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We investigate the extent to which a simple model of bottom-up attention and

salience may be embedded within a broader computational framework, and

compared with human eye movement data. We focus on quantifying whether

increased simulation realism significantly affects quantitative measures of how well

the model may predict where in video clips humans direct their gaze. We hence

compare three variants of the model, tested with 15 video clips of natural scenes

shown to three observers. We measure model-predicted salience at the locations

gazed to by the observers, compared to random locations. The first variant simply

processes the raw video clips. The second adds a gaze-contingent foveation filter.

The third further attempts to realistically simulate dynamic human vision by

embedding the video frames within a larger background, and shifting them to eye

position. Our main finding is that increasing simulation realism significantly

improves the predictive ability of the model. Better emulating the details of how a

visual stimulus is captured by a constantly rotating retina during active vision has a

significant positive impact onto quantitative comparisons between model and

human behaviour.

Over the past decades, visual psychophysics in humans and other primates

have become a particularly productive technique to probe the mechanisms of

visual processing, attentional selection, and visual search (Verghese, 2001;

Wolfe, 1998). In typical visual psychophysics experiments, visual stimulus

patterns are briefly presented to observers, for example on a computer

monitor. Observers are instructed to describe their perception of the stimuli,

for example by pressing one of several possible answer keys corresponding to

alternate responses to a question asked by the experimenter (e.g., whether

the stimulus was horizontal or slightly tilted off horizontal). Over the course
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of many experimental trials, quantitative measures are collected and

subjected to statistical analysis, to establish a relationship between the

ability of observers to perceive some aspect of the presented stimuli and the

hypothesis tested by the experimenter.
As visual psychophysics experiments become more sophisticated and

stimuli more complex, the need for quantitative computational tools that

can relate experimental outcomes to putative brain mechanisms is becoming

more pressing than ever before. Indeed, in the presence of complex stimuli

such as natural scenes, formulating hypotheses on how stimulus attributes

may influence perception is hampered both by a difficulty in providing a

quantitative formal description of the stimuli, and by the understanding that

complex nonlinear interactions among the perceptual representations of
diverse components of the stimuli at many processing levels will affect

overall perception (Kofka, 1935; Sigman, Cecchi, Gilbert, & Magnasco,

2001).

A particularly successful experimental technique to evaluate perception of

complex visual stimuli has been to track eye position of human subjects

while they inspect visual displays. Using this technique, several studies have

recently demonstrated how local image properties at the locations fixated by

humans significantly differ from image properties at other locations in static
images. These include studies by Zetzsche and colleagues (Barth, Zetzsche, &

Rentschler, 1998; Zetzsche et al., 1998), who inferred from human eye

tracking that the eyes preferentially fixate regions in greyscale images with

multiple superimposed orientations, including corners. Similarly, Reinagel

and Zador (1999) found that local spatial contrast of greyscale static images

was significantly higher at the point of gaze than, on average, at random

locations, whereas pairwise pixel correlations (image uniformity) were

significantly lower. Privitera and Stark (2000) further computed the linear
combination of a collection of image processing operators (e.g., local cross

detector, Laplacian of Gaussian, local entropy measure, etc.) that maximized

overlap between regions of high algorithmic responses and regions fixated

by human observers, thus deriving bottom-up feature detectors that

captured some of the local image properties which attracted eye movements.

Extending on these purely local analyses, and considering colour scenes,

Parkhurst, Law, & Niebur (2002) compared human scan paths to bottom-up

saliency maps computed from static images (Itti, Koch, & Niebur, 1998).
Thus, this study not only accounted for local image properties but also for

long-range interactions among the cortical representations of distant image

regions, which mediate visual salience and pop-out (Itti et al., 1998;

Treisman & Gelade, 1980). This study revealed significantly elevated

model-predicted salience at human fixations compared to random fixations,

and more strongly so for the first few fixations on an image than for

subsequent fixations.
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Previous studies thus have abstracted most of the dynamics of human

active vision, and have focused on intrinsic properties of local distributions

of pixel intensities in an image. This contrasts with attempting a more

realistic simulation of how the recent history of dynamic patterns of retinal
stimulation, as the eye jumps from one image location to the next, may

predict candidate target locations for a subsequent eye movement. As a first

step in this direction, Parkhurst et al. (2002) noted a human bias for shorter

saccades, and applied a spatial modulation filter to the static saliency map

computed for each image, whereby the salience of locations increasingly

further from current fixation was increasingly suppressed before salience

distributions for the following fixation were analysed. Although this

increased the model-predicted salience at human eye fixations compared
to random fixations, the authors correctly noted that applying such

foveation filter to the saliency map rather than the retinal inputs only is a

coarse approximation of how active foveation may modulate salience.

Building on these previous studies, here we jointly use human eye tracking

and a computational model of low-level visual perception to quantitatively

evaluate dynamic attentional allocation onto visual stimuli. We develop a

more realistic simulation framework, to transition from evaluating local

image properties at human eye fixations to evaluating a measure of
perceptual saliency at human eye fixations. For the purpose of this study,

we thus operationally define perceptual saliency as depending not only on

local image properties, but also on how these are captured by a foveated

retina, and how their cortical representations interact over visual space and

time. Thus, we attempt to more realistically account for a larger fraction of

the details of how information present in an image may first be processed by

the visual system of the observer, such as to eventually yield neural signals

that may direct the observer’s attention and eye movements. The main
question addressed here is whether using such a realistic framework would

significantly affect the outcomes of quantitative comparisons between

model-predicted saliency maps and locations fixated by human observers.

If it did, this would indicate that the details of active vision do play a non-

negligible role in the selection of eye movements, and hence should be taken

into account in future psychophysics studies.

