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Abstract

Most models of visual search, whether involving overt eye movements or covert shifts of attention, are based on the concept
of a saliency map, that is, an explicit two-dimensional map that encodes the saliency or conspicuity of objects in the visual
environment. Competition among neurons in this map gives rise to a single winning location that corresponds to the next attended
target. Inhibiting this location automatically allows the system to attend to the next most salient location. We describe a detailed
computer implementation of such a scheme, focusing on the problem of combining information across modalities, here
orientation, intensity and color information, in a purely stimulus-driven manner. The model is applied to common psychophysical
stimuli as well as to a very demanding visual search task. Its successful performance is used to address the extent to which the
primate visual system carries out visual search via one or more such saliency maps and how this can be tested. © 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Most biological vision systems (including Drosophila;
Heisenberg & Wolf, 1984) appear to employ a serial
computational strategy when inspecting complex visual
scenes. Particular locations in the scene are selected
based on their behavioral relevance or on local image
cues. In primates, the identification of objects and the
analysis of their spatial relationship usually involves
either rapid, saccadic eye movements to bring the fovea
onto the object, or covert shifts of attention.

It may seem ironic that brains employ serial process-
ing, since one usually thinks of them as paradigmatic
‘massively parallel’ computational structures. However,
in any physical computational system, processing re-
sources are limited, which leads to bottlenecks similar
to those faced by the von Neumann architecture on
conventional digital machines. Nowhere is this more
evident than in the primate’s visual system, where the

amount of information coming down the optic nerve
— estimated to be on the order of 108 bits per second
— far exceeds what the brain is capable of fully pro-
cessing and assimilating into conscious experience. The
strategy nature has devised for dealing with this bottle-
neck is to select certain portions of the input to be
processed preferentially, shifting the processing focus
from one location to another in a serial fashion.

Despite the widely shared belief in the general public
that ‘we see everything around us’, only a small fraction
of the information registered by the visual system at
any given time reaches levels of processing that directly
influence behavior. This is vividly demonstrated by
change blindness (Simons & Levin, 1997; O’Regan,
Rensink & Clark, 1999) in which significant image
changes remain nearly invisible under natural viewing
conditions, although observers demonstrate no
difficulty in perceiving these changes once directed to
them. Overt and covert attention controls access to
these privileged levels and ensures that the selected
information is relevant to behavioral priorities and
objectives. Operationally, information can be said to be
‘attended’ if it enters short-term memory and remains
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there long enough to be voluntarily reported. Thus,
visual attention is closely linked to 6isual awareness
(Crick & Koch, 1998).

But how is the selection of one particular spatial
location accomplished? Does it involve primarily bot-
tom-up, sensory-driven cues or does expectation of the
targets’ characteristics play a decisive role? A large
body of literature has concerned itself with the psycho-
physics of visual search or orienting for targets in
sparse arrays or in natural scenes using either covert or
overt shifts of attention (for reviews, see Niebur &
Koch, 1998 or the survey article Toet, Bijl, Kooi &
Valeton, 1998).

Much evidence has accumulated in favor of a two-
component framework for the control of where in a
visual scene attention is deployed (James, 1890/1981;
Treisman & Gelade, 1980; Bergen & Julesz, 1983; Treis-
man, 1988; Nakayama & Mackeben, 1989; Braun &
Sagi, 1990; Hikosaka, Miyauchi & Shimojo, 1996;
Braun, 1998; Braun & Julesz, 1998): a bottom-up, fast,
primitive mechanism that biases the observer towards
selecting stimuli based on their saliency (most likely
encoded in terms of center-surround mechanisms) and a
second slower, top-down mechanism with variable se-
lection criteria, which directs the ‘spotlight of attention’
under cognitive, volitional control. Whether visual con-
sciousness can be reached by either saliency-based or
top-down attentional selection or by both remains
controversial.

Preattentive, parallel levels of processing do not rep-
resent all parts of a visual scene equally well, but
instead provide a weighted representation with strong
responses to a few parts of the scene and poor re-
sponses to everything else. Indeed, in an awake monkey
freely viewing a natural visual scene, there are not
many locations which elicit responses in visual cortex
comparable to those observed with isolated, laboratory
stimuli (Gallant, Connor & Essen, 1998). Whether a
given part of the scene elicits a strong or a poor
response is thought to depend very much on ‘context’,
that is, on what stimuli are present in other parts of the
visual field. In particular, the recently accumulated
evidence for ‘non-classical’ modulation of a cell’s re-
sponse by the presence of stimuli outside of the cell’s
receptive field provides direct support for the idea that
different visual locations compete for activity (Sillito,
Grieve, Jones, Cudeiro & Davis, 1995; Sillito & Jones,
1996; Levitt & Lund, 1997). Those parts which elicit a
strong response are thought to draw visual attention to
themselves and to therefore be experienced as ‘visually
salient’. Directing attention at any of the other parts is
thought to require voluntary ‘effort’.

Both modes of attention can operate at the same time
and visual stimuli have two ways of penetrating to
higher levels of awareness: being wilfully brought into
the focus of attention, or winning the competition for
saliency.

Koch and Ullman (1985) introduced the idea of a
saliency map to accomplish preattentive selection (see
also the concept of a ‘master map’ in Treisman, 1988).
This is an explicit two-dimensional map that encodes
the saliency of objects in the visual environment. Com-
petition among neurons in this map gives rise to a
single winning location that corresponds to the most
salient object, which constitutes the next target. If this
location is subsequently inhibited, the system automati-
cally shifts to the next most salient location, endowing
the search process with internal dynamics (Fig. 1a).

