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Revisiting spatial vision: toward a unifying model
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We report contrast detection, contrast increment, contrast masking, orientation discrimination, and spatial
frequency discrimination thresholds for spatially localized stimuli at 4° of eccentricity. Our stimulus geom-
etry emphasizes interactions among overlapping visual filters and differs from that used in previous threshold
measurements, which also admits interactions among distant filters. We quantitatively account for all mea-
surements by simulating a small population of overlapping visual filters interacting through divisive inhibi-
tion. We depart from previous models of this kind in the parameters of divisive inhibition and in using a
statistically efficient decision stage based on Fisher information. The success of this unified account suggests
that, contrary to Bowne [Vision Res. 30, 449 (1990)], spatial vision thresholds reflect a single level of process-
ing, perhaps as early as primary visual cortex. © 2000 Optical Society of America [S0740-3232(00)02311-5]
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1. INTRODUCTION
Early visual processing is commonly modeled with a
population of visual filters selective for different locations,
orientations, and spatial frequencies.1–9 This approach
not only is based on psychophysical evidence from a vari-
ety of paradigms, such as selective adaptation,10 contrast
masking,6,11,12 and subthreshold summation,13,14 but also
agrees with physiological evidence that neuronal re-
sponses in visual cortex are selective for different loca-
tions, orientations, and spatial frequencies.15–17 Indeed,
the visual filter properties inferred from psychophysics
agree reasonably well with the receptive field properties
of neurons in primary visual cortex.18–20

The first models of this kind assumed that visual filters
respond independently of each other. Given indepen-
dence and some assumption about noise, a wide range of
visual detection and discrimination thresholds can be de-
rived from the tuning properties of the filters. This in-
cludes thresholds for detecting or discriminating pattern
contrast,3–6,11 thresholds for detecting a pattern in the
presence of a superimposed mask,6,11,12,21 thresholds for
discriminating pattern orientation or spatial fre-
quency,22–24 and thresholds in a variety of hyperacuity
tasks, among them Vernier acuity, chevron acuity, and
line bisection acuity.25–27 In each case the just-
discriminable difference between two stimuli can be de-
rived from the just-detectable variation in filter re-
sponses.

More recent evidence shows, however, that visual fil-
ters are independent only to a very first approximation.
Interactions between spatially adjacent but nonoverlap-
ping visual filters (surround interactions) have been dem-
onstrated both psychophysically28–30 and physiologically-
for neurons in primary visual cortex.31–36 Surround
interactions may be either excitatory or inhibitory and
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are likely to contribute to texture segmentation37,38 and to
visual grouping.39–41

In addition, there is good evidence for interactions be-
tween overlapping visual filters (local interactions). The
most relevant paradigm to this issue is contrast masking,
where the contrast threshold of one pattern (target) is
measured in the presence of another, superimposed pat-
tern (mask).9,42–45 The fact that masks of different
shapes are not interchangeable (even when mask contrast
is suitably adjusted) constitutes strong evidence for
interactions.9,42,43 In general, the effect of a mask de-
clines as a measure of the difference in the orientation or
spatial frequency relative to the target.6,11,12 In addition,
the mask effect may be excitatory or inhibitory, depend-
ing on whether the mask has low or intermediate-to-high
contrast (dipper function4,6,46). Another consistent obser-
vation is that excitatory mask effects abate more rapidly
than inhibitory ones when target and mask differ in
phase or orientation, suggesting that excitatory interac-
tions involve a narrower range of visual filters.9,43,47

Physiological evidence for local interactions comes from
studies of cross correlation in neuronal firing,48,49 con-
trast adaptation,50–54 and contrast masking55,56 in pri-
mary visual cortex. Interestingly, some of the psycho-
physical and physiological models of local interactions are
strikingly similar,9,19,57–61 not least in that they formalize
the interaction in terms of divisive inhibition.51,52

The present paper aims to characterize local interac-
tions, while avoiding the potentially confounding effects
of surround interactions. To this end, we conducted
contrast-masking experiments with spatially localized
stimuli that are presented in the visual periphery. Given
the cortical magnification of primary visual cortex at the
relevant eccentricity, we expect that our stimuli will be
processed by a single hypercolumn (a set of neu-
2000 Optical Society of America
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rons tuned to a range of orientations and spatial frequen-
cies, with spatially overlapping receptive fields) in pri-
mary visual cortex.15,62 Most previous studies of contrast
masking have used spatially extended stimuli (at least for
the mask) and thus do not distinguish between local and
surround interactions. As far as we know, only two pre-
vious studies used spatially localized stimuli, but they
presented them in the fovea where cortical magnification
is far higher.43,44 Thus the stimuli in question are still
processed by dozens of hypercolumns and are subject to
both local and surround interactions. By targeting a
smaller patch of visual cortex, we hoped to generate more
tractable results that can be modeled in terms of local in-
teractions only.

In addition to contrast-increment and contrast-
masking thresholds, we also established orientation and
spatial frequency discrimination thresholds for identical
stimuli. From a computational point of view, one would
expect the two types of thresholds to reflect the same
early level of visual processing.20,63,64 However, the
quantitative consistency of discrimination and masking
thresholds has never been established. Psychophysical
studies typically report either orientation/spatial fre-
quency discrimination thresholds22,23,65–67 or contrast-
increment/masking thresholds,6,9,11,12,21,43–45,57,58 but not
both. Indeed, the few studies that depart from this rule
were unable to account simultaneously for both types of
thresholds.27,68 The main difficulty is that the two types
of thresholds exhibit different dependences on stimulus
contrast.

We present a model that simultaneously accounts for
contrast-increment/masking and orientation/spatial fre-
quency discrimination thresholds measured in five sepa-
rate experiments. This demonstrates that a wide range
of spatial vision thresholds reflect the same early level of
visual processing, presumably in or near primary visual
cortex. Our model is similar to others in that it is based
on divisive inhibition among a population of visual
filters.8,9,43,45,52,53,57,58,69 The main difference lies in the
parameters of divisive inhibition, in the use of a statisti-
cally efficient decision stage, and in the comprehensive
analysis of the model’s ten-dimensional parameter space.
We have shown elsewhere that this model accounts also
for the modulation of visual thresholds by attention.70

By attempting to formulate a consensus between previous
models for psychophysical and neuronal sensitivity to
contrast, orientation, and spatial frequency, with our
model we try to link visual thresholds more closely to the
underlying mechanisms in visual cortex.