Our approach relies upon and extends our previously proposed computa-

tional model of visual salience and bottom-up attentional allocation (Itti &
Koch, 2000; Itti & Koch, 2001a; Itti et al., 1998). Previously, we have used

this model in a ‘‘generative’’ mode, yielding predictions of the visual

attractiveness of every location in a display (in the form of a graded

topographic saliency map; Koch & Ullman, 1985) and predictions of

attentional scan paths and eye movements (Itti, Dhavale, & Pighin, 2003).

In contrast, here we use it in a ‘‘human-driven’’ or ‘‘servoed’’ mode: Using

actual eye movement scan paths recorded from human subjects, we simulate
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the retinal input received by the observers, process it through the low-level

visual stages of the model, and continuously recompute the saliency map

over the course of the human scan path. To effectively exercise and challenge

the framework, we employ dynamic (video clip) natural stimuli rather than
static imagery. We explore three variants of the model, with increasing

realism. The first variant simply computes saliency maps from the raw video

frames shown to human observers, similar to previous studies. The human

eye movement recordings are then used to compare the model-predicted

salience at human eye positions compared to random locations within the

video frames. The second variant adds a foveation filter, by which each input

frame is increasingly blurred with distance from current human eye position

before it is processed by the model. Finally, the third and most realistic
variant embeds the raw video frames into a background photograph of the

experimental room and computer monitor, shifts the resulting image to

centre it at human eye position, crops the shifted image to simulate a retinal

field of view, and applies a foveation filter to the field of view before

processing by our model.

The present study focuses on whether increasing the realism of model

simulations significantly affects the measures of model-predicted salience at

the image locations visited by the human eye compared to random locations.
We here use our available model of bottom-up attention as an approxima-

tion to early visual processing in humans. However, it is important to keep in

mind that the computations operated by this model represent only a very

coarse approximation to a small subset of the many factors that influence

attentional deployment onto a visual scene (Henderson & Hollingworth,

1999; Itti & Koch, 2001a; Rensink, 2000). Hence, we do not expect perfect

agreement between model-predicted salience and human eye position. In

particular, our bottom-up model as used here does not yet account, among
others, for how the rapid identification of the gist (semantic category) of a

scene may provide contextual priors to more efficiently guide attention

towards target objects of interest (Biederman, Teitelbaum, & Mezzanotte,

1983; Friedman, 1979; Hollingworth & Henderson, 1998; Oliva & Schyns,

1997; Potter & Levy, 1969; Torralba, 2003); how search for a specific target

might be guided top-down, for example by boosting visual neurons tuned to

the attributes of the target (Ito & Gilbert, 1999; Moran & Desimone, 1985;

Motter, 1994; Müller, Reimann, & Krummenacher, 2003; Reynolds,
Pasternak, & Desimone, 2000; Treue & Maunsell, 1996; Treue & Trujillo,

1999; Wolfe, 1994, 1998; Wolfe, Cave, & Franzel, 1989; Yeshurun &

Carrasco, 1998); or how task, expertise, and internal scene models may

influence eye movements (Henderson & Hollingworth, 2003; Moreno,

Reina, Luis, & Sabido, 2002; Nodine & Krupinski, 1998; Noton & Stark,

1971; Peebles & Cheng, 2003; Savelsbergh, Williams, van der Kamp, &

Ward, 2002; Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995;
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Yarbus, 1967). Nevertheless, our hypothesis for this study is that a more

realistic simulation framework might yield better agreement between human

and model than a less realistic one. The present study quantifies the extent to

which this hypothesis may be verified or rejected. The finding of significant
differences between the three versions of our simulation framework would

indicate that the details of foveation, eye movements, and background

should not be ignored in the analysis of future psychophysics experiments.

METHODS

The proposed quantitative analysis framework allows us to derive an

absolute measure of salience compounded over a human scan path, and to

compare it to the same measure compounded over a random scan path.

Although the absolute value of this measure is difficult to interpret, given all

the factors influencing eye movements but not accounted for by the model, it
allows us to rank the three variants of the model, and to suggest that the

model variant with highest ranking may be the one that best approximates

human bottom-up visual processing.

Human eye movement experiments

Eye movement recordings were collected from eight human observers

watching a heterogeneous collection of 15 video clips, including outdoors

scenes, video games, television newscasts, commercials, sports, and other

content. Each clip comprised between 309 and 2083 frames (10.4�69.1 s), for

a total of 13,770 distinct frames (totalling 7 min 37.0 s). The experimental

protocol used to collect the data evaluated here has been previously
described in detail (Itti, 2004; Itti, 2005). In short, stimuli were presented

to four normal volunteer subjects on a 22-inch computer monitor (LaCie

Corp; 640�/480, 60.27 Hz double-scan, mean screen luminance 30 cd/m2,

room 4 cd/m2) at a viewing distance of 80 cm (288�/218 usable field-of-view).

Subjects were instructed to attempt to ‘‘follow the main actors and actions’’

in the video clips, and thus were biased towards the scene elements that were

the most important according to their current cognitive understanding of the

scenes. The extent to which the selection of these cognitively important
locations would be more or less predictable by variants of a simple bottom-

up computational analysis of image pixels is a side issue addressed by the

present study, with again our main focus being the influence of model

realism onto agreement between model and humans. Eye position was

tracked using a 240 Hz infrared video-based eyetracker (ISCAN, Inc model

RK-464). Raw eye movement traces were remapped to screen coordinates

using a nine-point calibration procedure (Stampe, 1993). Each calibration
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point consisted of fixating first a central cross, then a blinking dot at a

random point on a 3�/3 matrix. After a nine-point calibration had been

completed, five video clips were played. For every clip, subjects fixated a

central cross, pressed a key to start, at which point the eyetracker was
triggered, the cross blinked for 1206 ms, and the clip started. Stimuli were

presented on a Linux computer, under SCHED_FIFO scheduling to ensure

accurate timing (Finney, 2001). Frame displays were hardware-locked to the

vertical retrace of the monitor. Microsecond-accurate timestamps were

stored in memory as each frame was presented, and later saved to disk to

check for dropped frames. No frame drop occurred and all timestamps were

spaced by 33,1859/2 ms. During offline remapping of raw eye position to

screen coordinates, data was discarded until the next calibration if residual
errors greater than 20 pixels (0.908) on any calibration point or 10 pixels

(0.458) overall remained.