Many computational models of human visual search
have embraced the idea of a saliency map under differ-
ent guises (Treisman, 1988; Olshausen, Anderson &
Van Essen, 1993; Wolfe, 1994; Niebur & Koch, 1996;
Itti, Koch & Niebur, 1998). The appeal of an explicit
saliency map is the relatively straightforward manner in
which it allows the input from multiple, quasi-indepen-
dent feature maps to be combined and to give rise to a
single output: The next location to be attended. Elec-
trophysiological evidence points to the existence of
several neuronal maps, in the pulvinar, the superior
colliculus and the intraparietal sulcus, which appear to
specifically encode for the saliency of a visual stimulus
(Robinson & Petersen, 1992; Gottlieb, Kusunoki &
Goldberg, 1998; Colby & Goldberg, 1999; Rockland,
Andresen, Cowie & Robinson, 1999).

However, some researchers reject the idea of a topo-
graphic map in the brain whose raison d’etre is the
representation of salient stimuli. In particular, Desi-
mone and Duncan (1995) postulate that selective atten-
tion is a consequence of interactions among feature
maps, each of which encodes in an implicit fashion, the
saliency of a stimulus in that particular feature. We
know of only a single implementation of this idea in
terms of a computer algorithm (Hamker, 1999).

We here describe a computer implementation of a
preattentive selection mechanism based on the architec-
ture of the primate visual system. We address the
thorny problem of how information from different
modalities — in the case treated here from 42 maps
encoding intensity, orientation and color in a center-
surround fashion at a number of spatial scales — can
be combined into a single saliency map. Our algorithm
qualitatively reproduces human performance on a num-
ber of classical search experiments.

Vision algorithms frequently fail when confronted
with realistic, cluttered images. We therefore studied
the performance of our search algorithm using high-res-
olution (6144×4096 pixels) photographs containing
images of military vehicles in a complex rural back-
ground. Our algorithm shows, on average, superior
performance compared to human observers searching
for the same targets, although our system does not yet
include any top-down task-dependent tuning.
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Finally, we discuss future computational work that
needs to address the physiological evidence for multiple
saliency maps, possibly operating in different coordi-
nate systems (e.g. retina versus head coordinates), and

the need to integrate information across saccades.
The work presented here is a considerable elabora-

tion upon the model presented in Itti et al. (1998) and
has not been reported previously.

Fig. 1. (a) Original model of saliency-based visual attention, adapted from Koch and Ullman (1985). Early visual features such as color, intensity
or orientation are computed, in a massively parallel manner, in a set of pre-attentive feature maps based on retinal input (not shown). Activity
from all feature maps is combined at each location, giving rise to activity in the topographic saliency map. The winner-take-all (WTA) network
detects the most salient location and directs attention towards it, such that only features from this location reach a more central representation
for further analysis. (b) Schematic diagram for the model used in this study. It directly builds on the architecture proposed in (a), but provides
a complete implementation of all processing stages. Visual features are computed using linear filtering at eight spatial scales, followed by
center-surround differences, which compute local spatial contrast in each feature dimension for a total of 42 maps. An iterative lateral inhibition
scheme instantiates competition for salience within each feature map. After competition, feature maps are combined into a single ‘conspicuity map’
for each feature type. The three conspicuity maps then are summed into the unique topographic saliency map. The saliency map is implemented
as a 2-D sheet of Integrate-and-Fire (I&F) neurons. The WTA, also implemented using I&F neurons, detects the most salient location and directs
attention towards it. An inhibition-of-return mechanism transiently suppresses this location in the saliency map, such that attention is
autonomously directed to the next most salient image location. We here do not consider the computations necessary to identify a particular object
at the attended location.
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2. The model

Our model is limited to the bottom-up control of
attention, i.e. to the control of selective attention by the
properties of the visual stimulus. It does not incorpo-
rate any top-down, volitional component. Furthermore,
we are here only concerned with the localization of the
stimuli to be attended (‘where’), not their identification
(‘what’). A number of authors (Olshausen et al., 1993;
Beymer & Poggio, 1996) have presented models for the
neuronal expression of attention along the occipital-
temporal pathway once spatial selection has occurred.

In the present work, we make the following four
assumptions: First, visual input is represented, in early
visual structures, in the form of iconic (appearance-
based) topographic feature maps. Two crucial steps in
the construction of these representations consist of
center-surround computations in every feature at differ-
ent spatial scales, and within-feature spatial competi-
tion for activity. Second, information from these
feature maps is combined into a single map which
represents the local ‘saliency’ of any one location with
respect to its neighborhood. Third, the maximum of
this saliency map is, by definition, the most salient
location at a given time, and it determines the next
location of the attentional searchlight. And fourth, the
saliency map is endowed with internal dynamics allow-
ing the perceptive system to scan the visual input such
that its different parts are visited by the focus of
attention in the order of decreasing saliency.

Figure 1b shows an overview of our model. Input is
provided in the form of digitized images, from a variety
of sources including a consumer-electronics NTSC
video camera.

2.1. Extraction of early 6isual features

Low-level vision features (color channels tuned to
red, green, blue and yellow hues, orientation and
brightness) are extracted from the original color image
at several spatial scales, using linear filtering. The dif-
ferent spatial scales are created using Gaussian pyra-
mids (Burt & Adelson, 1983), which consist of
progressively low-pass filtering and sub-sampling the
input image. In our implementation, pyramids have a
depth of nine scales, providing horizontal and vertical
image reduction factors ranging from 1:1 (level 0; the
original input image) to 1:256 (level 8) in consecutive
powers of two.

Each feature is computed in a center-surround struc-
ture akin to visual receptive fields. Using this biological
paradigm renders the system sensitive to local spatial
contrast in a given feature rather than to amplitude in
that feature map. Center-surround operations are im-
plemented in the model as differences between a fine
and a coarse scale for a given feature: The center of the

receptive field corresponds to a pixel at level c�{2,3,4}
in the pyramid, and the surround to the corresponding
pixel at level s=c+d, with d�{3, 4}. We hence com-
pute six feature maps for each type of feature (at scales
2–5, 2–6, 3–6, 3–7, 4–7, 4–8). Seven types of features,
for which wide evidence exists in mammalian visual
systems, are computed in this manner from the low-
level pyramids: As detailed below, one feature type
encodes for on/off image intensity contrast (Leventhal,
1991), two encode for red/green and blue/yellow dou-
ble-opponent channels (Luschow & Nothdurft, 1993;
Engel, Zhang & Wandell, 1997), and four encode for
local orientation contrast (DeValois, Albrecht &
Thorell, 1982; Tootell, Hamilton, Silverman & Switkes,
1988).