2. METHODS
A. Psychophysics
We studied the discrimination of Gabor stimuli in the
near periphery with respect to contrast, orientation, and
spatial frequency. Seven naı̈ve observers participated in
the experiments. For each task, observers received
15–24 blocks (of 100 trials each) of training and collected
data for 45–90 blocks. Each threshold estimate reflects
between 10 and 18 blocks. Observers carried out 10–12
blocks in a single, hour-long session, typically shared
between two tasks (Experiments 1 and 2, Experiments 1
and 3, or Experiments 4 and 5, in this order).

Stimuli were generated with an SGI Indigo worksta-
tion. Color-bit stealing71 was used to reduce the mini-
mum luminance step of the display from 1.5% to 0.2%.
Screen luminance varied from 1 to 90 cd/m2 (mean 45
cd/m2), and room illumination was 5 cd/m2. Displays
subtended 16° 3 13° of visual angle for a viewing dis-
tance of 80 cm. All tasks employed a temporal two-
alternative forced-choice (2AFC) paradigm. Trials con-
sisted of a circular cue (1° diameter, 250 ms), a 300-ms
blank interval, and the two alternative targets in random
order (250 ms each), separated by a second 300-ms blank
interval (total duration 1350 ms). Both targets appeared
at the cued location. Observers reported the order of al-
ternative targets by pressing one of two buttons and re-
ceived auditory feedback. During each block of 100 tri-
als, the alternative targets were modified following a
staircase procedure (reducing target similarity after two
consecutive mistakes and increasing target similarity af-
ter four consecutive successes). Threshold was taken to
be the 75% correct performance level of a Weibull function
$1 2 1/2 exp@2(ax)b#, with b 5 2 and a determined by a
maximum-likelihood fit to the psychometric data%.72,73

Four percent of all blocks were excluded because the
staircase failed to converge.

Targets appeared at a constant eccentricity of 4° but at
random polar angles. To further discourage eye move-
ments, observers were instructed to fixate a cross at dis-
play center. The targets were Gabor stimuli or superpo-
sitions of Gabor stimuli [spatial frequency 1.4 to 5.6 cycles
per degree (c/deg); half-width at half-maximum equal to
the spatial period]. At 4° eccentricity, cortical magnifica-
tion is approximately 1.7 mm/°, compared with approxi-
mately 10.0 mm/° in the fovea.74 Thus the stimulus di-
ameter of approximately 0.7° (2 cycles at 2.8 c/deg)
corresponds to approximately 1.2 mm in primary visual
cortex, that is, less than the average diameter of a
hypercolumn.75 Presented in the fovea, the same stimu-
lus would have excited approximately 35 hypercolumns.

Experiment 1 (Exp. 1) involved Gabor stimuli of differ-
ent contrast (2.8 c/deg, vertical orientation, cosine phase).
Observers reported which target had higher contrast, and
threshold was established in terms of incremental
contrast.4,6,9 Experiment 2 (Exp. 2) concerned Gabor
stimuli of different orientation (2.8 c/deg, contrast 0.05–
0.9, cosine phase). Observers reported whether the tar-
get was tilted clockwise or counterclockwise, and thresh-
old was measured in terms of tilt angle.76 Experiment 3
(Exp. 3) used targets of different spatial frequency (verti-
cal orientation, contrast 0.05–0.9, cosine phase). One
target was at 2.8 c/deg, and the other target exhibited
lower (coarser) spatial frequency. Observers reported
which target had lower spatial frequency, and threshold
was measured in terms of the spatial frequency ratio in
octaves.76 Two further experiments concerned the dis-
crimination of two superimposed Gabor stimuli. One
was present in both intervals (‘‘mask,’’ contrast 0.5, ran-
dom phase, uniformly distributed between 0° and 360°),
and the other appeared in only one interval (‘‘target,’’ 2.8
c/deg, vertical orientation, cosine phase). The random
phase of the mask ensured that observers could not rely
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on any specific feature formed by the superposition of two
stimuli. Observers reported which interval contained
the target stimulus, and threshold was measured in
terms of target contrast. In Experiment 4 (Exp. 4), mask
orientation was varied between blocks (0°–90°), but spa-
tial frequency remained fixed (2.8 c/deg).12 In Experi-
ment 5 (Exp. 5) mask spatial frequency was varied be-
tween blocks [0.5–2 octaves (oct.)], but orientation was
fixed (15° from vertical).11

B. Modeling
The model comprises three successive levels: linear fil-
tering, divisive inhibition, and a statistically efficient de-
cision strategy (Fig. 1).

1. Linear Filters
We use a population of overlapping spatial filters, all cen-
tered at the same point of visual space but tuned to a va-
riety of spatial periods l P L and orientations u P U.
To facilitate comparison with cortical neurons and in-
crease computational efficiency, filters are defined in
terms of their tuning functions rather than in terms of
the spatial structure of their receptive fields. For sinu-
soidal grating stimuli, we assume Gaussian tuning with
respect to both the logarithm of stimulus spatial period
lS (with standard deviation sl) and orientation uS (with
standard deviation su). Thus the response of a filter
with preferred period l and preferred orientation u to a
sinusoidal grating of contrast CS , period lS , and orien-
tation uS is given by

El,u~CS , lS , uS!

5 CSA expH 2
@log~lS!2log~l!#2

2sl
2 2

~uS 2 u!2

2su
2 J , (1)

where A is a gain coefficient. Note that this definition
specifies filters in the Fourier domain and disregards
phase information. To obtain responses to arbitrary
stimuli, we realized pairs of these filters with quadrature
phase56,77 and combined their outputs by taking the
square root of the sum of the squared responses. The re-
constructed spatial filters closely resemble Gabor func-
tions and neuronal receptive fields and are illustrated in
Fig. 2. Note that for the Gabor stimuli used here, filter
responses can also be computed directly from the tuning
functions.