The dataset used here is a subset of the entire dataset collected (which was

for 50 clips and eight subjects each watching a subset of the 50 clips, so that

four to six valid eye movement traces were available for each clip; Itti, 2004).

The fifteen clips used here were randomly chosen so that we would use two

clips from any category (e.g., outdoors, video games, TV news, etc.) that had

at least two clips in the original dataset, except for the last one (the original
dataset had 12 categories, of which 8 had two or more clips). In addition to

the 14 clips thus obtained, we included one very simple synthetic clip of a

coloured disk jumping to various locations on a static textured background,

which is a useful control stimulus. Once the subset of 15 clips had been

decided upon, the four observers who had watched the most clips were

selected and alphabetically ordered, and the first three eye movement traces

for each clip were selected. Hence, we used calibrated eye movement data for

three subjects on each of the 15 clips, yielding a total of 45 calibrated eye
movement traces. The reason of using a subset of the available data here was

solely computational cost (a run of the three variants of the model for

comparison to the 45 eye movement traces takes approximately two CPU-

months, or 4 days on a 16-CPU Beowulf cluster of interconnected Linux PC

computers).

Comparing model predictions to human eye movements

The computational model variants were used in the following manner. Each

of the 45 human eye movement recordings was considered in turn. For a

given recording, the corresponding video clip was presented to a model

variant, at the same resolution (640�/480) and frame rate (33.185 ms/frame)

as it had been presented to human subjects. In the more sophisticated model

variants, recorded human eye position was then used to drive the foveated
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eye of the model and to generate a coarse simulation of the pattern of inputs

actually received by the observer’s retinas. For every human eye position

recorded (240 Hz), several measurements of the internal state of the model

were taken: Instantaneous model-predicted salience at current human eye
position, maximum and average salience over the current video frame, and

salience at a randomly chosen location in the image. Our analysis focuses on

comparing how salience differed at human eye position compared to

random locations, and on quantifying this effect so that the different

variants of the model may be ranked according to their agreement with

human eye movements.

Baseline model

To relate our findings to previous analyzes of local image properties at

locations fixated by human observers, we begin with a simple model that

analyses the raw video clips shown to observers, without including any

realistic simulation of how human eye movements affect visual inputs that

actually enter the eyes. Thus, the first model variant is mainly concerned

with local image properties but disregards most of the byproducts of
dynamic human vision (e.g., decrease of contrast sensitivity with eccentricity,

motion transients due to eye movements, etc.).

At the core of the framework is our previously described model of

bottom-up visual attention, which computes a topographic saliency map

from the input images (Itti & Koch, 2000; Itti & Koch, 2001a; Itti et al.,

1998; Koch & Ullman, 1985). Video input is processed in parallel by a

number of multiscale low-level feature maps (Figure 1), which detect local

spatial discontinuities in various visual feature channels using simulated
centre-surround neurons (Hubel & Wiesel, 1962; Kuffler, 1953). Twelve

neuronal features are implemented, sensitive to colour contrast (red/green

and blue/yellow double-opponency, separately), temporal flicker (onset and

offset of light intensity, combined), intensity contrast (light-on-dark and

dark-on-light, combined), four orientations (08, 458, 908, 1358), and four

oriented motion energies (up, down, left, right). The detailed implementa-

tion of these feature channels, thought indeed to guide human attention

(Wolfe & Horowitz, 2004), has been described previously (Itti et al., 1998,
2003; Itti & Koch, 2001a). In the presentation of our results, these 12 features

are combined into five categories: Colour, flicker, intensity, orientation, and

motion. Centre and surround scales are obtained using dyadic pyramids with

nine levels (from level 0, the original image, to level 8, reduced by a factor

256 horizontally and vertically). Centre-surround differences are then

computed as pointwise differences across pyramid levels, for combinations

of three centre scales (c�/ {2, 3, 4}) and two centre-surround scale differences
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Figure 1. Overview of the computational framework. Depending on the model variant used, incoming video input may be used as it is, foveated around human

eye position, or embedded within a background image, shifted so as to become centred at current human eye position, and foveated at the centre. Low-level visual

features are then computed in a set of multiscale feature maps tuned to five classes of low-level visual properties (colour, intensity, orientation, flicker, motion).

After nonlinear within-feature and across-feature competition for salience, all feature maps provide input to the saliency map. At each human eye position sample,

measures are taken for the salience at eye position, the salience at a random location, and the maximum and average salience over the display area.
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(d�/{3, 4}); thus, six feature maps are computed for each of the visual

feature channels. Each feature map is endowed with internal dynamics that

operate a strong spatial within-feature and within-scale competition for

activity, followed by within-feature, across-scale competition (Itti & Koch,
2001b; Itti et al., 1998). As a result, initially possibly very noisy feature maps

are reduced to sparse representations of only those locations which strongly

stand out from their surroundings. All feature maps are then summed (Itti &

Koch, 2001b) into the unique scalar input to the saliency map.