The six feature maps for the intensity feature type
encode for the modulus of image luminance contrast,
i.e. the absolute value of the difference between inten-
sity at the center (one of the three c scales) and intensity
in the surround (one of the six s=c+d scales). To
isolate chromatic information, each of the red, green
and blue channels in the input image are first normal-
ized by the intensity channel; a quantity corresponding
to the double-opponency cells in primary visual cortex
is then computed by center-surround differences across
scales. Each of the six red/green feature maps is created
by first computing (red–green) at the center, then sub-
tracting (green–red) from the surround, and finally
outputting the absolute value. Six blue/yellow feature
maps are similarly created. Local orientation is ob-
tained at all scales through the creation of oriented
Gabor pyramids from the intensity image (Greenspan,
Belongie, Goodman, Perona, Rakshit & Anderson,
1994). Four orientations are used (0, 45, 90 and 135°)
and orientation feature maps are obtained from abso-
lute center-surround differences between these channels.
These maps encode, as a group, how different the
average local orientation is between the center and
surround scales. A more detailed mathematical descrip-
tion of the preattentive feature extraction stage has
been presented previously (Itti et al., 1998).

2.2. Combining information across multiple maps

Our modeling hypotheses assume the existence of a
unique topographic saliency map. At each spatial loca-
tion, activity from the 42 feature maps consequently
needs to be combined into a unique scalar measure of
salience. One major difficulty in such combination
resides in the fact that the different feature maps arise
from different visual modalities, which encode for a
priori not comparable stimulus dimensions: For exam-
ple, how should a 10° orientation discontinuity com-
pare to a 5% intensity contrast?

In addition, because of the large number of maps
being combined, the system is faced with a severe
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signal-to-noise ratio problem: A salient object may only
elicit a strong peak of activity in one or a few feature
maps, tuned to the features of that object, while a
larger number of feature maps, for example tuned to
the features of distracting objects, may show strong
peaks at numerous locations. For instance, a stimulus
display containing one vertical bar among many hori-
zontal bars yields an isolated peak of activity in the
map tuned to vertical orientation at the scale of the bar;
the same stimulus display however also elicits strong
peaks of activity, in the intensity channel, at the loca-
tions of all bars, simply because each bar has high
intensity contrast with the background. When all fea-
ture maps are combined into the saliency map, the
isolated orientation pop-out hence is likely to be greatly
weakened, at best, or even entirely lost, at worst,
among the numerous strong intensity responses.

Previously, we have shown that the simplest feature
combination scheme — to normalize each feature map
to a fixed dynamic range, and then sum all maps —
yields very poor detection performance for salient
targets in complex natural scenes (Itti & Koch, 1999).
One possible way to improve performance is to learn
linear map combination weights, by providing the sys-
tem with examples of targets to be detected. While
performance improves greatly, this method presents the
disadvantage of yielding different specialized models
(that is, sets of synaptic weights), one for each type of
target studied.

In the present study, we derive a generic model which
does not impose any strong bias for any particular
feature dimension. To this end. we implemented a
simple within-feature spatial competition scheme, di-
rectly inspired by physiological and psychological stud-
ies of long-range corticocortical connections in early
visual areas. These connections, which can span up to
6–8 mm in striate cortex, are thought to mediate
‘non-classical’ response modulation by stimuli outside
the cell’s receptive field. In striate cortex, these connec-
tions are made by axonal arbors of excitatory (pyrami-
dal) neurons in layers III and V (Gilbert & Wiesel,
1983; Rockland & Lund, 1983; Gilbert & Wiesel, 1989;
Gilbert, Das, Ito, Kapadia & Westheimer, 1996). Non-
classical interactions are thought to result from a com-
plex balance of excitation and inhibition between
neighboring neurons as shown by electrophysiology
(Sillito et al., 1995; Sillito & Jones, 1996; Levitt &
Lund, 1997), optical imaging (Weliky, Kandler, Fitz-
patrick & Katz, 1995), and human psychophysics (Polat
& Sagi, 1994a,b; Zenger & Sagi, 1996).

Although much experimental work is being deployed
in the characterization of these interactions, a precise
quantitative understanding of such interactions still is
in the early stages (Zenger & Sagi, 1996). Rather than
attempting to propose a detailed quantitative account
of such interactions, our model hence simply repro-

duces three widely observed features of those interac-
tions: First, interactions between a center location and
its non-classical surround appear to be dominated by
an inhibitory component from the surround to the
center (Cannon & Fullenkamp, 1991), although this
effect is dependent on the relative contrast between
center and surround (Levitt & Lund, 1997). Hence our
model focuses on non-classical surround inhibition.
Second, inhibition from non-classical surround loca-
tions is strongest from neurons which are tuned to the
same stimulus properties as the center (Ts’o, Gilbert &
Wiesel, 1986; Gilbert & Wiesel, 1989; Knierim & van
Essen, 1992; Malach, Amir, Harel & Grinvald, 1993;
Malach, 1994; Sillito et al., 1995). As a consequence,
our model implements interactions within each individ-
ual feature map rather than between maps. Third,
inhibition appears strongest at a particular distance
from the center (Zenger & Sagi, 1996), and weakens
both with shorter and longer distances. These three
remarks suggest that the structure of non-classical in-
teractions can be coarsely modeled by a two-dimen-
sional difference-of-Gaussians (DoG) connection
pattern (Fig. 2).