2. Divisive Inhibition
The response of each linear filter is normalized relative to
the total population response (divisive inhi-
bition52).8,9,43,45,78 The functional consequences of divi-
sive inhibition include a nonlinear transducer4,46 and re-
duced contrast dependence of orientation and spatial fre-
quency tuning.8 The normalized response Rl,u of a filter
tuned to (l, u) is

Rl,u 5
~El, u!g

~S !d 1 (
~l8,u8!PL3U

Wl,u~l8, u8!~El8, u8!
d

1 h,

(2)

where

Wl,u~l8, u8! 5 expH 2
@log~l8!2log~l!#2

2Ll
2 2

~u8 2 u!2

2Lu
2 J

(3)

is a two-dimensional Gaussian weighting function cen-
tered around (l, u) whose widths are determined by the
scalars Lu and Ll . In Eq. (2), h is a positive constant
representing background activity (dark current). This
constant is needed to avoid singularities in the decision
stage for stimuli of zero contrast. The denominator in-
cludes a constant S and the weighted sum of all filter re-
sponses and represents divisive inhibition. The expo-
nents g and d determine the resulting transducer
function. Depending on their values, one obtains a sig-
moidal (S . 0, g . d), power-law (S 5 0), or even lin-
ear (g 5 1, d 5 0, S 5 0) transducer, with a saturating
(g 5 d) or nonsaturating (g Þ d) response.

It is convenient to replace A and S with two alternative
parameters that are easier to interpret. We use the de-
tection threshold Cth for a grating stimulus of 2.8 c/deg
and the position of the transducer’s inflexion point
Fig. 1. Model architecture, represented schematically in the style of Wilson and collaborators. The model consists of three successive
stages: (1) A bank of linear visual filters tuned to different orientations and spatial frequencies, (2) nonlinear interactions between
visual filters in the form of a power law and divisive inhibition, and (3) addition of independent noise and a statistically efficient decision
based on the entire filter population.
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Fig. 2. Visual filters used in the model. Filters are defined in terms of their separable Gaussian tuning functions for the orientation
u and logarithm of the spatial period l of a sinusoidal grating stimulus (left). The spatial shape of the visual filter can be reconstructed
though an inverse Fourier transform. Both even- and odd-symmetric filters are shown (middle and right). Their shape is very similar
to the multilobed functions used by other models. Pairs of reconstructed even- and odd-symmetric filters can be used to numerically
compute the response to arbitrary stimuli. However, the response to stimuli based on sinusoidal gratings (e.g., Gabor patches) can be
obtained directly from the Gaussian tuning functions.
S fac(S fac 5 C inflect /Cth). If all other model parameters
are fixed, each choice of A, S corresponds to a unique
choice of Cth , S fac , through a closed-form expression not
detailed here.

3. Noise Model: Poissona

Following normalization, independent Gaussian noise is
added to each filter response. In analogy to visual corti-
cal neurons, we assume that the variance increases with
the response mean:

Vl,u
2 5 Rl,u

a , (4)

where a is a constant. For visual cortical neurons, a is
typically slightly larger than unity.20,79,80 Note that this
noise assumption differs from most psychophysical mod-
els, which assume Gaussian noise of constant
variance.3,6,7,45,81

4. Decision Stage
We use a statistically efficient decision stage to predict
behavioral thresholds from the noisy responses of model
units. This ideal-observer decision accounts significantly
better for our psychophysical data than the nonideal de-
cision strategies used in other models (see discussion of
results in Section 3).

We consider the noisy response vector R 5 $Rl,u ;
l P L, u P U%, with a mean given by Eq. (2) and a vari-
ance by Eq. (4). For each stimulus attribute z, we postu-
late a statistic T(z) that estimates the value of z from the
noisy response R. The discrimination performance in a
2AFC experiment involving two stimuli with attributes z1
and z2 is given by81

Prop. Corr. 5

1
2

1
1
2

erf Xumean@T~z1!# 2 mean@T~z2!#u

A2$var@T~z1!# 1 var@T~z2!#%
C, (5)

where erf is the normal error function. We assume that
T(z) is ‘‘ideal’’ in the sense that it is both unbiased and
efficient. The lack of bias implies that the estimator T
exhibits no systematic bias toward either higher or lower
values of z; in other words, mean @T(z)# 5 z. Efficiency
implies that var @T(z)# reaches the Cramér–Rao bound,
the theoretical lower bound for the variance of any unbi-
ased estimator.82,83 The Cramér–Rao bound equals the
inverse of the Fisher information J(z), such that
var@T(z)# 5 1/J(z). It follows that

Prop. Corr. 5
1

2
1

1

2
erf X uz1 2 z2u

A2@1/J~z1! 1 1/J~z2!#
C. (6)

Fig. 3. Fisher information with respect to stimulus orientation,
contrast, and spatial frequency. Fisher information is the in-
verse of the variance of an unbiased and efficient estimator of the
stimulus parameter [Subsection 2.B.4. and Eq. (7)]. Each sur-
face point represents the information encoded in the response of
one model unit. The volume under the surface represents the
total information encoded by a population of units with indepen-
dent noise and tuned to 24 orientations and 24 spatial periods.
Arrows indicate the spatial period lS and orientation uS 5 0 of
the stimulus. Note that the unit tuned optimally for the stimu-
lus does not contribute to the Fisher information for orientation
or spatial period.



Itti et al. Vol. 17, No. 11 /November 2000 /J. Opt. Soc. Am. A 1903
The Fisher information Jl,u for a single unit with re-
sponse Rl,u and variance Vl,u

2 5 Rl,u
a is (Appendix A)

Jl,u~z! 5 S ]Rl,u

]z
D 2S 1

Rl,u
a

1
a2

2Rl,u
2 D . (7)

In other words, information is distributed over the popu-
lation, and the units that respond maximally do not nec-
essarily provide the most information. As the Fisher in-
formation is additive in the case of independent noise,83,84

the total Fisher information for the entire population of
units simply is

J~z! 5 (
l,u

Jl,u~z!. (8)

Note that this approach does not require a rule governing
the decision on each particular trial. Effectively, the rule
involves forming the difference s1 2 s2 between two ran-
dom variables s1 ,s2 and comparing it with zero, where
mean@s1,2# 5 mean@T(z1,2)# and var@s1,2# 5 var@T(z1,2)#.