The saliency map is modelled as a two-dimensional layer of leaky

integrator neurons at scale 4 (40�/30 pixels given 640�/480 video inputs)

and with a time constant of 500 ms (Itti & Koch, 2000). Its main function is

to provide temporal smoothing of the saliency values computed from each
video frame. Consequently, in our study we directly evaluate the saliency

values at current human eye position, even though some reaction delay exists

between appearance of a stimulus element and the possible decision to orient

the eyes towards that location. Thus, we here do not investigate in details the

effects of stimulus�response latency, but instead temporally low-pass filter

the saliency map. The integrators are simulated using difference equations at

a temporal resolution of 0.l ms of simulated time, that is, 10,000 frames/s

(Itti & Koch, 2000).
The spatial within-feature competition operated within each feature map

is a crucial component of the model, mainly responsible for the model’s

ability to reproduce psychophysical ‘‘pop-out’’ effects observed behaviou-

rally in visual search psychophysics (Treisman & Gelade, 1980; Wolfe, 1998).

In a first approximation, the computational effect of the model’s long-range,

within-feature competitive interactions is similar to applying a soft winner-

take-all to each feature map before it is combined into the saliency map (Itti

& Koch, 2001b). That is, the competitive interactions tend to enhance
locations that are spatial outliers over the extent of the visual input. Hence,

the salience of a patch of pixels at a given location in the visual field not only

depends upon the local distribution of pixel values within that patch, but

also on how that distribution compares to surrounding distributions. If the

patch under consideration is similar to its neighbours (distant by up to

approximately one-quarter of the width of the input image, with Gaussian

decay; Itti & Koch, 2000), it will be strongly inhibited by its neighbours and

will strongly inhibit them as well. This behaviour was included in the model
to coarsely replicate nonclassical surround inhibition as observed in striate

cortex and other early visual processing areas of mammals (Cannon &

Fullenkamp, 1991; Levitt & Lund, 1997; Sillito, Grieve, Jones, Cudeiro, &

Davis, 1995). Hence, while a vertical line segment would always excite a local

vertical feature detector, irrespectively of the image contents far away from

that stimulus, its salience will depend upon the possible presence of other

vertical line segments throughout the entire visual field. If many other
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vertical elements are present, the salience of the one under consideration will

be low; but it will be much higher if no other vertical line element is present

in the display (Itti & Koch, 2000). We have proposed several implementa-

tions for the long-range interactions, with varying degrees of biological
plausibility and computational cost (Itti & Koch, 2000; Itti & Koch, 2001b;

Itti et al., 1998). Here we use one iteration of the method introduced in Itti

and Koch (2001b), which yields fairly sparse saliency maps as exemplified in

Figure 4 (see later).

Foveation

To progress from local measures of image properties to measures of

predicted perceptual salience at the point of gaze, a first improvement

upon the simulation framework described above was to coarsely replicate the
decrease of contrast sensitivity with eccentricity from the centre of fixation,

as observed in humans (Spillmann & Werner, 1990; Wandell, 1995). To this

end, we designed a simple foveation filter, which would blur the input video

frames, increasingly so with distance from the current human eye position.

Our results compare agreement between humans and model with and

without this additional filter.

Recorded human eye position determined the location of the model’s

foveation centre. The foveation filter was achieved through interpolation
across four levels of a colour Gaussian pyramid Cs (Burt & Adelson, 1983)

computed from each input frame, where the natural number s represents

spatial scale. Scale zero is the input colour image, and each subsequent scale

is obtained by first blurring the image at the current scale by a 9�/9 two-

dimensional Gaussian kernel, and further decimating that low-pass-filtered

image by a factor two horizontally and vertically:

�s]0; Cs�1�¡
x:2;y:2 (Cs�G9�9) (1)

where ¡x:2;y:2 is the decimation (downsampling) operator, �/ is the convolu-
tion operator and G9�9 is a (separable) 9�/9 approximation to a Gaussian

kernel. To determine which scale to use at any image location, we computed

a 3/4-chamfer distance map D (x,y ) (Borgefors, 1991), encoding at every

pixel with coordinates (x , y ) for an approximation to the Euclidean distance

between that pixel’s location and a disc of 28 diameter (the model’s fovea and

perifovea), centred at the current eye position of the human observer:

�x; y; s(x; y)�K�D(x; y) (2)

where K is a scaling constant converting from distance into a fractional scale

s(x ,y ). The fractional scale s(x ,y) thus computed at every location in the

image was used to determine the relative weights assigned to the immediately

lower and higher integer scales represented in the pyramid Cs, in a linear
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interpolation scheme. Consequently, pixels close to the fovea were inter-

polated from high-resolution scales in the pyramid, while more eccentric

pixels were interpolated from coarser-resolution scales. The process is

illustrated in Figure 2. In a first step, we did not attempt to measure visual
acuity of our subjects and to more accurately model the rate at which

contrast sensitivity decreased with eccentricity for particular observers,

although this could be included in a future implementation (Geisler & Perry,

2002). Although approximate, this model enhancement unveiled one

additional contribution to perceptual saliency: Highly contrasted but small

image regions far away from the observer’s centre of gaze were unlikely to

contribute much to the saliency map, since they were less or not detected by

the low-level feature channels of the model once the foveation filter had been
applied.

Input shifting and embedding

The realism of the simulation framework was further increased by

dynamically shifting the input frames, so as to more faithfully simulate the

changing patterns of retinal stimulation as the centre of gaze moved from
one image location to another. That is, instead of considering that the model

received inputs in the world-centred frame of reference attached to the

stimulus frames, as implicitly assumed previously, we here transitioned to an

eye-centred representation.

