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1. SUMMARY 

Most models of visual search, whether involving overt eye 
movements or covert shifts of attention, are based on the con-
cept of a "saliency map", that is, an explicit two-dimensional 
map that encodes the saliency or conspicuity of objects in the 
visual environment. Competition among neurons in this map 
gives rise to a single winning location that corresponds to the 
next attended target.  Inhibiting this location automatically 
allows the system to attend to the next most salient location.  
We describe a detailed computer implementation of such a 
scheme, focusing on the problem of combining information 
across modalities, here orientation, intensity and color infor-
mation, in a purely stimulus-driven manner. We have success-
fully applied this model to a wide range of target detection 
tasks, using synthetic and natural stimuli.  Performance has 
however remained difficult to objectively evaluate on natural 
scenes, because no objective reference was available for com-
parison.  We here present predicted search times for our model 
on the Search2 database of rural scenes containing a military 
vehicle.  Overall, we found a poor correlation between human 
and model search times.  Further analysis however revealed 
that in 3/4 of the images, the model appeared to detect the 
target faster than humans (for comparison, we calibrated the 
model's arbitrary internal time frame such that no more than 2-
4 image locations were visited per second).  It hence seems 
that this model, which had originally been designed not to find 
small, hidden military vehicles, but rather to find the few most 
obviously conspicuous objects in an image, performed as an 
efficient target detector on the Search2 dataset. 

Keywords:   Visual attention, saliency, preattentive, inhibi-
tion of return, model, winner-take-all, bottom-up, natural 
scene. 
 

2. INTRODUCTION 

Biological visual systems are faced with, on the one hand, the 
need to process massive amounts of incoming information 
(estimated at around 10^8 bits per second in the optic nerve of 
humans), and on the other hand, the requirement for nearly 
real-time capacity of reaction. 
Surprisingly, instead of employing a purely parallel image 
analysis approach, primate vision systems appear to employ a 
serial computational strategy when inspecting complex visual 
scenes.  Particular locations are selected based on their behav-
ioral relevance or on local image cues. The identification of 
objects and the analysis of their spatial relationship usually 
involve either rapid, saccadic eye movements to bring the 
fovea onto the object, or covert shifts of attention.  It conse-
quently appears that the incredibly difficult problem of full-
field image analysis and scene understanding is taken on by 
biological visual systems through a temporal serialization into 
smaller, localized analysis tasks. 

Much evidence has accumulated in favor of a two-component 
framework for the control of where in a visual scene attention 
is focused to [1,2,3,4]: A bottom-up, fast, primitive mecha-
nism that biases the observer towards selecting stimuli based 
on their "saliency" (most likely encoded in terms of center-
surround mechanisms) and a second slower, top-down mecha-
nism with variable selection criteria, which directs the "spot-
light of attention" under cognitive, volitional control. 
Koch and Ullman [5] introduced the idea of a saliency map to 
accomplish preattentive selection (see also the concept of a 
"master map" in [6]). This is an explicit two-dimensional map 
that encodes the saliency of objects in the visual environment. 
Competition among neurons in this map gives rise to a single 
winning location that corresponds to the most salient object, 
which constitutes the next target. If this location is subse-
quently inhibited, the system automatically shifts to the next 
most salient location, endowing the search process with inter-
nal dynamics. 
We here describe a computer implementation of a preattentive 
selection mechanism based on the architecture of the primate 
visual system. We address the thorny problem of how infor-
mation from different modalities - in the case treated here 
from 42 maps encoding intensity, orientation and color in a 
center-surround fashion at a number of spatial scales - can be 
combined into a single saliency map.  Our algorithm qualita-
tively reproduces human performance on a number of classical 
search experiments. 
Vision algorithms frequently fail when confronted with realis-
tic, cluttered images.  We therefore studied the performance of 
our search algorithm using high-resolution (6144x4096 pixels) 
photographs containing images of military vehicles in a com-
plex rural background (Search2 dataset).  Our algorithm 
shows, on average, superior performance compared to human 
observers searching for the same targets, although our system 
does not yet include any top-down task-dependent tuning.  