Figure 3 illustrates the distribution of Fisher informa-
tion computed for stimulus contrast, orientation, and spa-
tial frequency across units with different tuning proper-
ties. Note that information about each stimulus
attribute is concentrated in different subpopulations of
units. Owing to our relatively sparse distribution of
model units, we compute thresholds numerically (through
iterative adjustments of z until threshold performance is
reached). The closed-form solutions that hold for dense
distributions of model units (Appendix B and Refs. 85 and
86) are less accurate, especially near contrast threshold.

This decision stage can readily be generalized to other
psychophysical paradigms. For example, performance in
a yes/no paradigm can be obtained by altering Eq. (6).
Another possible generalization concerns decision
uncertainty.87–90 In the present experiments there is no
decision uncertainty, since always the same stimulus pa-
rameter (known to the observer) varies from trial to trial
within each block. When this is not the case, and the de-
cision involves several stimulus parameters, Eq. (4) has
to be generalized to var@T# 5 J(Z)21, where Z is the vec-
tor of all relevant stimulus parameters.

5. Alternative Decision Stage
For comparison, we also used an alternative decision
stage based on the Minkowski norm (‘‘Quick probability
summation,’’ 9,12,24,68,91). The discriminability of two
stimuli with z1 and z2 is computed as

D~z1 , z2! 5 F (
~l,u!PL3U

URl,u~z2!

Vl,u~z2!
2

Rl,u~z1!

Vl,u~z1!
UQG 1/Q

, (9)

where Q is the Minkowski exponent (values above 3 yield
similar results68). Threshold is reached when D 5 1.

3. RESULTS
A. Psychophysics
Psychophysical results from seven observers are shown in
Fig. 4. On average, the detection threshold for Gabor
patches of 2.8 c/deg, subtending approximately 0.72° at 4°
eccentricity, is reached at a contrast of approximately
0.025 (Fig. 4, Exp. 1). This is higher than the previously
reported detection threshold of contrast 0.005 for gratings
of 2.0 c/deg subtending 0.75° and presented in the fovea.6

Presumably the discrepancy is due to the greater
eccentricity92,93 of our stimuli.

The region of facilitation (dipper) occurs at a pedestal
contrast of S fac ' 1.2 times the detection threshold Cth ,
and the lowest thresholds are two to three times smaller
than Cth (Fig. 4, Exp. 1). This is in good agreement with
previous studies, where the corresponding values are
near 1.3 and 2.5, respectively.6 At higher pedestal con-
trast, increment thresholds increase with an exponent of
approximately 0.6, consistent with the range of exponents
(0.6 to 0.8) reported by previous studies.6,9,46 This close
agreement is reassuring because it suggests that our pe-
ripheral thresholds reflect neural mechanisms similar to
the foveal thresholds measured by previous authors.

In the limit of high contrast, average thresholds for ori-
entation discrimination are approximately 2° (Fig. 4, Exp.
2) and average thresholds for spatial period discrimina-
tion approximately 0.05 oct. (Fig. 4, Exp. 3). Both values
are at the upper end of the range reported previously for
orientation discrimination (0.3°–2°) and spatial period
discrimination (0.02–0.05 oct.) with relatively small
patterns.22,24,65,94 Presumably the relatively high dis-
crimination thresholds are due to the eccentric stimulus
location.92

Our experiments on contrast masking are similar to
those reported by Wilson and colleagues.11,12 In our case
the presence of a masking pattern of different orientation
elevates contrast thresholds up to approximately fourfold
(Fig. 4, Exp. 4), and a masking pattern of different spatial
period elevates thresholds up to approximately 2.5-fold
(Fig. 4, Exp. 5). The corresponding threshold elevations
reported previously for stimuli presented in the fovea are
approximately eightfold and fivefold, respectively.11,12

The difference may reflect either the smaller stimulus
size or the greater stimulus eccentricity in our situation.

No threshold elevation is observed if target and mask-
ing patterns differ by more than 60° in orientation (Fig. 4,
Exp. 4). This contrasts with previous reports of an ap-
proximately 2.5-fold threshold elevation with orthogonal
target and masking patterns (cross-orientation inhi-
bition).9,52 However, the latter studies used large
masker stimuli (extending over 7° 3 5° of visual angle in
the fovea)9 and thus are likely to reflect interactions be-
tween both overlapping and nonoverlapping visual filters.
Our stimuli were designed primarily to probe interactions
between overlapping visual filters.

Three of our experiments measured contrast-increment
threshold for patterns of 2.8 c/deg and a pedestal contrast
of 0.5. In Exp. 1, target and mask patterns of identical
orientation and phase produced an approximately 3.6-fold
threshold elevation (Fig. 4, Exp. 1). In Exp. 4, target and
mask patterns varied in relative phase, but in spite of this
difference produced a comparable (approximately four-
fold) threshold elevation (Fig. 4, Exp. 4). In Exp. 5, tar-
get and mask patterns differed in orientation (by 15°), re-
sulting in a noticeably smaller (approximately 2.5-fold)
threshold elevation (Fig. 4, Exp. 5).

B. Modeling
We implemented the model described above with 60 fil-
ters (spatial frequencies 1.4, 2, 2.8, 4, and 5.6 c/deg and
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Fig. 4. Experimental results of seven psychophysical observers. Three observers completed all five experiments (LB, LZ, and SC), and
others completed either two or three experiments (AW, AZ, IR, and MI). All experiments involve a temporal 2AFC discrimination be-
tween Gabor stimuli at 4° of eccentricity (insets). Exp 1: contrast increment threshold, DC, as a function of contrast, C. Exps. 2 and
3: orientation and relative spatial frequency discrimination threshold, Du and Dv/v, as a function of contrast, C. Exp. 4: contrast
threshold elevation, DC/Cth , as a function of mask orientation, u (Cth is the detection contrast threshold, leftmost point of Exp. 1). Exp.
5: contrast threshold elevation, DC/Cth , as a function of mask spatial period, l.
orientations 0, 15, 30,..., 165°). The parameters for gain
A, background activity h, orientation tuning width su ,
and spatial frequency tuning width sl (in octaves) were
identical for all filters, resulting in an overall total of only
ten free parameters (Table 1). Best-fitting parameter
values were computed separately for each of the three
subjects who completed all experiments (LZ, LB, and SC).
The total fit error was computed as the root of the squared
percentage errors summed over all data points. Using
percentage errors rather than absolute errors ensured
that all data points carried equal weight (i.e., indepen-
dent of the unit of measurement).