The specific implementation of these interactions in
our model is as follows: Each feature map is first
normalized to a fixed dynamic range (between 0 and 1),
in order to eliminate feature-dependent amplitude dif-
ferences due to different feature extraction mechanisms.
Each feature map is then iteratively convolved by a
large 2-D DoG filter, the original image is added to the
result, and negative results are set to zero after each
iteration. The DoG filter, a section of which is shown in
Fig. 2, yields strong local excitation at each visual
location, which is counteracted by broad inhibition
from neighboring locations. Specifically, we have:

DoG(x,y)

=
c ex

2

2ps ex
2 e− (x2+y2)/(2sex

x )−
c inh

2

2ps inh
2 e− (x2+y2)/(2sinh

x ) (1)

In our implementation, sex=2% and sinh=25% of
the input image width, cex=0.5 and cinh=1.5 (Fig. 2).
At each iteration of the normalization process, a given
feature map M is then subjected to the following
transformation:

M� �M+M�DoG−Cinh�]0 (2)

where DoG is the 2D difference of Gaussian filter
described above, � �]0 discards negative values, and Cinh

is a constant inhibitory term (Cinh=0.02 in our imple-
mentation with the map initially scaled between 0 and
1). Cinh introduces a small bias towards slowly sup-
pressing areas in which the excitation and inhibition
balance almost exactly; such regions typically corre-
spond to extended regions of uniform textures (depend-
ing on the DoG parameters), which we would not
consider salient.
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Fig. 2. (a) Gaussian pixel widths for the nine scales used in the model. Scale s=0 corresponds to the original image, and each subsequent scale
is coarser by a factor 2. Two examples of the six center-surround receptive field types are shown, for scale pairs 2–5 and 4–8. (b) Illustration of
the spatial competition for salience implemented within each of the 42 feature maps. Each map receives input from the linear filtering and
center-surround stages. At each step of the process, the convolution of the map by a large Difference-of-Gaussians (DoG) kernel is added to the
current contents of the map. This additional input coarsely models short-range excitatory processes and long-range inhibitory interactions between
neighboring visual locations. The map is half-wave rectified, such that negative values are eliminated, hence making the iterative process
non-linear. Ten iterations of the process are carried out before the output of each feature map is used in building the saliency map.

Each feature map is subjected to ten iterations of the
process described in Eq. (2). The choice of the number
of iterations is somewhat arbitrary: In the limit of an
infinite number of iterations, any non-empty map will
converge towards a single peak (except for a few unre-
alistic, singular configurations), hence constituting only
a poor representation of the scene. With few iterations
however, spatial competition is weak and inefficient.
Two examples of the time evolution of this process are
shown in Fig. 3, and illustrate that using on the order
of ten iterations yields adequate distinction between the
two example images shown. As expected, feature
maps with initially numerous peaks of similar ampli-
tude are suppressed by the interactions, while maps
with one or a few initially stronger peaks become

enhanced. It is interesting to note that this within-fea-
ture spatial competition scheme resembles a ‘winner-
take-all’ network with localized inhibitory spread,
which allows for a sparse distribution of winners across
the visual scene (see Horiuchi, Morris, Koch & De-
Weerth, 1997 for a 1-D real-time implementation in
Analog-VLSI).

After normalization, the feature maps for intensity,
color, and orientation are summed across scales into
three separate ‘conspicuity maps’, one for intensity, one
for color and one for orientation (Fig. 1b). Each con-
spicuity map is then subjected to another ten iterations
of Eq. (2). The motivation for the creation of three
separate channels and their individual normalization is
the hypothesis that similar features compete strongly
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for salience, while different modalities contribute inde-
pendently to the saliency map. Although we are not
aware of any supporting experimental evidence for this
hypothesis, this additional step has the computational
advantage of further enforcing that only a spatially
sparse distribution of strong activity peaks is present
within each visual feature type, before combination of
all three types into the scalar saliency map.

2.3. The saliency map

After the within-feature competitive process has
taken place in each conspicuity map, these maps are
linearly summed into the unique saliency map, which
resides at scale 4 (reduction factor 1:16 compared to the
original image). At any given time, the maximum of the
saliency map corresponds to the most salient stimulus

Fig. 3. (a) Iterative spatial competition for salience in a single feature map with one strongly activated location surrounded by several weaker ones.
After a few iterations, the initial maximum has gained further strength while at the same time suppressing weaker activation regions. (b) Iterative
spatial competition for salience in a single feature map containing numerous strongly activated locations. All peaks inhibit each other more-or-less
equally, resulting in the entire map being suppressed.
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Fig. 4. Example of the working of our model with a 512×384 pixels color image. Feature maps are extracted from the input image at several
spatial scales, and are combined into three separate conspicuity maps (intensity, color and orientation; see Fig. 1b) at scale 4 (32×24 pixels). The
three conspicuity maps that encode for saliency within these three domains are combined and fed into the single saliency map (also 32×24 pixels).
A neural winner-take-all network then successively selects, in order of decreasing saliency, the attended locations. Once a location has been
attended to for some brief interval, it is transiently suppressed in the saliency map by the inhibition of return mechanism (dark round areas). Note
how the inhibited locations recover over time (e.g. the first attended location has regained some activity at 274 ms), due to the integrative
properties of the saliency map. The radius of the focus of attention was 64 pixels.

to which the focus of attention should be directed next,
in order to allow for more detailed inspection by neu-
rons along the occipito-temporal pathway. To find the
most salient location, we have to determine the maxi-
mum of the saliency map.

This maximum is selected by application of a winner-
take-all algorithm. Different mechanisms have been
suggested for the implementation of neural winner-
take-all networks (Koch & Ullman, 1985; Yuille &
Grzywacz, 1989; in particular see Tsotsos, Culhane,
Wai, Lai, Davis & Nuflo, 1995 for a multi-scale version
of the winner-take-all network). In our model, we used
a two dimensional layer of integrate-and-fire neurons
with strong global inhibition in which the inhibitory
population is reliably activated by any neuron in the
layer (a more realistic implementation would consist of
populations of neurons; for simplicity, we model such
populations by a single neuron with very strong
synapses). When the first of these integrate-and-fire
cells fires (winner), it will generate a sequence of action
potentials, causing the focus of attention (FOA) to shift
to the winning location. These action potentials will
also activate the inhibitory population, which in turn
inhibits all cells in the layer, hence resetting the network
to its initial state.