3. THE MODEL 

The model has been presented in more details in [8] and is 
only briefly described here (Fig. 1). 
Input is provided in the form of digitized color images.  Dif-
ferent spatial scales are created using Gaussian pyramids [7], 
which consist of progressively low-pass filtering and subsam-
pling the input image.  Pyramids have a depth of 9 scales, 
providing horizontal and vertical image reduction factors rang-
ing from 1:1 (scale 0; the original input image) to 1:256 (scale 
8) in consecutive powers of two. Each feature is computed by 
center-surround operations akin to visual receptive fields, 
implemented as differences between a fine and a coarse scale: 
the center of the receptive field corresponds to a pixel at scale 
c={2, 3, 4} in the pyramid, and the surround to the corre-
sponding pixel at scale s=c+d, with d={3, 4}, yielding six 
feature maps for each type of feature. The differences between 
two images at different scales are obtained by oversampling 
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the image at the coarser scale to the resolution of the image at 
the finer scale. 

 
 

Figure 1:  General architecture of the model. Low-level vis-
ual features are extracted in parallel from nine spatial scales, 
using a biological center-surround architecture.  The result-
ing 42 feature maps are combined to yield three conspicuity 
maps for color, intensity and orientation. These, in turn, feed 
into a single saliency map, consisting of a 2D layer of inte-
grate-and-fire neurons. A neural winner-take-all network 
shifts the focus of attention to the currently most salient im-
age location. Feedback inhibition then transiently suppresses 
the currently attended location, causing the focus of atten-
tion to shift to the next most salient image location. 

 
 

3.1. Extraction of early visual features 

With r, g and b being the red, green and blue channels of the 
input image, an intensity image I is obtained as I=(r+g+b)/3. 
From I is created a Gaussian pyramid I(s), where s={0..8} is 
the scale. The r, g and b channels are normalized by I, at the 
locations where the intensity is at least 10% of its maximum, 
in order to decorrelate hue from intensity. Four broadly tuned 
color channels are created: R=r-(g+b)/2 for red, G=g-(r+b)/2 
for green, B=b-(r+g)/2 for blue, and Y=(r+g)/2-|r-g|/2-b for 
yellow (negative values are set to zero). Four Gaussian pyra-
mids R(s), G(s), B(s) and Y(s) are created from these color 
channels. From I, four orientation-selective pyramids are also 
created using Gabor filtering at 0, 45, 90 and 135 degrees. 
Differences between a "center" fine scale c and a "surround" 
coarser scale s yield six feature maps for each of intensity 
contrast, red-green double opponency, blue-yellow double 
opponency, and the four orientations. A total of 42 feature 
maps is thus created, using six pairs of center-surround scales 
in seven types of features. 

3.2. The saliency map 

The task of the saliency map is to compute a scalar quantity 
representing the salience at every location in the visual field, 
and to guide the subsequent selection of attended locations. 
The feature maps provide the input to the saliency map, which 
is modeled as a neural network receiving its input at scale 4. 

3.2.1. Fusion of information 

One difficulty in combining different feature maps is that they 
represent a priori not comparable modalities, with different 
dynamic ranges and extraction mechanisms. Also, because a 
total of 42 maps are combined, salient objects appearing 
strongly in only a few  maps risk to be masked by noise or less 
salient objects present in a larger number of maps. 
Previously, we have shown that the simplest feature combina-
tion scheme - to normalize each feature map to a fixed dy-
namic range, and then sum all maps - yields very poor detec-
tion performance for salient targets in complex natural scenes 
[9]. One possible way to improve performance is to learn lin-
ear map combination weights, by providing the system with 
examples of targets to be detected. While performance im-
proves greatly, this method presents the disadvantage of yield-
ing different specialized models (that is, sets of  map weights) 
for each target detection task studied [9]. 
When no top-down supervision is available, we propose a 
simple normalization scheme, consisting of globally promot-
ing those feature maps in which a small number of strong 
peaks of activity (conspicuous locations) is present, while 
globally suppressing feature maps which contain comparable 
peak responses at numerous locations over the visual scene.  
This "within-feature competitive" scheme coarsely ressembles 
non-classical inhibitory interactions which have been observed 
electrophysiologically [10]. 
The specific implementation of these interactions in our model 
has been described elsewhere [9] and can be summarized as 
follows (Fig. 2): Each feature map is first normalized to a 
fixed dynamic range (between 0 and 1), in order to eliminate 
feature-dependent amplitude differences due to different fea-
ture extraction mechanisms.  Each feature map is then itera-
tively convolved by a large 2-D Derivative-of-Gaussians 
(DoG) filter.  The DoG filter, a section of which is shown in 
Fig. 2, yields strong local excitation at each visual location, 
which is counteracted by broad inhibition from neighboring 
locations. At each iteration, a given feature map receives input 
from the preattentive feature extraction stages described 
above, to which results of the convolution by the DoG are 
added. All negative values are then rectified to zero, thus mak-
ing the iterative process highly non-linear.  This procedure is 
repeated for 10 iterations. 