Best fits were computed with two automatic proce-
dures, with no operator bias toward ‘‘plausible’’ values.
Both procedures produced consistent values. The first
procedure used a ten-dimensional simplex algorithm95

with simulated annealing overhead.96,97 From several
randomly chosen starting points, the annealing schedule
was initiated with a temperature, t, that induced random
parameter variations of 615% at each transformation of
the simplex. Every 200 simplex transformations, the an-
nealing amplitude was reduced on a schedule t } log(1
1 k), where k is the number of simplex iterations. The
process was terminated when the annealing amplitude
became smaller than 60.25%, at which point a final de-
terministic fit was carried out. The annealing schedule
was sufficiently slow to ensure eventual convergence to-
ward the global minimum.98 The second procedure also
used several randomly chosen starting points but ap-
proached the best fit with the help of Powell’s determin-
istic algorithm using Brent’s minimization method95).

For each of the three complete data sets, the best fit of
the model is shown in Fig. 5. The model accounts quan-
titatively for all observations, and in almost all cases pre-
dicted and measured thresholds agree to within the accu-
racy of the measurement. The model reproduced the
dipper-shaped results of Exp. 1, the almost flat contrast
dependence in Exps. 2 and 3, and the masking effects of
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Exps. 4 and 5. The effective transducer function of the
response was sigmoidal at low contrast and nonsaturat-
ing at high contrast [Fig. 6(a)], explaining the results of
Exp. 1 and their conformance to Guilford’s law,99 which
states that DC } Cx, 0.5 < x < 1. The effective tuning
of the response for orientation was approximately 30%
sharper than that of the linear units before the interac-
tions (Fig. 2), and the effective tuning for spatial period
was approximately 35% narrower [Figs. 6(c) and 6(d)], ex-
plaining the low thresholds for discriminating orientation
and spatial period. The flat contrast dependence of these
thresholds will be considered in a separate section.

The parameter values that yielded the best fit for each
of the three complete data sets are listed in Table 1.
Each value is given with a tolerance range (expressed as a
percentage). This is the range in which a given param-
eter can vary such that the total fit error remains within
5% of its minimal value when all other parameters are op-
timized to keep the fit error as small as possible (Appen-
dix C). Most tightly constrained (to within 2% of their re-
spective values) were the exponents g and d. In the
observer average, the optimal values were approximately
g 5 3.5 and d 5 3.0, that is, substantially larger than the
values inferred from physiology.52,53 The tuning widths
su , sl , noise exponent a, contrast threshold Cth , and
transducer inflection S fac were constrained to within 15%
of their respective values. The width of orientation tun-
ing was approximately 35° full-width at half-maximum
(FWHM) at the linear stage and approximately 25° at the
nonlinear stage. Similarly, the width of spatial period
tuning was approximately 1.5 oct. FWHM and 0.8 oct.
FWHM at the linear and nonlinear stages, respectively.
The noise exponent a was slightly larger than unity (val-
ues near 1.1). Less well constrained were the values for
orientation pooling width Lu (25° FWHM to within 4%–
34%) and for background activity h (to within 18%–
185%). The spatial period pooling width Ll was only
weakly constrained by our data, mostly because the mea-
sured contrast-masking thresholds depended only weakly
on the spatial period of the mask.

As the computation of tolerance values is based on the
entire data set, it does not reveal the relative importance
of different parts of the data set. To obtain some infor-
mation on this point, we computed threshold predictions
for the family of all models yielding fit errors less than 5%
above the optimal fit (Appendix C). The envelope of the
resulting predictions is narrow in the more important
parts and broad in the less important parts of the data set
(see Fig. 5). By this criterion, the most important parts
of the data set are the high-contrast regimes of Exps. 1, 2,
and 3 (C . 0.1). Experiments 4 and 5 appeared impor-
tant as well, as the predicted envelopes are quite narrow.
In the low-contrast regime of Exp. 1, the predicted enve-
lopes are wide but concern only 3% of the entire contrast
range of that experiment. Least important are the low-
contrast regimes of Exps. 2 and 3, where predictions di-
verge widely. This analysis shows that the data did
closely constrain the model and that, overall, the model
was not sensitive to small departures from the optimal
parameter values. This demonstrates that the optimal
fit is robust and nonaccidental.

Finally, we were interested in knowing which param-
eter combinations are most critical for model predictions.
To this end, we computed the eigenvectors of the Hessian
of the error surface in parameter space and sorted them
by their associated eigenvalues (Appendix C). For all
three observers the largest eigenvalue was associated
with a vector almost collinear with the contrast threshold
Cth . This reflects the fact that Cth determines the over-
all sensitivity of the model and that its value modulates
all predictions (both low- and high-contrast). The next
largest eigenvalue was associated with the difference be-
Table 1. Best-Fit Model Parameters

Name Symbol

Observer SC

LB LZ SC Constant Noise Minkowski Norm

Excitatory exponent g 3.2 6 5% 3.8 6 1% 3.6 6 1% 3.5 6 1% 4.9 6 5%
Inhibitory exponent d 2.7 6 4% 3.0 6 1% 3.0 6 2% 3.0 6 1% 4.0 6 4%
Noise exponent a 1.1 6 40% 1.3 6 2% 1.0 6 25% 0 0.8 6 7%
Background activity h 3.8 6 97% 1.7 6 18% 12.3 6 185% 15.6 6 5000% 1.7 6 262%
Spatial period tuning width sl (oct.) 0.76 6 14% 0.54 6 8% 0.64 6 8% 0.62 6 14% 0.43 6 33%
Orientation tuning width su (°) 17.8 6 16% 12.5 6 9% 16.5 6 13% 17.1 6 17% 12.5 6 5%
Spatial period pooling width Ll (oct.) 7.1 6 2499% 5.7 6 602% 1.2 6 661% 0.6 6 933% 1.4 6 4855%
Orientation pooling width Lu (°) 14.5 6 5% 12.0 6 34% 11.0 6 4% 10.8 6 38% 9.3 6 7%
Contrast detection threshold Cth 0.026 6 1% 0.025 6 3% 0.026 6 1% 0.025 6 1% 0.023 6 1%
Transducer inflection point S fac 1.26 6 1% 0.62 6 8% 0.80 6 8% 0.80 6 1% 1.37 6 23%