In the absence of any further control mechanism, the
system described so far would direct its focus of atten-
tion, in the case of a static scene, constantly to one
location, since the same winner would always be se-

lected. To avoid this undesirable behavior, we follow
Koch and Ullman (1985) and introduce inhibitory feed-
back from the winner-take-all (WTA) array to the
saliency map. When a spike occurs in the WTA net-
work, the integrators in the saliency map transiently
receive additional input with the spatial structure of a
difference of Gaussians. The inhibitory center (with a
standard deviation of half the radius of the FOA) is at
the location of the winner; it and its neighbors become
inhibited in the saliency map. As a consequence, atten-
tion switches to the next-most conspicuous location
(Fig. 4). Such an ‘inhibition of return’ has been well
demonstrated for covert attentional shifts in humans
(Posner, Cohen & Rafal, 1982; Kwak & Egeth, 1992).
There is much less evidence for inhibition-of-return for
eye movements in either humans or trained monkeys
(Motter & Belky, 1998).

The function of the excitatory lobes (half width of
four times the radius of the FOA) is to favor locality in
the displacements of the focus of attention: If two
locations are of nearly equal conspicuity, the one clos-
est to the previous focus of attention will be attended
next. This implementation detail directly follows the
idea of ‘proximity preference’ proposed by Koch and
Ullman (1985).

The time constants, conductances, and firing
thresholds of the simulated neurons are chosen so that
the FOA jumps from one salient location to the next in
approximately 30–70 ms (simulated time; Saarinen &
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Julesz, 1991), and so that an attended area is inhibited
for approximately 500–900 ms (see Fig. 4). These de-
lays vary for different locations with the strength of the
saliency map input at those locations. The FOA there-
fore may eventually return to previously attended loca-
tions, as it is observed psychophysically. These
simulated time scales are related to the dynamical
model of integrate-and-fire neurons used in our model
(see http://www.klab.caltech.edu/� itti/ for the imple-
mentation source code, which clearly specifies all
parameters of the simulated neurons using SI units).

3. Results

We tested our model on a wide variety of real
images, ranging from natural outdoor scenes to artistic
paintings. All images were in color, contained signifi-
cant amounts of noise, strong local variations in illumi-
nation, shadows and reflections, large numbers of
‘objects’ often partially occluded, and strong textures.
Most of these images can be interactively examined on
the World-Wide-Web, at http://www.klab.caltech.edu/
� itti/attention/. Overall, the results indicate that the
system scans the image in an order which makes func-
tional sense in most behavioral situations.

It should be noted however that it is not straightfor-
ward to establish objective criteria for the performance
of the system with such images. Unfortunately, nearly
all quantitative psychophysical data on attentional con-
trol are based on synthetic stimuli similar to those
discussed in the next section. In addition, although the
scan paths of overt attention (eye movements) have
been extensively studied (Yarbus, 1967; Noton & Stark,
1971), it is unclear to what extent the precise trajecto-
ries followed by the attentional spotlight are similar to
the motion of covert attention. Most probably, the
requirements and limitations (e.g. spatial and temporal
resolutions) of the two systems are related but not
identical (Rao & Ballard, 1995; Tsotsos et al., 1995).
Although our model is mostly concerned with shifts of
covert attention, and ignores all of the mechanistic
details of eye movements, we attempt below a compari-
son between human and model target search times in
complex natural scenes, using a database of images
containing military vehicles hidden in a rural
environment.

3.1. Pop-out and conjuncti6e search

A first comparison of the model with humans can be
made using the type of displays used in ‘visual search’
tasks (Treisman, 1988). A typical experiment consists of
a speeded alternative forced-choice task in which the
presence of a certain item in the presented display has
to be either confirmed or denied. It is known that

stimuli which differ from nearby stimuli in a single
feature dimension can be easily found in visual search,
typically in a time which is nearly independent of the
number of other items (‘distractors’) in the visual scene.
In contrast, search times for targets which differ from
distractors by a combination of features (a so-called
‘conjunctive task’) are typically proportional to the
number of distractors (Treisman & Gelade, 1980).

We generated three classes of synthetic images to
simulate such experiments: (1) one red target (rectangu-
lar bar) among green distractors (also rectangular bars)
with the same orientation; (2) one red target among red
distractors with orthogonal orientation; and (3) one red
target among green distractors with the same orienta-
tion, and red distractors with orthogonal orientation.
In order not to artifactually favor any particular orien-
tation, the orientation of the target was chosen ran-
domly for every image generated. Also, in order not to
obtain ceiling performance in the first two tasks, we
added strong orientation noise to the stimuli (between
−17 and +17° with uniform probability) and strong
color speckle noise to the entire image (each pixel in the
image had a 15% uniform probability to become a
maximally bright color among red, green, blue, cyan,
purple, yellow and white). The positioning of the stim-
uli along a uniform grid was randomized (by up to
940% of the spacing between stimuli, in the horizontal
and vertical directions), to eliminate any possible influ-
ence of our discrete image representations (pixels) on
the system. Twenty images were computed for a total
number of bars per image varying between 4 and 36,
yielding the evaluation of a total of 540 images. In each
case, the task of our model was to locate the target,
whose coordinates were externally known from the
image generation process, at which point the search was
terminated. We are here not concerned with the actual
object recognition problem within the focus of atten-
tion. The diameter of the FOA was fixed to slightly
more than the longest dimension of the bars.

Results are presented in Fig. 5 in terms of the
number of false detections before the target was found.
Clear pop-out was obtained for the first two tasks
(color only and orientation only), independently of the
number of distractors in the images. Slightly worse
performance is found when the number of distractors is
very small, which seems sensible since in these cases the
distractors are nearly as salient as the target itself.
Evaluation of these types of images without introducing
any of the distracting noises described above yielded
systematic pop-out (target found as the first attended
location) in all images. The conjunctive search task
showed that the number of shifts of the focus of
attention prior to the detection of the target increased
linearly with the number of distractors. Notice that the
large error bars in our results indicate that our model
usually finds the target either quickly (in most cases) or
only after scanning a large number of locations.