 
Figure 2:  Illustration of the spatial competition for salience 
implemented within each of the 42 feature maps. Each map 
receives input from the linear filtering and center-surround 
stages. At each step of the process, the convolution of the 
map by a large Difference-of-Gaussians (DoG) kernel is 
added to the current contents of the map. This additional in-
put coarsely models short-range excitatory processes and 
long-range inhibitory interactions between neighboring vis-
ual locations.  The map is half-wave rectified, such that 
negative values are eliminated, hence making the iterative 
process non-linear. Ten iterations of the process are carried 
out before the output of each feature map is used in building 
the saliency map. 
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The choice of the number of iterations is somewhat arbitrary: 
In the limit of an infinite number of iterations, any non-empty 
map will converge towards a single peak, hence constituting 
only a poor representation of the scene. With very few itera-
tions however, spatial competition is very weak and ineffi-
cient.  Two examples showing the time evolution of this proc-
ess are shown in Fig. 3, and illustrate that using of the order of 
10 iterations yields adequate distinction between the two ex-
ample images shown.  As expected, feature maps with initially 
numerous peaks of similar amplitude are suppressed by the 
interactions, while maps with one or a few initially stronger 
peaks become enhanced.  It is interesting to note that this 
within-feature spatial competition scheme resembles a "win-
ner-take-all" network with localized inhibitory spread, which 
allows for a sparse distribution of winners across the visual 
scene. 

 
 
 

 
Figure 3:  Example of operation of the long-range iterative 
competition for salience.  When one (or a few) locations 
elicit stronger responses, they inhibit more the other loca-
tions than they are inhibited by these locations; the net result 
after a few iterations is an enhancement of the initially 
stronger location(s), and a suppression of the weaker loca-
tions.  When no location is clearly stronger, all locations 
send and receive approximately the same amount of inhibi-
tion; the net result in this case is that all locations progres-
sively become inhibited, and the map is globally suppressed. 

 
 

After normalization, the feature maps for intensity, color, and 
orientation are summed across scales into three separate "con-
spicuity maps", one for intensity, one for color and one for 
orientation (Fig. 1).  
Each conspicuity map is then subjected to another 10 itera-
tions of the iterative normalization process. The motivation for 
the creation of three separate channels and their individual 
normalization is the hypothesis that similar features compete 
strongly for salience, while different modalities contribute 
independently to the saliency map. Although we are not aware 
of any supporting experimental evidence for this hypothesis, 
this additional step has the computational advantage of further 
enforcing that only a spatially sparse distribution of strong 
activity peaks is present within each visual feature, before 
combination of all three features into the scalar saliency map. 