Residual fit error 16% 14% 17% 17% 20%

Linear spatial period FWHMa (oct.) 1.79 1.27 1.51 1.46 1.01
Linear orientation FWHM (°) 41.9 29.4 39.1 40.3 29.4
Pooled spatial period FWHM (oct.) 1.12 0.68 0.71 0.86 0.43
Pooled orientation FWHM (°) 27.5 18.0 26.1 28.0 18.5

a Full width at half-maximum (FWHM) is computed as 2sA2 log(2) for the linear filters and is measured at the output of the second stage (for a grating
of contrast 0.1) for the pooled filters.
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Fig. 5. Measured and predicted thresholds for three observers (LB, LZ, and SC). Measured thresholds (symbols with error bars) are
represented by the mean and standard deviation for each observer. Predicted thresholds are represented by the optimal model fit (solid
curve) and the family of all model fits with up to 5% higher fit error (gray regions). Predicted thresholds are close to measured thresh-
olds, often to within the accuracy of the measurement. In general, the gray regions closely hug the measured thresholds, demonstrating
that the model fit is robust and not accidental. The narrow parts of the gray regions indicate which parts of the data constitute par-
ticularly tight constraints for the model.
tween exponents, g 2 d, which affects all high-contrast
predictions and determines the asymptotic slope of the
contrast response function in Fig. 6(a). Intermediate ei-
genvalues were associated with more complicated param-
eter combinations and were not consistent across sub-
jects. However, in all observers the two smallest
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eigenvalues were associated with the pooling widths Lu

and Ll .

C. Variants of the Model
How does the number of model units (60 units with 12
preferred orientations and 5 preferred spatial frequen-
cies) affect our conclusions? Given our decision model,
which combines information from all units, the number of
model units should be of little consequence as long as it is
not too small. The reason is that the number determines
how densely the Fisher information surface is sampled,
but it does not alter its shape (see Fig. 3). Indeed, when
we increased the number of units to 270 (30 orientations
and 9 spatial frequencies), we observed no significant
threshold changes except for an approximately 10% re-
duction in masking thresholds (Exps. 4 and 5). A further
increase to 1296 units (72 orientations and 18 spatial pe-
riods) produced no significant change in the results (i.e.,
no prediction changes by more than 5%).

We depart from previous models by assuming that re-
sponse variance increases with the response mean (Pois-
son noise, Vl,u

2 5 Rl,u
a with a ' 1). A simpler alterna-

tive is to assume that response variance is constant
(constant noise, Vl,u

2 5 b).9,24 Constant noise is a rea-
sonable assumption as long as filters are independent and
the contrast response follows a simple power law. In this
case the dependence of the signal-to-noise ratio Rl,u /Vl,u
on stimulus contrast, orientation, and spatial frequency
turns out to be the same for constant noise and Poisson
noise (Appendix B). In the present case, however, filters
interact through divisive inhibition, and the contrast re-
sponse follows a sigmoidal law. Thus, in principle, Pois-
son noise and constant noise are no longer interchange-
able. However, when we fit the data of observer SC with
a variant of the model using constant noise, we obtain a
good fit as well (Fig. 7). Nevertheless, the relatively
broad envelopes around the best fit indicate that the
constant-noise model is less constrained by data and, in
particular, that background activity (h) remains entirely
unconstrained (Table 1).

Another difference from earlier models is the decision
stage. We employ a maximum-likelihood approach based
on the Fisher information formalism instead of the
Minkowski norm approximation used in earlier
studies.9,57,58,68 This approximation assumes that
threshold is reached when the Minkowski norm of the dif-
ferences in the mean responses to two alternative stimuli
(expressed as multiples of the square root of the response
variance) reaches unity (Subsection 2.B.5). Typically,
the Minkowski norm is computed with an exponent Q be-
tween two58 and four.11,24,57,58,68 To assess the impor-
tance of the decision stage for the quality of the model
predictions, we fit the data of three observers using the
Minkowski norm with Q 5 3 as a decision stage. Figure
7 and Table 1 show representative results for observer
SC.

Although the overall quality of the fit is only slightly
worse for the Minkowski norm, the Minkowski norm con-
sistently fails to predict the qualitative pattern of results
in Exps. 4 and 5. Specifically, it predicts a nonmonotonic
dependence of threshold elevation on mask contrast (Exp.
4) and too little threshold elevation for masks of different
spatial frequencies (Exp. 5). In addition, the Minkowski
norm consistently predicts a narrower filter tuning in
spatial frequency (sl of 0.13, 0.35, and 0.43 oct. for three
observers) than is biologically plausible.

The inferior predictive power of the Minkowski decision
reflects a fundamental problem that relates to its differ-
ential treatment of contrast discrimination and masking
thresholds, on the one hand, and of orientation and spa-
tial frequency discrimination thresholds, on the other
hand. As illustrated in Fig. 3, contrast information is
Fig. 6. Functional properties of the optimal model for observer SC. (a) The effective contrast response function exhibits the sigmoidal
shape postulated by most psychophysical models. (b) and (c) The effective tuning functions for orientation and spatial frequency are
approximately Gaussian but are 30%–40% narrower than the original tuning functions (dashed curves). (d) and (e) Relative weights with
which different filters contribute to divisive inhibition. Inhibition derives from filters tuned to similar orientations (difference less than
40°). The range of spatial frequencies contributing to divisive inhibition is broad but only poorly constrained by the data.
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Fig. 7. Measured and predicted thresholds for two variants of the model (observer SC). The first column shows the fit of the standard
model, for comparison. The second column shows the fit of a model variant using flat noise instead of proportional noise. The quality
of the fit is comparable to that of the standard model, except in that it is less robust with respect to contrast-masking experiments (as
indicated by relatively broad gray regions). The third column shows a model variant using a suboptimal decision based on the
Minkowski norm. The fit is inferior to that of the standard model, in particular with respect to the contrast-masking experiments.
Thus the statistically efficient decision contributes significantly to the success of the standard model.
concentrated in one, but orientation and spatial frequency
information in two, filter subpopulations. The
Minkowski decision differs from the Fisher information
decision in how information from the two subpopulations
is combined: Whereas the Minkowski discriminability
increases by a factor of 21/Q, the Fisher discriminability
increases by a factor of 21/2 (Appendix B). As a result,
the Minkowski decision with Q . 2 either overestimates
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orientation and spatial frequency thresholds or underes-
timates contrast and masking thresholds, depending on
how the overall sensitivity of the model is set. Thus the
Minkowski decision contributes to the problems encoun-
tered by previous models in accounting simultaneously
for different types of thresholds.68