L. Itti, C. Koch / Vision Research 40 (2000) 1489–15061498

3.2. Search performance in complex natural scenes

We propose a second test in which target detection is
evaluated using a database of complex natural images,
each containing a military vehicle (the ‘target’). Con-
trary to our previous study with a simplified version of
the model (Itti et al., 1998), which used low-resolution
image databases with relatively large targets (typically
about 1/10th the width of the visual scene), this study
uses very-high resolution images (6144×4096 pixels),
in which targets appear very small (typically 1/100th the
width of the image). In addition, in the present study,
search time is compared between the model’s predic-
tions and the average measured search times from 62
normal human observers (Toet et al., 1998).

The 44 original photographs were taken during a
DISSTAF (Distributed Interactive Simulation, Search
and Target Acquisition Fidelity) field test in Fort
Hunter Liggett, CA and were provided to us, along
with all human data, by the TNO Human Factors
Research Institute in the Netherlands (Toet et al.,

1998). The field of view for each image is 6.9×4.6°.
Each scene contained one of nine possible military
vehicles, at a distance ranging from 860 to 5822 m from
the observer. Each slide was digitized at 6144×4096
pixels resolution. Sixty two human observers aged be-
tween 18 and 45 years and with visual acuity better
than 1.25 arcmin−1 participated to the experiment
(about half were women and half men). Subjects were
first presented with three close-up views of each of the
nine possible target vehicles, followed by a test run of
ten trials. A Latin square design (Wagenaar, 1969) was
then used for the randomized presentation of the im-
ages. The slides were projected such that they sub-
tended 65×46° visual angle to the observers
(corresponding to a linear magnification by about a
factor ten compared to the original scenery). During
each trial, observers pressed a button as soon as they
had detected the target, and subsequently indicated at
which location on a 10×10 projected grid they had
found the target. Further details on these experiments
can be found in (Bijl, Kooi & van Dorresteijn, 1997;
Toet et al., 1998).

Fig. 5. Model performance on noisy versions of pop-out and conjunctive tasks of the type pioneered by Treisman and Gelade (1980). Stimuli were
randomly jittered isoluminant red and green bars with strong speckle noise added. Dashed lines: chance value, based on the size of the simulated
visual field and the size of the candidate recognition area (corresponds to the performance of an ideal observer who scans, on average, half of the
distractors prior to target detection). Solid lines: performance of the model. Error bars: one standard deviation. The typical search slopes of
human observers in feature search and conjunction search, respectively, are successfully reproduced by the model. Each stimulus was drawn inside
a 64×64 pixels box, and the radius of the focus of attention was fixed to 32 pixels. For a fixed number of stimuli, we tested 20 randomly
generated images in each task; the saliency map and winner-take-all were initialized to zero (corresponding to a uniformly black visual input) prior
to each trial.
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Fig. 6. Example of image from the database of 44 scenes depicting a military vehicle in a rural background. The algorithm operated on 24-bit
color versions of these 6144×4096 pixel images and took on the order of 15 min real time on Dec Alpha workstation to carry out the saliency
computation. (a) Original image; humans found the location of the vehicle in 2.6 s on average. (b) The vehicle was determined to be the most
salient object in the image, and was attended first by the model. Such a result indicates strong performance of the algorithm in terms of artificial
vision using complex natural color scenes. After scaling of the model’s simulated time such that it scans two to four locations per second on
average, and adding an 1.5 s period to account for the human’s latency in motor response, the model found the target in 2.2 s.
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Fig. 7. A more difficult example from the image database studied. (a) A rendition of the color image. Humans found the location of the vehicle
in 7.5 s on average. (b) The target is not the most salient object, and the model searches the scene in order of decreasing saliency. The algorithm
came to rest on the location of the target on the 17th shift, after 6.1 s (using same time scaling as in the previous figure).
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Fig. 8. Mean reaction time to detect the target for 62 human
observers and for our deterministic algorithm. Eight of the 44 original
images are not included, in which either the model or the humans
failed to reliably find the target. For the 36 images studied, and using
the same scaling of model time as in the previous two figures, the
model was faster than humans in 75% of the images. In order to
bring this performance down to 50% (equal performance for humans
and model), one would have to assume that no more than two
locations can be visited by the algorithm each second. Arrow (a)
indicates the ‘pop-out’ example of Fig. 6, and arrow (b) the more
difficult example presented in Fig. 7.

found the target (fewer than 20 shifts) in another 23
images. It found the target after more than 20 shifts in
11 images, and failed to find the target in three images.
Overall, the model consequently performed surprisingly
well, with a number of attentional shifts far below the
expected 61.5 shifts of a random search in all but 6
images. In these six images, the target was extremely
small (and hence not conspicuous at all), and the model
cycled through a number of more salient locations.

The following analysis was performed to generate the
plot presented in Fig. 8: First, a few outlier images were
discarded, when either the model did not find the target
within 2000 ms of simulated time (about 40–80 shifts;
six images), or when half or more of the humans failed
to find the target (three images), for a total of eight
discarded images. An average of three overt shifts per
second was assumed for the model, hence allowing us
to scale the model’s simulated time to real time. An
additional 1.5 s was then added to the model time to
account for human motor response time. With such
calibration, the fastest reaction times for both model
and humans were approximately 2 s and the slowest
approximately 15 s, for the 36 images analyzed.

The results plotted in Fig. 8 overall show a poor
correlation between human and model search times.
Surprisingly however, the model appeared to find the
target faster than humans in 3/4 of the images (points
below the diagonal), despite the rather conservative
scaling factors used to compare model to human time.
In order to make the model’s performance equal (on
average) to that of humans, one would have to assume
that humans shifted their gaze not faster than twice per
second, which seems unrealistically slow under the cir-
cumstances of a speeded search task on a stationary,
non-masked scene. Even if eye movements were that
slow, most probably would humans still shift covert
attention at a much faster rate between two overt
fixations.