3.2.2. Internal Dynamics And Trajectory Generation 

By definition, at any given time, the maximum of the saliency 
map's neural activity is at the most salient image location, to 
which the focus of attention (FOA) should be directed. This 
maximum is detected by a winner-take-all (WTA) network 
inspired from biological architectures [5]. The WTA is a 2D 
layer of integrate-and-fire neurons with a much faster time 
constant than those in the saliency map, and with strong global 
inhibition reliably activated by any neuron in the layer. In 
order to create dynamical shifts of the FOA, rather than per-
manently attending to the initially most salient location, it is 
necessary to transiently inhibit, in the saliency map, a spatial 
neighborhood of the currently attended location. This also 
prevents the FOA from immediately coming back to a strong, 
previously attended location. Such an "inhibition of return" 
mechanism has been demonstrated in humans [11]. Therefore, 
when a winner is detected by the WTA network, it triggers 
three mechanisms (Fig. 4): 
1) The FOA is shifted so that its center is at the location of the 
winner neuron; 
2) The global inhibition of the WTA is triggered and com-
pletely inhibits (resets) all WTA neurons; 
3) Inhibitory conductances are transiently activated in the 
saliency map, in an area corresponding to the size and new 
location of the FOA. In order to slightly bias the model to next 
jump to salient locations spatially close to the currently at-
tended location, small excitatory conductances are also tran-
siently activated in a near surround of the FOA in the saliency 
map ("proximity preference" rule proposed by Koch and Ull-
man [5]). 
Since we do not model any top-down mechanism, the FOA is 
simply represented by a disk whose radius is fixed to one 
twelvth of the smaller of the input image width or height.  The 
time constants, conductances, and firing thresholds of the 
simulated neurons are chosen so that the FOA jumps from one 
salient location to the next in approximately 30-70ms (simu-
lated time), and so that an attended area is inhibited for ap-
proximately 500-900ms, as it has been observed psychophysi-
cally [11]. The difference in the relative magnitude of these 
delays proved sufficient to ensure thorough scanning of the 
image by the FOA and prevent cycling through a limited 
number of locations. 
Fig. 4 demonstrates the interacting time courses of two neu-
rons in the saliency map and the WTA network, for a very 
simple stimulus consisting of one weaker and one stronger 
pixels in an otherwise empty map. 
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Figure 4:  Dynamical evolution of the potential of some 
simulated neurons in the saliency map (SM) and in the win-
ner-take-all (WTA) networks. The input contains one salient 
location (a), and another input of half the saliency (b); the 
potentials of the corresponding neurons in the SM and WTA 
are shown as a function of time. During period (1), the po-
tential of both SM neurons (a) and (b) increases as a result 
of the input. The potential in the WTA neurons, which re-
ceive inputs from the corresponding SM neurons but have 
much faster time constants, increases faster. The WTA neu-
rons evolve independently of each other as long as they are 
not firing. At about 80ms, WTA neuron (a) reaches thresh-
old and fires. A cascade of events follows: First, the focus of 
attention is shifted to (a); second, both WTA neurons are re-
set; third, inhibition-of-return (IOR) is triggered, and inhib-
its SM neuron (a) with a strength proportional to that neu-
ron's potential (i.e., more salient locations receive more 
IOR, so that all attended locations will recover from IOR in 
approximately the same time). In period (2), the potential of 
WTA neuron (a) rises at a much slower rate, because SM 
neuron (a) is strongly inhibited by IOR. WTA neuron (b) 
hence reaches threshold first.  (3)-(7): In this example with 
only two active locations, the system alternatively attends to 
(a) and (b). Note how the IOR decays over time, allowing 
for each location to be attended several times. Also note 
how the amount of IOR is proportional to the SM potential 
when IOR is triggered (e.g., SM neuron (a) receives more 
IOR at the end of period (1) than at the end of period (3)). 
Finally, note how the SM neurons do not have an opportu-
nity to reach threshold (at 20 mV) and to fire (their thresh-
old is ignored in the model). Since our input images are 
noisy, we did not explicitly incorporate noise into the neu-
rons' dynamics. 

4. RESULTS 

4.1. General performance 

We tested our model on a wide variety of real images, ranging 
from natural outdoor scenes to artistic paintings. All images 
were in color, contained significant amounts of noise, strong 