Hence, an explicit dissociation was made between retinotopic and world-

centred (or head-centred since the head was fixed in our experiments)

coordinate systems. The rationale for this enhancement was that the low-

level visual processing of the model should operate not on the raw video
frames, but on an approximation to the current retinal input received by the

human observers. Thus, the first image processing step in the computational

framework was to shift incoming raw video frames, such as to recentre them

around the current human eye position. Hence, in the resulting images given

as inputs to the model, human eye position was always at the centre of the

field of view, and the raw video frames were shifted and pasted around that

location. A background image consisting of a photograph of our experi-

mental room and monitor (Figure 3) was used at retinal locations where
there was no video clip input (e.g., at the top and left of the visual field when

subjects fixated towards the top-left corner of the monitor). Finally, the

image was cropped by a field of view larger than the raw video frames,

centred at current eye position (Figure 3).

This transformation from stimulus to retinal coordinates unveiled two

possible new contributions to perceptual salience that the simplified model

did not account for: First, high contrast was often present at the boundary
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Figure 2. Foveation using a Gaussian image pyramid. Given a location for the foveation centre, the value at every location (x , y ) in the distance map approximates

the distance from the foveation centre to (x , y ); brighter shades in the distance map correspond to larger distances. The appearance of (x , y ) in the output foveated

image is then read out from levels in the input image pyramid, which are increasingly coarse (and blurred) depending on the distance map value at (x , y ). For example,

the appearance of location a , close to the foveation centre, is interpolated from the two finest scales in the input pyramid, and hence is only lightly blurred. Conversely,

the appearance of location b , more distant from the foveation centre, is interpolated from the two coarsest scales in the pyramid, and hence is highly blurred.

9
7
0

IT
T

I



Figure 3. Embedding the video clips within a background. A 2048�/1400 photograph of our

eyetracker setup (top) was taken with a digital camera (here shown with slightly higher luminosity

than actually used, for reproduction purposes). Incoming raw 640�/480 frames from the video clips

(middle; with current human eye position shown by the crosshairs) were pasted into this image, such

as to appear within the monitor’s screen area. Finally, the resulting image was cropped by a 1024�/768

field of view centred at current human eye position (bottom, and also shown as a yellow rectangle in

the top image), to simulate a human retinal field of view slightly larger than the monitor area. The

resulting frames used as inputs to the shifted and foveated model thus had a fixed size of 1024�/768

pixels, and depicted the room and monitor with the raw movie clip frames, shifting rapidly so that

human eye position (crosshairs) would always remain at the centre of the field of view.
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between the shifted video frames and the background image, often strongly

affecting model-predicted salience values within the video display area

because of the long-range competitive interactions implemented in the

model. Second, eye motion during human smooth pursuit and saccades

significantly excited the model’s low-level feature detectors sensitive to

flicker and motion, thus adding an intrinsic motion component (due to the

moving eye) in addition to extrinsic motion components (moving objects

within the video clips).

Sample frames and saliency maps for the three model variants are shown

in Figure 4.

Figure 4. Example frame from a video clip, for the three model variants and the human-derived

control model. The small cyan squares indicate current human eye position. (a) The simple model

simply processes the raw video frames. (b) The second model variant applies a foveation filter centred

at current human eye position before processing each frame. (c) The third model variant embeds the

frame within a background, centres it to human eye position, crops it by a fixed field of view, and

processes the contents of the field of view through the model. The green rectangles show the area over

which maximum, average, and random salience were computed. (d) The human-derived control model

uses a ‘‘saliency map’’ that contains three blobs, each corresponding to the instantaneous eye position

of a human observer (with some temporal blurring provided by the internal dynamics of the saliency

map). In the example frame shown, all three control observers are gazing at the same location as the

fourth subject being tested (cyan square). This model provides a baseline for comparison with the

bottom-up computational models.
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RESULTS

At each human eye movement sample, several measurements were made on

the model’s current internal state, to quantify the extent to which salience at

current eye position may compare to salience at other image locations.
The first of these measures was to read out salience and also low-level

feature values (e.g., colour, orientation, etc.) at human eye position. To

calibrate these measures, we also computed the maximum and average

salience and feature values over the extent of the video display area, as well

as salience and feature values at one random location (with uniform

probability) within the display area. The goal of the random samples was

to evaluate a baseline level of salience obtained by fixating a location by

chance, for comparison to salience measured at human gaze location.

Because we sampled a single point in the saliency and feature maps (which

are at spatial scale 4, that is, downsized by a factor 16 horizontally and

vertically compared to the original image), we expected that, on average over

all frames, salience at random locations should be equal to the average

salience over the entire frame. This was verified (see below), indicating that

the random sampling worked properly.
There is one difficulty with defining what the random sampling area

should consist of for the third variant of the model, which embeds the raw

video frames within a larger background. With this model, the field of view

over which feature and saliency maps are computed is larger than the actual

video display (Figures 3 and 4). However, our human eye movement

recordings contained no instance where the observers had looked either

outside or right at the edges of the monitor’s video display area. This was not

a limitation of our eyetracking apparatus, which is capable of tracking over

wider fields of view than the 288�/218 of our display monitor. We hence

assumed that observers used top-down knowledge of the extent of the visible

screen area to restrict their eye movements within that area. Under these

conditions, it would seem an unfair comparison to allow random saccades to

be distributed anywhere within the larger field of view. On the one hand, the

background around the monitor often contained no or very few highly

salient objects; including this area within the random sampling area hence

would tend to artificially lower the average salience at random locations. On

the other hand, the edges of the visible screen area often were salient, due to

high contrast between the contents of the video frames and the dark grey

plastic enclosure of the monitor, which would tend to artificially increase the

average salience at random locations. Consequently, we here decided to only

consider for random sampling (and for the computation of maximum and

average salience) an area corresponding to the visible video display area,

minus a border of three pixels at the scale of the saliency map (48 pixels at

the scale of the original video frames; green rectangles in Figure 4).
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Given this, the comparison between human and random samples

concerns the following question: Given that observers knew to restrict their

gaze to within the video display area, would the addition, in the simulations,

of a surrounding background that observers never looked at influence the
distribution of salience within the video display in a significant manner? If

the model (and, presumably, the low-level visual processing stages of our

observers) operated purely local processing, no influence would be expected.