4. Discussion

We have demonstrated that a relatively simple pro-
cessing scheme, based on some of the key organiza-
tional principles of pre-attentive early visual cortical
architectures (center-surround receptive fields, non-clas-
sical within-feature inhibition, multiple maps) in con-
junction with a single saliency map performs
remarkably well at detecting salient targets in cluttered
natural and artificial scenes.

Key properties of our model, in particular its usage
of inhibition-of-return and the explicit coding of
saliency independent of feature dimensions, as well as
its behavior on some classical search tasks, are in good
qualitative agreement with the human psychophysical
literature.

The model was presented with each image at full
resolution. Contrary to the human experiment, no
close-ups or test trials were presented to the model. The
most generic form of the model described above was
used, without any specific parameter adjustment for
this experiment. Simulations for up to 10 000 ms of
simulated time (about 200–400 attentional shifts) were
done on a Digital Equipment Alpha 500 workstation.
With these high-resolution images, the model com-
prised about 300 million simulated neurons. Each im-
age was processed in about 15 minutes with a peak
memory usage of 484 Mb (for comparison, a 640×480
scene was typically processed in 10 s, and processing
time approximately scaled linearly with the number of
pixels). The focus of attention (FOA) was represented
by a disk of radius 340 pixels (Figs. 6 and 7). Full
coverage of the image by the FOA would hence require
123 shifts (with overlap); a random search would thus
be expected to find the target after 61.5 shifts on
average. The target was considered detected when the
focus of attention intersected a binary mask represent-
ing the outline of the target, which was provided with
the images. Two examples of scenes and model trajecto-
ries are presented in Figs. 6 and 7. In the first image,
the target was immediately found by the model, while,
in the second, a serial search was necessary before the
target could be found.

The model immediately found the target (first at-
tended location) in seven of the 44 images. It quickly
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It can be argued, based on the tentative scaling
between simulated model time and human time de-
scribed above (disregarding the fact that our computer
implementation required on the order of 15 min to
converge for the 6144×4096 pixel images versus search
times on the order of a 2–20 s for human observers,
and disregarding the fact that our algorithm did not
deal with the problem of identifying the target in the
focus of attention), that the bottom-up saliency-based
algorithm outperforms humans in a demanding but
realistic target detection task involving camouflaged
military vehicles.

One paradoxical explanation for this superior perfor-
mance might be that top-down influences play a signifi-
cant role in the deployment of attention in natural
scenes. Top-down cues in humans might indeed bias the
attentional shifts, according to the progressively con-
structed mental representation of the entire scene, in
inappropriate ways. Our model lacks any high-level
knowledge of the world and operates in a purely bot-
tom-up manner.

This does suggest that for certain (possibly limited)
scenarios, such high-level knowledge might interfere
with optimal performance. For instance, human observ-
ers are frequently tempted to follow roads or other
structures, or may ‘consciously’ decide to thoroughly
examine the surroundings of salient buildings that have
popped-out, while the vehicle might be in the middle of
a field or in a forest.

4.1. Computational implications

The main difficulty we encountered was that of
combining information from numerous feature maps
into a unique scalar saliency map. Most of the results
described above do not hold for intuitively simple
feature combination schemes, such as straight summa-
tion. In particular, straight summation fails to reliably
detect pop-outs in search arrays such as those shown in
Fig. 5. The reason for this failure is that almost all
feature maps contain numerous strong responses (e.g.
the intensity maps show strong activity at all target and
distractor elements, because of their high contrast with
the black background); the target consequently has a
very low signal-to-noise ratio when all maps are simply
summed. Here, we proposed a novel solution, which
finds direct support in the human and animal studies of
non-classical receptive-field interactions.

The first computational implication of our model is
that a simple, purely bottom-up mechanism performs
surprisingly well on real data in the absence of task-de-
pendent feedback. This is in direct contrast to some of
the previous models of visual search, in which top-
down bias was almost entirely responsible for the rela-
tive weighting between the feature types used (Wolfe,
1994).

Further, although we have implemented the early
feature extraction mechanisms in a comparatively crude
manner (e.g. by approximating center-surround recep-
tive fields by simple pixel differences between a coarse
and a fine scale versions of the image), the model
demonstrates a surprising level of robustness, which
allows it to perform in a realistic manner on many
complex natural images. We have previously studied
the robustness of a pop-out signal in the presence of
various amounts of added speckle noise (using a far less
elaborate and biologically implausible approximation
of our non-classical interactions), and have found that
the model is almost entirely insensitive to noise as long
as such noise is not directly masking the main feature
of the target in spatial frequency or chromatic fre-
quency space (Itti et al., 1998). We believe that such
robustness is another consequence of the within-feature
iterative scheme which we use to allow for the fusion of
information from several dissimilar sources.

That our model yields robust performance on natural
scenes is not too surprising when considering the evi-
dence from a number of state-of-the-art object recogni-
tion algorithms (Malik & Perona, 1990; Simoncelli,
Freeman, Adelson & Heeger, 1992; Poggio, 1997;
Niyogi, Girosi & Poggio, 1998). Many of these demon-
strate superior performance when compared to classical
image processing schemes, although these new al-
gorithms are based on very simple feature detection
filters, similar to the ones found in biological systems.

4.2. Neurobiological implications

While our model reproduces certain aspects of hu-
man search performance in a qualitative fashion, a
more quantitative comparison is premature for several
reasons.