local variations in illumination, shadows and reflections, large 
numbers of "objects" often partially occluded, and strong tex-
tures. Most of these images can be interactively examined on 
the World-Wide-Web, at:        
http://www.klab.caltech.edu/~itti/attention/ 
Overall, the results indicate that the system scans the image in 
an order which makes functional sense in most behavioral 
situations. 
It should be noted however that it is not straightforward to 
establish objective criteria for the performance of the system 
with such images. Unfortunately, nearly all quantitative psy-
chophysical data on attentional control are based on synthetic 
stimuli.  In addition, although the scan paths of overt attention 
(eye movements) have been extensively studied [12], it is 
unclear to what extent the precise trajectories followed by the 
attentional spotlight are similar to the motion of covert atten-
tion. Most probably, the requirements and limitations (e.g., 
spatial and temporal resolutions) of the two systems are re-
lated but not identical [13]. 
Although our model is mostly concerned with shifts of covert 
attention, and ignores all of the mechanistic details of eye 
movements, we attempt below a quantitative comparison be-
tween human and model target search times in complex natu-
ral scenes, using the Search2 database of images containing 
military vehicles hidden in a rural environment. 

4.2. Search2 results 

We propose a difficult test of the model using the Search2 
dataset, in which target detection is evaluated using a database 
of complex natural images, each containing a military vehicle 
(the "target").  Contrary to our previous study with a simpli-
fied version of the model [8], which used low-resolution im-
age databases with relatively large targets (typically about 
1/10th the width of the visual scene), this study uses very-high 
resolution images (6144x4096 pixels), in which targets appear 
very small (typically 1/100th the width of the image). In addi-
tion, in the present study, search time is compared between the 
model's predictions and the average measured search times 
from 62 normal human observers [14]. 

4.2.1. Experimental setup 

The 44 original photographs were taken during a DISSTAF 
(Distributed Interactive Simulation, Search and Target Acqui-
sition Fidelity) field test in Fort Hunter Liggett, California, 
and were provided to us, along with all human data, by the 
TNO Human Factors Research Institute in the Netherlands 
[14]. The field of view for each image is 6.9x4.6 deg. Each 
scene contained one of nine possible military vehicles, at a 
distance ranging from 860 to 5822 meters from the observer. 
Each slide was digitized at 6144x4096 pixels resolution. Sixty 
two human observers aged between 18 and 45 years and with 
visual acuity better than 1.25 arcmin^-1 participated to the 
experiment (about half were women and half men). 
Subjects were first presented with 3 close-up views of each of 
the 9 possible target vehicles, followed by a test run of 10 
trials. A Latin square design [14] was then used for the ran-
domized presentation of the images. The slides were projected 
such that they subtended 65x46 deg visual angle to the ob-
servers (corresponding to a linear magnification by about a 
factor 10 compared to the original scenery).  During each trial, 
observers pressed a button as soon as they had detected the 
target, and subsequently indicated at which location on a 
10x10 projected grid they had found the target. Further details 
on these experiments can be found in [14]. 
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The model was presented with each image at full resolution. 
Contrary to the human experiment, no close-ups or test trials 
were presented to the model. The generic form of the model 
described above was used, without any specific parameter 
adjustment for this experiment. Simulations for up to 10,000 
ms. of simulated time (about 200-400 attentional shifts) were 
done on a Digital Equipment Alpha 500 workstation. With 
these high-resolution images, the model comprised about 300 
million simulated neurons. Each image was processed in about 
15 minutes with a peak memory usage of 484 megabytes (for 
comparison, a 640x480 scene was typically processed in 10 
seconds, and processing time approximately scaled linearly 
with the number of pixels). The focus of attention (FOA) was 
represented by a disk of radius 340 pixels (Figs. 5, 6, 7). Full 
coverage of the image by the FOA would hence require 123 
shifts (with overlap); a random search would thus be expected 
to find the target after 61.5 shifts on average.  The target was 
considered detected when the focus of attention intersected a 
binary mask representing the outline of the target, which was 
provided with the images. Three examples of scenes and 
model trajectories are presented in Figs. 5, 6, and 7.  In the one 
image, the target was immediately found by the model, in 
another, a serial search was necessary before the target could 
be found, and in the last, the model failed to find the target. 

4.2.2. Simulation results 

The model immediately found the target (first attended loca-
tion) in seven of the 44 images. It quickly found the target 
(fewer than 20 shifts) in another 23 images. It found the target 
after more than 20 shifts in 11 images, and failed to find the 
target in 3 images. Overall, the model consequently performed 
surprisingly well, with a number of attentional shifts far below 
the expected 61.5 shifts of a random search in all but 6 im-
ages.  In these 6 images, the target was extremely small (and 
hence not conspicuous at all), and the model cycled through a 
number of more salient locations. 

