled saliency value, while in
these examples clearly the observer had saccaded to a location that the model
considered not salient). An additional complication in this respect was that
humans sometimes were fairly inaccurate in targeting their saccades, especially
for long ones (e.g., fourth row of Figure 5; this was not an inaccuracy of the
eyetracking, as the saccade shown here was followed by another short saccade
that better centred the eye onto the object). One limitation of the current study
which will need to be further explored is the lack of a systematic investigation of
how sampling window size would affect the results reported here. Our com-
parison between human and random saccades, however, aims at minimizing the
effects of window size onto our conclusions (as different window sizes would
affect both the human and random histograms).

We measured a minority but not negligible number of human saccades tar-
geted to locations deemed not salient by the model (27.7% of all saccades
human saccades were to locations with S;,/S.x < 0.25). In some cases, these
saccades were predictive of moving object trajectories; that is, instead of
focusing onto a moving object, observers looked at an empty location slightly
ahead of that object. This top-down predictive capability is not captured by our
computational model. Building neural models that can embody it remains an
open issue (although many mathematical models, such as Kalman filters, may be
used to solve this problem).

Our measure of saliency was very strict, in that a unique sample was taken at
the precise moment when each saccade began. An interesting extension of our
analysis will be to investigate a more relaxed question, such as whether a given
saccade target location has been among the five most salient locations at any
given time during the second preceding a given saccade. Intuitively, we often
are confronted with situations where several objects are of interest at a given
moment, but we employ a serial strategy to focus onto each in turn. Adding
some account for such memory process in our measure of saliency may reveal a
larger fraction of saccades made to objects that were among the few most salient
at some point in the recent past. One difficulty in developing such more relaxed
measure lies in the necessity to be able to reliably segment the few most salient
objects in the saliency map, on a continual basis.
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In the present study we have decided to remain agnostic to putative saccade
generation models, which has limited how far the analysis could be pushed. Our
results suggest, however, that a winner-take-all strategy often used in covert
attention models (Itti & Koch, 2001a), directing gaze towards the most salient
location in the display, would only account for a small fraction of human sac-
cades (around 12%). To estimate the fraction of human and random saccades
directed to salient locations, we have explored three arbitrary S;/S;,ax thresholds
of 0.25, 0.75 and 1.00 in Table 2. It is important to realize that these indeed are
arbitrary and are here only intended to summarize, for many subgroups of
saccades, the more detailed picture provided by the distributions in Figure 4 for
all saccades. Furthermore, applying a nonlinearity to the saliency values would
in many cases change the figures in Table 2. Hence, while it is certainly
tempting to attribute some of the saccades to bottom-up influences, and the rest
to top-down influences, such attribution may not be very meaningful. Indeed,
changing the cut-off threshold, or applying a nonlinearity to the saliency values,
could yield a wide range of bottom-up/top-down ratios. For example, if one
considers that only saccades to the maximum saliency can be attributed to
bottom-up, then the ratio is 11.5% bottom-up for 88.5% top-down, or
approximately 1:8. In contrast, if all saccades to regions reliably marked by the
model as salient (S;/Spax > 0.25) are attributed to bottom-up, then the ratio
becomes 72.3% to 27.7% or approximately 2.5:1. The value of 0.25 seems to be
an appropriate threshold, since, given the sparseness of our saliency maps
exemplified in Figures 5 and 6, any location with saliency above that threshold
is likely to be a nonaccidental detection. More quantitatively, it is interesting to
note from Table 2 that a majority of random saccades were to locations with S,/
Smax < 0.25 (for all saccades, all first, first 5, and first 10 saccades, and all
observers taken individually, although not for all classes of video clips taken
individually), confirming that overall the number of pixels (or surface area) in
the saliency map above that threshold were in minority (especially given our
aperture-based sampling scheme).

In reality, it is likely that bottom-up and top-down influences simultaneously
contribute to directing every saccade. Intuitively, it is clear that top-down
influences can be very strong—for instance, we can command our gaze to any
location we like, we can make eye movements based purely on cognitive rea-
soning (e.g., from knowing the typical spatial relationship between the object of
current fixation and a desired object), and there are many other top-down factors
that have been clearly shown to influence eye movements, as reviewed in
introduction. Yet, our results suggest that, if one is to accept the threshold of
0.25 just discussed, a comfortable majority of human saccades (72.3% overall)
was directed to a minority of locations that had been highlighted in our bottom-
up saliency map (and to which a minority of 46.6% of random saccades went).
This relative rarity of occurrence of saccades to locations that were not bottom-
up salient suggests that the bottom-up saliency map may be used as a mask,
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highlighting a set of potentially interesting locations in the scene, with top-down
influences mainly responsible for deciding upon one specific location among
these candidates. This hypothesis seems well in line with our finding that the
most salient location in the display was not attracting gaze very often; hence it
may only have been one among several bottom-up candidate locations, with the
choice of which candidate would eventually be fixated primarily mediated top-
down rather than by bottom-up saliency.