However, since model-predicted salience of a location within the video

display area may be modulated by the presence of objects outside that area

(due to the nonlinear spatial competition for salience at the core of our

model), some significant effect was possible. It is important to remember

that our goal in this study is not to make a point about the particular
bottom-up visual attention used here, but rather to use this model to

evaluate whether details like an ignored background scenery may signifi-

cantly influence quantitative comparisons between model and human data.

The results of our measures are shown in Table 1. To allow comparison

across model variants, the results are expressed in terms of a metric defined

by the ratios:

F(x; y; t)�
Fmax(t) � F(x; y; t)

Fmax(t) � Favg(t)
(3)

where F (x , y) is the feature (or salience) value at location (x, y ) and time t ,

Fmax(t) is the maximum such value over the sampling area and at instant t ,

and Favg(t ) is the average such value over the sampling area and same instant

t . The motivation for using this metric is that it is more robust to varying

dynamic range and varying baselines than other, simpler metrics like

F (x,y,t )/Favg(t) or F (x,y,t )/Fmax(t ).
The values shown in Table 1 are the values of the above metric, averaged

over all video clips and observers (45 eye movement traces and a total of

324,036 valid eye position samples), for both human and random samples. A

compound measure of 0% would indicate perfect agreement between

humans and model, whereby humans would always gaze exactly at the

single most salient pixel within the entire sampling area. In contrast, a

compound measure of 100% would indicate that humans did not gaze at

salient locations more than expected by chance, and measures above 100%
would indicate that humans preferentially gazed at locations predicted to be

of salience lower than average.

Clearly, a score of 0% is not possible as different observers often gazed to

different locations while watching the same video clip. This intersubject

variability makes it impossible for a model to highlight a single most salient

pixel in the display that always corresponds to instantaneous human eye

position. However, scores closer to 0% indicate models that more often
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correlate with human behaviour. To provide a practical lower bound for

scores that may be attainable by a computational model, we applied our

scoring scheme to an alternate model, whose saliency map was derived from

eye movement traces of three humans and tested against a fourth one. In this

human-derived model, the ‘‘saliency map’’ contained three continuously

moving Gaussian blobs (standard deviation s�/0.78), which followed in

real-time the current eye positions of three human subjects who had watched

TABLE 1
Measures of agreement between model and humans (second column) and between
model and random (third column), for saliency as well as individual visual features

implemented in the model. A value of 0% would indicate that salience (or feature value)
at the human (or random) sampling point was always the maximum over the entire
display, while a value of 100% would indicate that it was average. In practice, 0% is

unattainable because interobserver variability makes it impossible for a model to always
exactly pinpoint a single best location for gaze. The score of 52.21% obtained when three

humans predict one represents a more practical lower bound. The comparisons
between human and random distributions of salience or feature values relied on a

nonparametric sign test (fourth column). Finally, the fifth and sixth columns compare
the values obtained for humans across two variants of the model, also using a sign test.

Visual

feature

Average human

Fmax(t) � F(x; y; t)

Fmax(t) � Favg(t)

Average random

Fmax(t) � F(x; y; t)

Fmax(t) � Favg(t)

Compare

human to

random

Compare

human to

human NS.NF

Compare

human to

human NS.F

Three humans predict one:

Humans 52.21% 100.02% p B/10�10

No shifting/embedding, no foveation (NS.NF):

Salience 87.51% 99.97% p B/10�10

Colour 93.38% 100.00% p B/10�10

Flicker 93.71% 99.98% p B/10�10

Intensity 97.54% 99.98% p B/10�10

Orientation 93.80% 100.02% p B/10�10

Motion 93.73% 100.01% p B/10�10

No shifting/embedding, foveation (NS.F):

Salience 81.85% 100.05% p B/10�10 p B/10�10

Colour 93.44% 100.03% p B/10�10 p B/10�10

Flicker 87.13% 99.98% p B/10�10 p B/10�10

Intensity 97.18% 99.97% p B/10�10 p ]/0.1

Orientation 87.02% 99.97% p B/10�10 p B/10�10

Motion 92.01% 99.98% p B/10�10 p B/10�10

Shifting/embedding, foveation (S.F):

Salience 77.24% 99.94% p B/10�10 p B/10�10 p B/10�10

Colour 95.85% 99.96% p B/10�10 p B/10�10 p B/10�10

Flicker 84.41% 100.03% p B/10�10 p B/10�10 p B/10�10

Intensity 97.34% 99.96% p B/10�10 p B/10�10 p B/10�10

Orientation 89.82% 99.99% p B/10�10 p B/10�10 p B/10�10

Motion 90.11% 99.98% p B/10�10 p B/10�10 p B/10�10
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the video clip of interest. By sampling this human-derived saliency map

along the gaze locations of a fourth observer, we obtained a score of 52.21%

for how well that fourth observer could have been predicted by the other

three (Table 1). The human-derived model encompasses both bottom-up and
top-down factors, some of which are well beyond the capabilities of our

computational bottom-up saliency models (e.g., building a cognitive under-

standing of the story depicted in a video clip). Our computational models are

hence expected to score somewhere between 100% (chance level) and

approximately 50% (a remarkably good model that could predict human

eye movements as well as other humans could).