4.2.3. Tentative comparison to human data 

The following analysis was performed to generate the plot 
presented in Fig. 8: First, a few outlier images were discarded, 
when either the model did not find the target within 2000ms of 
simulated time (about 40-80 shifts; 6 images), or when half or 
more of the humans failed to find the target (3 images), for a 
total of 8 discarded images. An average of 40ms per model 
shift was then derived from the simulations, and an average of 
3 overt shifts per second was assumed for humans, hence al-
lowing us to scale the model's simulated time to real time. An 
additional 1.5 second was then added to the model time to 
account for human motor response time. With such calibra-
tion, the fastest reaction times for both model and humans 
were approximately 2 seconds, and the slowest approximately 
15 seconds, for the 36 images analyzed. 
The results plotted in Fig. 8 overall show a poor correlation 
between human and model search times. Surprisingly how-
ever, the model appeared to find the target faster than humans 
in 3/4 of the images (points below the diagonal), despite the 
rather conservative scaling factors used to compare model to 
human time. In order to make the model faster than humans in 
no more than half of the images, one would have to assume 
that humans shifted their gaze not faster than twice per second, 
which seems unrealistically slow under the circumstances of a 
speeded search task on a stationary, non-masked scene. Even 
if eye movements were that slow, most probably would hu-
mans still shift covert attention at a much faster rate between 
two overt fixations. 

4.2.4. Comparison to spatial frequency content models 

In our previous studies with this model, we have shown that 
the within-feature long-range interactions are one of the key 
aspects of the model.  In order to illustrate this point, we can 
compute a simple measure of local spatial fequency content 
(SFC) at each location in the input image, and compare this 
measure to our saliency map. 
It could indeed be argued that the preattentive, massively par-
allel feature extraction stages in our model constitute a simple 
set of spatially and chromatically bandpass filters.  A possibly 
much simpler measure of "saliency" could hence be based on a 
more direct measure of power or of amplitude in different 
spatial and chromatic frequency bands.  Such simpler measure 
has been supported by human studies, in which local spatial 
frequency content (measured by Haar wavelet transform) was 
higher at the points of fixations during free viewing than on 
average, over the entire visual scene (see [8] for details). 
We illustrate in Fig. 9, with one representative example image, 
that our measure of saliency actually differs greatly from a 
simple measure of SFC.  The SFC was computed as shown 
previously [8], by taking the average amplitude of non-
negligible FFT coefficients computed for the luminance chan-
nel as well as the red, green, blue and yellow channels. 
While the SFC measure shows strong responses at numerous 
locations, e.g., at all locations with sharp edges, the saliency 
map contains a much sparser representation of the scene, 
where only locally unique such regions are preserved. 
 

5. DISCUSSION 

We have demonstrated  that a relatively simple processing 
scheme,  based on  some of the key organizational principles 
of pre-attentive early  visual cortical architectures   (center-
surround receptive fields,  non-classical within-feature inhibi-
tion, multiple maps) in conjunction with a single saliency map 
performs remarkably well at detecting salient targets in clut-
tered natural and artificial scenes. 
Key properties of our model, in particular its usage of inhibi-
tion-of-return and the explicit coding of saliency independent 
of feature dimensions, as well as its behavior on some classi-
cal search tasks, are in good qualitative agreement with the 
human psychophysical literature.  
Using reasonable scaling of model to human time, we found 
that the model appeared to find the target faster than humans 
in 75% of the 36 images studied.  One paradoxical explanation 
for this superior performance might be that top-down influ-
ences play a significant role in the deployment of attention in 
natural scenes. Top-down cues in humans might indeed bias 
the attentional shifts, according to the progressively con-
structed mental representation of the entire scene, in inappro-
priate ways.  Our model lacks any high-level knowledge of the 
world and operates in a purely bottom-up manner. 
This does suggest that for certain (possibly limited) scenarios, 
such high-level knowledge might interfere with optimal per-
formance. For instance, human observers are frequently 
tempted to follow roads or other structures, or may con-
sciously decide to thoroughly examine the surroundings of 
salient buildings that have popped-out, while the vehicle might 
be in the middle of a field or in a forest. 
Although our model was not originally designed to detect 
military vehicles, our results also suggest that these vehicles 
where fairly "salient", according to the measure of saliency 
implemented in the model.  This is also surprising, since one 
would expect such vehicles to be designed not to be salient. 