Our discussion thus far is compatible with a number of saccade generation
models. For example, the area activation model of Pomplun, Shen, and Rein-
gold (2003), proposed in the context of visual search, suggests that scanpaths
visit peaks of an activation map that are above a given threshold, with the
selection of the next peak based on proximity to current fixation rather than
absolute peak activity. The activation map in that model is not purely bottom-
up, but substantially modulated by the nature of the search task and of target
and distractor items; thus, it may be considered a combined bottom-up and top-
down map. The greedy choice of the next saccade target based on proximity
brings the idea that there are also other factors to consider, as this mechanism
may not be considered purely top-down nor bottom-up—rather, it is an addi-
tional bias that may influence saccade target selection in cases where one is
faced with a number of equally bottom-up salient and top-down interesting
candidate targets (such as the distractor items in cases of difficult visual
search). Similarly, Rao, Zelinsky, Hayhoe, and Ballard (2002) select saccade
targets by subjecting an activation map to a softmax operator (which further
emphasizes strong activation peaks and weakens regions of lower activation)
and then aiming for the centre of gravity of the transformed map. This model,
in particular by reproducing centre-of-gravity effects observed experimentally
when several items simultaneously attract gaze, suggests that in general the
entire spatial distribution of values in the saliency (or activation) map is likely
to contribute to saccadic orienting, rather than only a selected subset of loca-
tions or the single location of maximum saliency. In previous work, we have
proposed that attention and eye movements may be guided by an attention
guidance map (AGM) defined as the pointwise product between a bottom-up
saliency map (SM) and a top-down task-relevance map (TRM; Navalpakkam
& Itti, 2002). Hence, a location would have to be both somewhat salient and
somewhat relevant to become a candidate saccade target. The SM might be
modulated top-down using feature weighing similar to Guided Search (Wolfe
et al., 1989), and the TRM could be populated based on information from the
gist and rough layout of the scene (Hollingworth & Henderson, 1998) as well
as top-down priors on the likely locations of desired objects (Torralba, 2003).
Our present observations are compatible with this hypothesis (also see Rensink,
2000), although many of the details still need to be elucidated.

These considerations reinforce the idea that a metric like the KL distance,
which considers dissimilarity of shape of the full distributions of saliency
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at human compared to random saccade targets, is a more appropriate metric
for comparing models than, for example, the simpler ratio of median sal-
iencies. Indeed, even if the distribution of model-predicted activation at
human saccade targets were to differ from random by exhibiting a larger
number of human saccades towards low model-predicted activation values,
that information could still be exploited by a saccade generation mechanism.
The mechanism would just have to reflect the fact that low-activation regions
actually should be strong attractors of gaze. Thus, in principle at least, any
shape difference between the human and random distributions obtained for a
given model in a manner similar to that of Figure 4 could be exploited to
develop a gaze generation model, not just a shift towards higher values.
Under these conditions, we found that models based purely on motion energy
or on temporal change (flicker) performed much better than models relying
solely on colour, intensity, or orientation information. While it has often
been posited that motion was deemed to be one of the strongest attractors of
attention, our study allows us to quantify this in terms of KL distance: The
distance between human and random obtained for the motion and flicker
models was about twice that obtained for the colour, intensity, or orientation
models. Yet, in terms of KL distance, the best model remained that which
incorporated all features. This is not surprising, as strong motion cues were
not always present in our stimuli. During periods of rather still video content,
colour, intensity, and orientation certainly were better predictors of human
saccade targets than flicker and motion which essentially yielded no output
during these periods.

As reviewed in our introduction, bottom-up saliency is only one of the many
factors that may influence eye movements. The main contribution of our study is
to attempt to quantify the extent to which it may continually contribute to human
eye movements. Our general conclusion in this respect is that a comfortable
majority of human saccades were made to a minority of fairly salient locations
in the saliency map, suggesting that bottom-up saliency plays a non-negligible
role in determining saccade targets. In addition, we found that few saccades
were directed to the most salient location in the visual input, hence suggesting
that absolute saliency may play only a minor role in picking one target among a
set of fairly salient candidates, a process likely to be primarily driven top-down.
We found that motion energy and temporal change were strong attractors of
attention, though the model that also included colour, intensity, and orientation
features performed overall best. Finally, we did not find any evidence of cor-
relation between saliency of a saccade target and duration of subsequent fixation
of that target, suggesting that bottom-up saliency does not contribute to duration
of fixation. All these observations are compatible with the idea that a combi-
nation of bottom-up and top-down influences determines every saccade target
location, rather than some saccades being primarily directed bottom-up while
others are primarily targeted top-down.
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