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Visually-guided behavior recruits a network of brain regions so extensive that it is often affected by neuropsy-
chiatric disorders, producing measurable atypical oculomotor signatures. Wang et al. (2015) combine eye
tracking with computational attention models to decipher the neurobehavioral signature of autism.
Imagine that you are waiting for a pre-

scription to be filled at your local phar-

macy. Today, many pharmacies in the

United States of America provide free

blood pressure monitors that you can

use as a rapid health indicator while you

wait. You simply place your arm in the

pressure band, press a button, and

observe the readings. If the readings are

high, it may be a good idea to check

with your doctor whether any corrective

action should be taken. What if similar

devices could be made available for the

evaluation of mental health?

Recent progress in eye-tracking tech-

niques is opening new avenues for quanti-

tative, objective, simple, inexpensive, and

rapid evaluation of mental health, as

shown in this issue by the study of Wang

et al. (2015). The starting premise is that

the visual attention and eye movement

networks are so pervasive in the human

brain (Corbetta and Shulman, 2002; Miller

and Buschman, 2013) that many neuro-

developmental and neurodegenerative

disorders may affect their functioning,

resulting in quantifiable alterations of

eye movement behavior (Leigh and Zee,

2015). Indeed, the control of attention

and gaze involves not only occipital (early

vision), temporal (high-level object vision),

parietal (spatial vision and attention), and

frontal (goal-driven vision) cortices, but

also the limbic system, reward systems,

and deep-brain nuclei including the

thalamus and the superior colliculus (Ba-

luch and Itti, 2011; Gottlieb et al., 2014)

(Figure 1A). Consequently, many previous

studies have demonstrated differences in

saccadic reaction time, in saccadeandfix-

ation metrics, and in error patterns during

visually-guided behavior, for a wide range
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of neurobehavioral disorders. Most

studies to date have used structured labo-

ratory tasksandstimuli. Anotable example

is the anti-saccade task, where a periph-

eral target suddenly appears on a blank

screen and the task is to refrain from look-

ing at it, and to instead look in the opposite

direction where there is nothing on the

display (Munoz and Everling, 2004). Pa-

tients show either markedly slower reac-

tion times, increased error rates, or both,

compared to controls, as tested with

attention deficit hyperactivity disorder

(ADHD), Tourette’s syndrome,Parkinson’s

disease, and schizophrenia (Munoz and

Everling, 2004). The same eye movement

tasks canbe used tomonitor development

and maturation, even in control subjects

(Luna et al., 2008). This general approach

already provides a valuable complement

to more conventional neuropsychiatric

assessment usingquestionnaires andclin-

ical evaluations, especially for those disor-

ders for which a clear chemical, genetic,

morphological, physiological, or histologi-

cal biomarker has not yet been identified.

The study of Wang et al. (2015) focuses

on autism spectrum disorder (ASD) and

replaces structured tasks and laboratory

stimuli—previously extensively studied in

ASD (e.g., Takarae et al., 2004)—by sim-

ple free viewing of natural images. This

presents a number of advantages that

have recently been noted in the literature

(Tseng et al., 2013): the technique is appli-

cable to very young children or to any in-

dividual (or animal) who may not under-

stand or be interested in complying with

any task instruction, the stimuli present a

wider range of visual attributes (including

low-level features, such as many different

textures, colors, and shapes, but also, of
evier Inc.
particular interest in Wang et al.’s study,

many different kinds of objects and

many different semantic valences of items

or actors in the scenes), and the amount

of information collected per unit time is

higher than for typical laboratory tasks

based on a trial-by-trial structure. But

this comes at the cost of significantly

complicating the ensuing data analysis.

Indeed, the inter-observer variability in

gaze patterns during free viewing of natu-

ral scenes is large even within control

populations (Mannan et al., 1995; also

note the spread of fixations for some stim-

uli in Figure 1 of Wang et al., 2015), the

stimuli are highly complex and cannot at

present be fully characterized or codified

by existing theories of object perception

or visual scene understanding; the open-

ended nature of the free-viewing task in-

vites further variability due to cultural,

gender, and other individual differences;

and eye movements are recorded on a

continuous basis as opposed to well-

defined, discrete trial-by-trial episodes.

As a result, while obvious differences

in fixation preferences may be notable

between patient and control groups on

some images (Figure 1 of Wang et al.,

2015), quantifying those differences in

terms of possible differences in attention

allocation toward different attributes of

the stimuli is not trivial. This is where

new computational models and machine

learning tools can help. Here, Wang

et al. (2015) develop an elegant three-

stage visual saliency model, which pro-

duces a topographic activation map for

each natural image in their stimulus set.