Results for the first bottom-up saliency model variant (no shifting/

embedding of the video frames, no foveation filter) confirm with dynamic
video stimuli previous results indicating that human observers preferentially

gaze at locations with model-predicted salience higher than average

(Parkhurst et al., 2002), with a compound metric value of 87.51%. In

contrast, the compounded metric for random samples was very close to

100%, as expected above. A nonparametric sign test of whether human and

random measures for all 324,036 valid eye position samples could have been

drawn from distributions with same median suggested highly significant

differences between human and random distributions (p B/10�10). It is
interesting to note that the average metric was better for salience than for

any of the individual visual features contributing to salience. This suggests

that some of the locations visited by our observers were salient according to

the model not only for a single feature (e.g., high colour contrast) but for

combined features (e.g., high colour contrast and high motion energy). The

figure of 87.51% for salience suggests that our simple, purely bottom-up

model does predict locally higher salience at image regions likely to be

visited by human observers, in a highly significant manner. But, obviously,
there is more to human vision than bottom-up salience: 87.51% is rather far

from the score near 50% achieved by our human-derived model. This point

is further explored in our discussion; here we accept this figure as a baseline

corresponding to a low-realism version of the simulation framework, and

compare it to the other two model variants with increased realism.

Results for the second model variant (adding a foveation filter around

current human eye position) overall improved the metric for humans (down

to 81.85%), whereas random figures remained close to 100%. Comparing
human metric values for the various features between the first and second

model variants suggested a mixed pattern of changes, though all were highly

significant except for the intensity feature. Colour, intensity, and motion

energy metrics were little affected by the addition of a foveation filter,

whereas flicker and orientation improved more substantially. Hence, the

model benefited from foveation predominantly in that it reduced the

competitive influence of previously salient fine oriented textures and flicker
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far from fixation (often present due to the fairly low quality of our video

clips, digitized from analogue, interlaced NTSC video sources), which would

tend to lower salience at fixation due to the long-range interactions.

Irrespective of the details of the different feature responses, and keeping in
mind that the model used here is only a very coarse approximation to low-

level human vision and that its internals should not be overinterpreted,

comparing first and second model variants showed that adding a foveation

filter had a highly significant outcome onto the quantitative measure of

agreement between model and humans.

Results with the third variant of the model (including embedding the

video frames within a larger background, shifting to eye position, cropping

around that position by a field of view larger than the video display area,
and foveating the resulting image) fairly surprisingly suggested even better

agreement between model and humans (metric down to 77.24% for the

salience values). We believe this result was surprising because shifting the

input, in a coarse attempt to simulate the dynamic motions of a retina,

makes the task of computing perceptual salience with a computational

model much more difficult, as large motion transients and smearing of the

saliency map during saccades may occur (see Discussion). Interestingly, the

better agreement for the salience measure was obtained despite the fact
that slightly worse agreement was obtained, for this third variant than for

the second, for the colour, intensity, and orientation features. Remarkably,

the two features we had originally thought would suffer from rapidly

shifting the input (and the associated high transients), flicker and motion,

actually improved in their agreement with humans between the second and

third variants of the model. This suggests that the simulation operated with

the third variant may actually more closely approximate the patterns of

motion and flicker signals received by a moving human retina. Again, one
should be careful, however, not to overinterpret these detailed results and to

keep in mind that the model only simulates a very approximate and small

fraction of human visual processing. As for the second variant, however, the

high-level conclusion for the third variant of the model was that the

increased realism of the simulation highly significantly affected the outcome

of the comparison between model and humans.

To summarize, Table 2 shows the results of a one-way ANOVA test for

whether model variant was a factor that significantly influenced our metric,
for both humans and random. The test suggested that the metric for salience

as well as for all features was highly significantly affected for humans, but

not nearly as much for random. Note, however, that the random salience

metric was slightly affected by model variant, F(2, 972,105)�/3.82 (three

groups for three model variants, and 3�/324,036�/972,108 data samples

where valid measurements could be sampled), which would be considered a

significant result in typical statistical analysis (with the conclusion that
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model variant was a factor, with significance pB/ .02, rather than the

conclusion that it was not a factor, with p ]/.02, as reported in Table 2).

Indeed, one difference which affected random sampling in the third variant

of the model was that rarely only a portion of the video display area fell

within the field of view of the model (e.g., frames 23 and 38 in Figure 3 are

slightly cut off on the right side as the human eye position is close to the left

side), resulting in a slightly truncated sampling window over which

maximum, average, and random salience were computed. Nevertheless, the

random metric was clearly affected to an extent that simply does not

compare with the extremely high F -values found for the human metric. Of

all features, the metric for intensity was the least affected by model variants,

with colour a far second. The high-level conclusion here again is that the

level of detail used for the simulations very highly significantly affected the

agreement between humans and model, but very little affected that between

random sampling and the model.

Finally, a breakdown histogrammed by metric values for the salience

measures is shown in Figure 5. This shows how, for all three model variants,

the basic difference between humans and random was that the distributions

of metric values for humans had heavier tails towards 0% (salience at point

of gaze higher than on average over the video display area), whereas the

distributions for random were more concentrated around 100% (salience at

sampled location close to the average over the video display area). This

difference is increasingly emphasized from the first to second and to third

model variants, hence showing in a graphical manner why the metric values

reported in Table 1 also became better with increased simulation realism.

TABLE 2
Analysis of variance (ANOVA) to test whether model variant was a
factor in our measures of agreement between models and humans

(ANOVA, human) and between models and random (ANOVA,
random), for saliency as well as the individual visual features

implemented in the models. All F-values reported here are for three
groups (corresponding to the three model variants) and 3�/324,036�/

972,108 data points where valid measurements could be sampled,
hence should be read as F(2, 972105).