Firstly, we have yet to incorporate a number of
known features. For instance, we did not include any
measure of saliency based on temporal stimulus onset
or disappearance, or on motion (Hillstrom & Yantis,
1994). We also have not yet integrated any retinal
non-uniform sampling of the input images, although
this is likely to strongly alter the saliency of peripher-
ally-viewed targets. Nor have we addressed the well-
known asymmetries in search tasks (Treisman &
Gormican, 1988). When targets and non-targets in a
visual search task are exchanged, visual search perfor-
mance often changes too (e.g. it is easier to search for
a curved line among straight distractors than for a
straight line among curved distractors). Spatial ‘group-
ing’ acting among stimuli is also known to dramatically
affect search time performance (Driver, Mcleod & Di-
enes, 1992) and has not been dealt with here. In princi-
ple, this can be addressed by incorporating excitatory,
cooperative center-surround interactions among neu-
rons both within and across feature maps. And, as
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discussed above, our model is completely oblivious to
any high-level features in natural scenes, including so-
cial cues.

More importantly, a number of electrophysiological
findings muddy the simple architecture our model oper-
ates under (Fig. 1b). Single-unit recordings in the visual
system of the macaque indicate the existence of a
number of distinct maps of the visual environment that
appear to encode the saliency and/or the behavioral
significance of targets. These include neurons in the
superior colliculus, the inferior and lateral subdivisions
of the pulvinar, the frontal-eye fields and areas within
the intraparietal sulcus (Laberge & Buchsbaum, 1990;
Robinson & Petersen, 1992; Kustov & Robinson, 1996;
Gottlieb et al., 1998; Colby & Goldberg, 1999). What
remains unclear is whether these different maps empha-
size saliency for different behaviors or for different
visuo-motor response patterns (for instance, for atten-
tional shifts, eye or hand movements). If saliency is
indeed encoded across multiple maps, this raises the
question of how competition can act across these maps
to ensure that only a single location is chosen as the
next target of an attentional or eye shift.

Following Koch and Ullman’s (1985) original pro-
posal that visual search is guided by the output of a
selection mechanism operating on a saliency map, it
now seems plausible that such a process does character-
ize processing in the entire visual system. Inhibition-of-
return (IOR) is a critical component of such search
strategy, which essentially acts as memory. If its dura-
tion is reduced, the algorithm fails to find less salient
objects because it endlessly cycles through the same
number of more salient objects. For instance, if the
time scale of IOR was reduced from 900 to 50 ms, the
model would detect the most salient object, inhibit its
location, then shift to the second most salient location,
but it would subsequently come back to the most
salient object, whose inhibition would have ceased dur-
ing the attentional shift from first to second object.
Under such conditions, the algorithm would never fo-
cus on anything else than the two most salient locations
in the image. Our finding that IOR plays a critical role
in purely bottom-up search may not necessarily dis-
agree with recently suggested evidence that humans
appear to use little or no memory during search
(Horowitz & Wolfe, 1998); while these authors do not
refute the existence of IOR, a precise understanding of
how bottom-up and top-down aspects of attention in-
teract in human visual search remains to be elucidated.

Whether or not this implies that saliency is expressed
explicitly in one or more visual field maps remains an
open question. If saliency is encoded (relatively) inde-
pendently of stimulus dimensions, we might be able to
achieve a dissociation between stimulus attributes and
stimulus saliency. For instance, appropriate visual
masks might prevent the attributes of a visual stimulus

to be read out without affecting its saliency. Or we
might be able to directly influence such maps, for
instance using reversible pharmacological techniques in
animals or transcranial magnetic stimulations in human
volunteers (TMS)?

Alternatively, it is possible that stimulus saliency is
not expressed independently of feature dimensions but
is encoded implicitly within each specific feature map as
proposed by Desimone and Duncan, (1995). This raises
the question of how interactions among all of these
maps gives rise to the observed behavior of the system
for natural scenes. Such an alternative has not yet been
analyzed in depth by computational work (see, how-
ever, Hamker, 1999).

Mounting psychophysical, electrophysiological, clini-
cal and functional imaging evidence (Shepherd, Findlay
& Hockey, 1986; Andersen, Bracewell, Barash, Gnadt
& Fogassi, 1990; Sheliga, Riggio & Rizzolatti, 1994;
Kustov & Robinson, 1996; Corbetta, 1998; Colby &
Goldberg, 1999) strongly implies that the neuronal
structures underlying the selection and the expression of
shifts in spatial attention and occulomotor processing
are tightly linked. These areas include the deeper parts
of the superior colliculus; parts of the pulvinar; the
frontal eye fields in the macaque and its homologue in
humans, the precentral gyrus; and areas in the intra-
parietal sulcus in the macaque and around the intra-
parietal and postcentral sulci and adjacent gyri in
humans.

The close relationship between areas active during
covert and during overt shifts of attention raises the
issue of how information in these maps is integrated
across saccades, in particular given the usage of both
retinal and occulo-motor coordinate systems in the
different neuronal maps (see, for instance, Andersen,
1997). This is an obvious question that will be explored
by us in future computational work.

Finally, we can now wonder about the relationship
between the saliency mechanism, the top-down voli-
tional attentional selection process, and awareness. We
have recently proposed a quantitative account of the
action of spatial attention on various psychophysical
thresholds for pattern discrimination, in terms of a
strengthening of cooperative and competitive interac-
tions among early visual filters (Lee, Itti, Koch &
Braun, 1999). How can such a scheme be combined
with the current selection process based on purely
bottom-up sensory data? Several possibilities come to
mind. First, both processes might operate indepen-
dently and both mediate access to visual awareness.
Computationally, this can be implemented in a straight-
forward manner. Second however, top-down attention
might also directly interact with the single saliency map,
for instance by influencing its constitutive elements via
appropriate synaptic input. If the inhibition-of-return
could be selectively inactivated at locations selected
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under volitional control, for example by shunting
(Koch, 1998), then the winner-take-all and the atten-
tional focus would remain at that location, ignoring for
a while surrounding salient objects. Although such
feedback to the saliency map seems plausible and is
functionally useful, it certainly does not constitute all of
the top-down attentional modulation of spatial vision
(Lee, Itti, Koch & Braun, 1999). Finally, independent
saliency maps could operate for the different feature
maps and both saliency and volitional forms of atten-
tion could access them independently. Current experi-
mental evidence does not allow us to unambiguously
choose among these possibilities.
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