 

 
 
Figure 5:  Example of image from the Search2 dataset (image 0018).  The algorithm operated on the 24-bit color image.  Top: 
original image; humans found the target in 2.8 sec on average.  Bottom: model prediction; the target was the first attended location.  
After scaling of model time such that two to four attentional shifts occurred each second on average, and addition of 1.5 sec to ac-
count for latency in human motor response, the model found the target in 2.2 sec. 
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Figure 6:  A more difficult example of image from the Search2 dataset (image 0019).  Top: original image; humans found the target 
in 12.3 sec on average.  Bottom: model prediction; because of its low contrast to the background, the target had lower saliency than 
several other objects in the image, such as buildings. The model hence initiated a serial search and found the target as the 10th at-
tended location, after 4.9 sec (using the same time scaling as in the previous figure). 
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Figure 7:  Example of image from the Search2 dataset (image 0024) in which the model did not find the target.  Top: original im-
age; humans found the target in 8.0 sec on average.  Bottom: model prediction; the model failed to find the target, whose location is 
indicated by the white arrow.  Inspection of the feature maps revealed that the target yielded responses in the different feature di-
mensions which are very similar to other parts of the image (foliage and trees).  The target was hence not considered salient at all.



 
Figure 8.  Mean reaction time to detect the target for 62 hu-
man observers and for our deterministic algorithm.  Eight of 
the 44 original images are not included, in which either the 
model or the humans failed to reliably find the target. For 
the 36 images studied, and using the same scaling of model 
time as in the previous two figures, the model was faster 
than humans in 75% of the images. In order to bring this 
performance down to 50% (equal performance for humans 
and model), one would have to assume that no more than 
two visual locations can be visited each second.  Arrow (a) 
indicates the "pop-out" example of Fig. 5, and arrow (b) the 
more difficult example presented in Fig. 6. 

 
 
 
 
Looking at the details of individual feature maps, we realized 
that in most cases of quick detection of the target by the 
model, the vehicle was salient due to a strong, spatially iso-
lated peak in the intensity or orientation channels.  Such peak 
usually corresponded to the location of a specular reflection of 
sunlight onto the vehicle.  Specular reflections were very rare 
at other locations in the images, and hence were determined to 
pop-out by the model.  Because these reflections were often 
associated with locally rich SFC, and because many other 
locations also showed rich SFC, the SFC map could not detect 
them as reliably.  Because these regions were spatially unique 
in one type of feature, they however popped-out for our 
model.  Our model would hence have shown much poorer 
performance if the vehicles had not been so well polished. 

6. CONCLUSION 

In conclusion, our model yielded respectable results on the 
Search2 dataset, especially considering the fact that no 
particular adjustment was made to the model's parameters in 
order to optimize its target detection performance. 
One important issue which needs to be addressed however is 
that of the poor correlation between model and human search 
times.  We hypothesized in this study that top-down, volitional 
attentional bias might actually have hurt humans with this 
particular dataset, because trying to understand the scene and 
to willfully follow its structure was of no help in finding the 
target.  A verification of this hypothesis should be possible 
once the scanpaths of human fixations during the search be-
come available for the Search2 dataset. 
 

 
 

 
 

 
 

Figure 9:  Comparison of SFC and saliency maps for image 
0018 (shown in Fig. 5).  Top: the SFC map shows strong re-
sponse at all locations which have "rich" local textures; that 
is almost everywhere in this image.  Middle:  The within-
feature, spatial competition for salience however demon-
strates efficient reduction of information by eliminating 
large areas of similar textures.  Bottom:  The maximum of 
the saliency map (circle) is at the target, which appeared as a 
very strong isolated object in a few intensity maps because 
of the specular reflection on the vehicle.  The maximum of 
the SFC map is at another location on the road. 
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