D. Contrast Dependence of Thresholds: a Reply to
Bowne
In an influential paper, Bowne pointed out that a large
class of models cannot explain the differential contrast
dependence that the thresholds of human observers typi-
cally exhibit in the high-contrast regime.68 For most ob-
servers, relative thresholds for contrast improve substan-
tially with stimulus contrast (DC/C } C20.3), whereas
thresholds for orientation, spatial frequency, and other
attributes improve little or not at all (e.g., Du } C20.1).
Contrary to this observation, many filter-based models
predict that the contrast dependence of all thresholds
should be the same (see also Appendix B).

As our model accurately predicts the contrast depen-
dence of all investigated thresholds, we wished to under-
stand where Bowne’s seemingly general argument fails.
To this end, we manually adjusted model parameters to
obtain (i) Guilford’s law99 for contrast thresholds (DC
} C0.75) and (ii) no contrast dependence for orientation
thresholds (Du } constant) [Figs. 8(a) and 8(b)]. The key
for obtaining this differential contrast dependence turns
out to be the exact shape of the sigmoidal contrast re-
sponse function. In our model, this shape distorts the
orientation tuning curves in a contrast-dependent man-
ner [Figs. 8(c) and 8(d)]. In the region that determines
orientation thresholds (i.e., 615°), the slope of the tuning
function increases less with contrast than the height [as
illustrated in Fig. 8(c)], and this shortfall suffices to keep
orientation thresholds constant.

To see this point, consider the dependence of the Fisher
information on the slope and height of the tuning func-
tion:

Jl,u '
~]Rl,u /]u!2

Rl,u
. (10)

For the most informative units (u 5 615°), the height
Rl,u increases approximately threefold between contrasts
0.2 and 0.9, whereas the slope (]Rl,u /]u) increases only
approximately 1.75-fold. As a result of the lower in-
crease of the slope, Rl,u and (]Rl,u /]u)2 increase by the
same factor, and the Fisher information remains the
same. This explains why orientation (and, similarly,
spatial frequency) thresholds exhibit so little contrast de-
pendence in the high-contrast regime. Note that an
analogous argument can be made for the signal-to-noise
ratio DRl,u /Vl,u , so that this conclusion holds irrespec-
tive of the decision stage used (i.e., Fisher information or
Minkowski norm).

4. DISCUSSION
A. Common Basis of Spatial Vision
To ascertain whether different aspects of spatial vision
reflect the same level of visual processing, we measured a
wide range of thresholds with Gabor patterns presented
at 4° of eccentricity. Previous studies have tended to fo-
cus either on contrast-increment and masking
thresholds6,9,11,12,46 or on orientation and spatial fre-
quency discrimination thresholds22,24,65,94,100,101 and thus
were unable to address this larger question. The impe-
tus for revisiting the basis of spatial vision at this time is
provided by recent single-unit work in cat and monkey,
which suggests that the behavioral thresholds in question
may reflect neuronal response properties as early as pri-
mary visual cortex.20,63,102

To test the hypothesis that spatial vision reflects a com-
mon neural basis, we employ a consensus model that com-
bines components from several models of psycho-
physical9,42,42,45,58 and neuronal sensitivity63,86,103 to spa-
tial patterns. Whenever possible, we substituted the
more generic components of neural network models for
the more specialized components customary in psycho-
physical models (e.g., Gaussian tuning functions, Poisson
noise, ideal-observer decision). However, the basic archi-
tecture of our model (e.g., filter population, divisive inhi-
bition) is fully consistent with previous psychophysical
models. Our results demonstrate that a single model ac-
counts quantitatively for all investigated thresholds and
is fully consistent with a common basis of spatial vision.

We fit the ten parameters of our model to thirty-four
threshold measurements from five separate experiments.
The fitting procedure affords an effectively exhaustive
search through the ten-dimensional parameter space and
includes several randomly chosen starting points as well
as two independent methods of iteration. The overall

Fig. 8. Differential contrast dependence of thresholds. The
model has been manually tuned such as to simultaneously pre-
dict increment contrast thresholds (a, Exp. 1) following Guilford’s
law (DC } C0.75), but contrast-independent orientation thresh-
olds (b, Exp. 2) (Du } C20.03). Looking at the internals of the
model reveals that, although the unit responses, Rl,u , increase
for units of all orientations (c), the increase is more pronounced
at the tails of the orientation tuning curve (d). As a result, the
slope of the tuning curve at 615° increases more slowly than its
height. Specifically, as contrast increases from C 5 0.2 to C
5 0.9 curves, Rl,u increases by a factor of 3, whereas ]Rl,u /]u
increases only by a factor of 1.75 (for u 6 15°). As a result, the
Fisher information with respect to contrast, which is approxi-
mately proportional to (]Rl,u /]u)2/Rl,u , does not increase with
C.
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quality of fit is good, and the residual error is generally
comparable to the precision of measurement. To test the
consistency of the result, we fit the model to separate data
sets from three different observers. In spite of substan-
tial differences in the threshold data, the best-fitting pa-
rameter values are almost always consistent and differ by
10% to 30% of their value between observers.

To assess robustness of fit, we compute a tolerance re-
gion around the optimal value of each parameter, within
which the overall quality of the fit degrades by less than
5% (Appendix C). Almost all parameters are tightly con-
strained by data, some to within a few percent of their op-
timal value. The robustness of the fit is illustrated
graphically by the gray regions in Figs. 5 and 7, which are
generated by allowing all parameters to vary within their
respective tolerance regions.