The map highlights locations in the image

that are more conspicuous and hence

more likely to be looked at, at least by
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Figure 1. Brain Circuit of Attention and Behavioral Signatures of Disorders
(A)Signalsandbrain structures thathavebeen implicated inattentionandgazecontrol. Theflash symbol indicates that a structurehasbeenmicrostimulatedandanX
indicates that it has been lesioned in previous studies, to characterize its role in the circuit. The connections show the most likely type of signal being transmitted
between two structures; top-down ([TD]; goal driven) signals in blue, bottom-up ([BU]; stimulus driven) signals in red, andbidirectional signals in gray. Abbreviations:
SC, superior colliculus; SNr, substantia nigra pars reticulata; MD, mediodorsal thalamus; LGN, lateral geniculate nucleus; IT, inferotemporal cortex; MT, middle
temporal area; LIP, lateral intraparietal area; FEF, frontal eye fields; PFC, prefrontal cortex. Reproduced with permission from Baluch and Itti (2011).
(B) Signatures of three different disorders—ADHD and FASD in children, as well as Parkinson’s disease (PD) in elderly—obtained through eye tracking while
participants freely watched natural video clips. The signatures show strikingly distinct, quantitative, and objective patterns of atypical deployment of gaze, here
along 15 dimensions from three broad categories: oculomotor (saccade and fixation metrics), saliency based (attention to visual features of the stimuli), and
group-based (correlation with gaze patterns of control young adults). Such signature or behavioral biomarker can be computed for any new individual and then
classified using machine learning systems into the most likely patient or control group. Error bars indicate 95% confidence intervals after Bonferroni correction.
Significance level: p < 0.01, one-tailed paired t-test. Adapted from Tseng et al. (2013).
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control observers. Saliency maps are

typically constructed as the weighted

sum or aggregation of several feature

maps, each sensitive to a particular visual

attribute (e.g., color contrast or oriented

edges; Itti et al., 1998). Using a standard

machine learning system (support vector

machine [SVM]), Wang et al. (2015) learn

the relative weights of different features

that contribute to saliency so as to maxi-

mize the agreement between model sa-

liency maps and recorded human fixa-

tions, separately for the control and

patient groups. Differences in the learned

weights between patient and control

groups indicate different levels of prefer-

ence or different degrees of attractive-

ness of the features across the two

groups. Wang et al., 2015 (see Figure 2)

indeed report a striking set of differences
between ASD patients and controls:

model weights for ASD patients were

higher for pixel-level salience, for the

background of the scene, and for the im-

age center, but lower for objects and

items with semantic valence, such as

faces or items being looked at by persons

or animals in the scene. Repeating the

analysis for individual saccades as they

developed over the time spent scanning

an image revealed, for both groups, a

general decrease in the weights of low-

level features and an increase in weights

of object and semantic features (Figure 3

of Wang et al., 2015), suggesting a

progressively lower influence of image-

based or bottom-up features and higher

influence of top-down factors in guiding

gaze as time develops (as already noted

previously with simpler models; e.g., Par-
Neuron 88,
khurst et al., 2002). An interesting new

result is the relatively lower decrease

in weights for low-level features, and rela-

tively lower increase in weights for object-

level and semantic features, for ASD pa-

tients compared to controls (Figure 3 of

Wang et al., 2015). These differences in

model weights were corroborated in a

model-free analysis that demonstrated

fewer and slower saccades toward se-

mantic objects for the ASD group, more

fixations in the background, and longer

fixations over background and other ob-

jects (Figures 4D–4F of Wang et al.,

2015). Among the semantic features, mo-

tion, smell, and touch features had lower

model weights in ASD patients compared

to controls, as well as faces, for later fixa-

tions in the scanpaths (Figures 5 and S5E

of Wang et al., 2015). Finally, although
November 4, 2015 ª2015 Elsevier Inc. 443
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more salient faces and text elements at-

tracted more fixations overall, there was

no difference between ASD and controls

in this dimension (Figure 6 of Wang

et al., 2015). Overall, the study reveals a

complex pattern of differences between

the ASD and control groups, with detailed

ramifications into the nature of the items

gazed at and the time at which they

were gazed at. Because it is complex,

this pattern may be viewed as lacking a

simple interpretation and may be difficult

to directly link to phenotype and underly-

ing neurophysiology. For example, it is

not true that ASD patients strongly

avoided human faces and locations

gazed at by humans or animals in the im-

ages, since the weights for these features

are non-zero and, overall, not significantly

lower for ASD patients than for controls

(Figure 5 ofWang et al., 2015). This makes

it difficult to directly translate the findings

into neurological terms or into an interpre-

tation of what functional brain mechanism

differences may exist between the patient

and control groups.

Yet, just because an elevated blood

pressure reading does not fully explain

what is abnormal in the circulatory system

does not render it useless, and likewise

with eye-trackingmeasures such as those

of Wang et al., 2015. Although complex

patterns of differences may not directly

pinpoint which brain areas or functions

are affected by a disease, they can be

used as characteristic behavioral bio-

markers—or behavioral biometric signa-

tures—of particular disorders. Such sig-

natures can support screening and

differentiations among patients, not only

at the level of group-based statistical ef-
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fects (as shown by Wang et al., 2015),

but also possibly for individual persons.

For example, using a similar approach

but with video rather than static stimuli,

Tseng et al. (2013) were able to build a

three-way classifier that could differen-

tiate between children with ADHD, fetal

alcohol spectrumdisorder ([FASD], some-

times comorbid with ADHD), and controls,

well above chance, from eye movements

recorded over 15 min of watching televi-

sion (Figure 1B). Applying the same

methods but at the other end of the age

spectrum, the classifier was 90% correct

at differentiating Parkinson’s disease pa-

tients from elderly controls. Thus, a bright

future seems to lie ahead for approaches

like those described in this issue by

Wang et al., 2015. A key issue for the im-

mediate future is that these techniques

should be shown to be equally or more

sensitive and specific than existing ap-

proaches, for example through longitudi-

nal studies (Magiati et al., 2014) of large

cohorts of initially undiagnosed individ-

uals, some of whom may later develop a

disorder that had been predicted by the

model-based analysis. If that is the case,

maybe some day in the not so distant

future simple mental health assessment

machines based on eye tracking may

come to existence, possibly at your

nearby pharmacy (Tseng et al., 2014).
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