Feature ANOVA, Human ANOVA, Random

salience F�/9,803.86 p B/10�10 F�/3.82 p ]/.02

color F�/1,015.15 p B/10�10 F�/2.04 p ]/.13

flicker F�/11,275.84 p B/10�10 F�/2.11 p ]/.12

intensity F�/32.17 p B/10�10 F�/0.04 p ]/.96

orientation F�/5,761.22 p B/10�10 F�/0.66 p ]/.52

motion F�/2,194.56 p B/10�10 F�/0.61 p ]/.54
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Figure 5. Histograms of the distributions of our metric values for humans (thin dark grey bars) and

random (wide light grey bars), for the three model variants.
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DISCUSSION

This study represents a first attempt at investigating whether increased

simulation realism could significantly affect quantitative comparisons

between a computational model and human behavioural data.

It is interesting that, of all features implemented in the model, intensity

contrast seemed to be overall the least affected by increased simulation

realism. Indeed, the computation of that feature is instantaneous and

memoryless in the model, performed independently on every frame. This

could explain why intensity contrast was less affected by input shifting.

However, the colour and orientation features also are instantaneous and

memoryless in our model (as opposed to the flicker and motion features,

which are computed from differential comparisons between successive video

frames) but were affected more strongly. One positive outcome of this

observation is that the conclusions of previous eye movement studies (Barth

et al., 1998; Reinagel & Zador, 1999; Zetzsche et al., 1998), which largely

focused on contrast measures and greyscale static images, might not have

been affected too strongly by lower simulation realism.

There are many shortcomings and limitations to the implementation of

our model, which should be considered a coarse first pass. First, we did not

attempt to calibrate our foveation filter to the visual acuity profiles of our

observers (Geisler & Perry, 2002). Second, the 1024�/768 field of view used

in the third variant of our model, corresponding to approximately 458�/338
of visual angle, was much smaller than a typical 160�/1758 subtended by

each human retina (Wandell, 1995). There were two main reasons which

restricted our model’s field of view: One was computer memory available to

run the simulations (remember that 72 feature maps are computed from the

input image); the other was that obtaining a background image of this width

would require special apparatus, and a more sophisticated method to

simulate the rotation of the eye than the planar shifting used here in a first

approximation. Thus, our study is limited in that the possible influence of

objects or otherwise salient stimuli in the very far visual periphery is not

accounted for.

Overall, the metric values for all three variants of the model, ranging from

77.24% to 87.51%, were honourable compared to the score near 52% of the

human-derived model*in particular, the fully detailed model scores

approximately half-way between the human-derived model and chance. As

briefly reviewed in our introduction, we did not expect perfect agreement

given all the additional factors (biasing by the gist of a scene, top-down

guidance of search, etc.) that contribute to eye movements and are not

simulated by the model (Itti, 2003). It is interesting to note that the

additional machinery implemented in our model compared to, for example, a

simple local contrast detector, significantly improved the correlation between
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humans and model (the metric values for salience were always better than for

intensity contrast alone). Although it is not our main aim here to advocate

that the specific bottom-up saliency model tested in this study can account

for a significant fraction of human gaze allocation, the fact that the models
perform significantly below 100% is interesting as it suggests that bottom-up

salience plays a sustained role in attracting attention in dynamic video

scenes. Another study explores this question in further detail (Itti, in press).

We found it surprising that the third variant of the model performed best.

Indeed, as the input image rapidly shifts during saccades in this model variant,

possibly large motion transients may be elicited, which could easily over-

whelm the saliency map. Remarkably, however, these were seldom observed in

our dynamic saliency maps, suggesting that the long-range competition for
salience implemented in our model was very efficient at suppressing full-field

motion transients. Indeed, shifting the entire input at a given velocity and in a

given direction would excite a single motion feature map (tuned to that

velocity and direction) throughout the entire visual field. Strong local motion

responses would thus be elicited in that feature map, but at many locations in

the visual field, so that the entire feature map would become inhibited by

the long-range competition mechanism because not containing any single

location that significantly differs from most other locations. A consequence of
this for human vision is that, at least in our model, an explicit mechanism for

top-down saccadic suppression may be unnecessary (Thiele, Henning,

Kubischik, & Hoffmann, 2002), although this remains to be tested (i.e.,

maybe even better agreement between model and humans could be obtained

after addition of explicit saccadic suppression to the model). Additional

difficulties which would tend to make the simulation with the third model

variant more difficult include smearing of the low-pass filtered saliency map

as the input shifted (which we often observed when inspecting the dynamic
saliency maps predicted for various video clips), competition between

possibly salient objects outside the video screen area and objects within that

area, and lack of sufficient persistence to allow for salience to build up over

time (remember that the saliency map is modelled as leaky integrator neurons,

which respond better when inputs are somewhat stable). By computer vision

standards, these may be regarded as artifacts, limitations of the feature

detectors, or fundamental problems that inevitably deteriorate the output of

the model. However, our results suggest that they actually might be a feature
rather than a shortcoming of the model, in that biological early vision is

subjected to similar situations as the eye moves, in a manner that eventually

will affect biological computation of salience and eye movements.

It is important to again stress that one should not overinterpret the

absolute quantitative measures of agreement between model variants and

human scan paths. Indeed, these absolute numbers are highly dependent

upon software implementation details of our model, various model
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parameters that we have here not attempted to tune, such as the strength of

the long-range interactions, and even architectural choices, such as which

preattentive visual features may guide attention (Wolfe & DiMase, 2003).

Thus, the important conclusion of our work is not in the absolute
performance value of each model variant, but in the comparison between

the three variants. The fact that increased realism affected the comparison

outcomes in such a significant manner stresses how attempting simulations

that are as realistic as possible is important when using computational

models to interpret empirical data. Translating these findings to human

vision, in particular for psychophysical studies like visual search, our results

strongly caution against an often fairly intuitive interpretation of the data in

terms of the intrinsic local features of the target and distractor items.
Instead, the outcome of a search may much more strongly be influenced

than one may think at first by the spatiotemporal dynamics of eye

movements operated over the course of the search.
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