B. Relationship to Previous Models
As in many recent psychophysical models,19,45,57,58 we
postulate visual filters tuned to a range of orientations
and spatial frequencies but all centered at the same spa-
tial location. To reduce the number of free parameters,
we assume similar response characteristics for all filters
(i.e., same contrast gain, background noise, width of ori-
entation tuning, and width of spatial frequency tuning in
octaves).

We chose visual filters defined by their polar response
in the Fourier domain, which exhibit Gaussian tuning in
orientation and spatial frequency. As functions of visual
space, these filters closely resemble the multilobed func-
tions employed by other models except that they are not
separable along x and y dimensions. We saw no particu-
lar need to retain separability, as this property is unlikely
to have any functional bearing. The advantage of filters
with Gaussian tuning is that they render the effect of
nonlinear interactions more transparent and easier to
characterize.

We follow other recent models9,19,30,42–45,57,58 in normal-
izing visual filters responses by divisive inhibition.52,69

However, the parameters produced by our fitting proce-
dure depart from other models in two notable respects:
First, filter responses are taken to a relatively high expo-
nent before being subjected to divisive inhibition (i.e., g,
d ' 3.0 to 3.5). Previous models typically use values of
g, d between 2.0 and 2.5 with a difference of 0.4 to
0.5.9,57,58 Second, only filters tuned to a relatively nar-
row range of orientations contribute to divisive inhibition.
This near-orientation inhibition is consistent with the
findings of a number of previous studies,12,104 but conflicts
with the clear evidence for cross-orientation inhibition re-
ported by other studies.9,105 As the latter group of stud-
ies used spatially extensive stimuli, this raises the possi-
bility that cross-orientation inhibition may originate at
more distant stimulus locations than near-orientation in-
hibition.

This difference in parameter values is of some func-
tional importance. In our model, divisive inhibition
leads to a substantial sharpening of the effective tuning
for orientation and spatial frequency and also leads to a
contrast response function of a particular sigmoidal
shape. Together, these properties produce the differen-
tial contrast dependence of various types of thresholds
that is observed psychophysically (strong dependence of
contrast-increment thresholds, weak dependence of
orientation/spatial frequency discrimination thresholds).
Other parameter choices would not have been able to ac-
count for this aspect of the psychophysical data.68

Consistent with recent neural models,86,103 we assume
that the variance of responses increases roughly in pro-
portion to their means (proportional noise or Poissona

noise). Psychophysical models typically assume noise of
constant variance (flat noise).6,9,19,45,57,58 Although dif-
ferent noise assumptions are not interchangeable, in the
present context proportional and flat noise afford essen-
tially the same quality of fit. We use proportional noise
to facilitate comparison with neural responses.

Our model incorporates an ideal-observer decision
based on the Fisher-information framework.64,86,103 By
relying on exact numerical calculations rather than ana-
lytical approximations, we have extended this framework
to arbitrary psychophysical discriminations and sparse
filter populations (Appendixes A and B). Previous psy-
chophysical models have used a nonideal decision strat-
egy based on the Minkowski norm of filter
responses.45,57,58,68 An ideal decision strategy predicts
our data significantly better than the nonideal strategy
used by other models. For example, an ideal strategy
predicts the relative levels of contrast-increment thresh-
olds and orientation (spatial frequency) discrimination
thresholds far better than does the nonideal strategy.

C. Relationship to Physiology
The response of neurons in primary visual cortex typi-
cally saturates at a given contrast and is best described
by a hyperbolic ratio function.52,106,107 This is at vari-
ance with our model, where responses continue to in-
crease with contrast (as a power function with an expo-
nent of approximately 0.5). A likely reason for the
discrepancy is that model responses reflect the average
response of a diverse population of neurons that saturate
at different contrasts.9,106

The tuning width of neurons in primary visual cortex of
macaque has been estimated to be 20 6 9° for orientation
and 0.76 6 0.30 oct. for spatial frequency (half-width at
half-maximum).17,20,65,76 This agrees reasonably well
with the effective tuning half-widths of our model units,
which are 14° for orientation and 0.56 oct. for spatial fre-
quency, if one considers that psychophysical performance
is likely to reflect the best-tuned neurons of a diverse
population.94,100,108–110 We note also that tuning widths
in primary visual cortex appear to be independent of
contrast,76 which is once again consistent with our model.

The variance of neuronal responses is roughly propor-
tional to the mean, the exact relation being a power func-
tion with an exponent of 1.1 to 1.2.20,79,80 Our model
agrees closely with these values, as the best-fitting expo-
nent ranged between 1.0 and 1.3. Note, however, that
our model assumes that responses vary independently of
each other. This is not quite true in cortex, although the
conditional covariance between visual cortical neurons
(i.e., the correlation not due to the stimulus) is
small.109,111 In our model, a population of units always
contains more information than the most informative in-
dividual unit, because Fisher information is additive for
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independent noise. In cortex, however, individual neu-
rons may encode as much information about a stimulus as
the animal as a whole.94,100,108–110 The reason for this
discrepancy may lie in conditional covariance between
neuronal responses, as the information of individual units
would no longer be additive.

A particularly interesting issue is the neural basis of
divisive inhibition. Although divisive inhibition was
originally considered the result of shunting inhibition at
the level of individual neurons,53 it is now simply thought
to provide a convenient description of the collective be-
havior of neural circuits in primary visual
cortex.54,60,63,112,113 The function of these circuits re-
mains controversial and may have to do with contrast ad-
aptation, with the sharpening of neuronal tuning, or sim-
ply with gain control.52,60,114,115 The circuits that we
describe in terms of divisive inhibition are likely to be
found among short-range intrinsic connections in primary
visual cortex.48,75,104,116,117 This is suggested by the func-
tional organization of primary visual cortex and the fact
that the circuits in question involve neurons with overlap-
ping receptive fields and similar tuning properties. Re-
current excitation and inhibition within cortical columns
are likely to play an important role as well.49,112,118 In-
deed, detailed computational models combining short-
range inhibition and recurrent excitation exhibit func-
tionalities that are very similar to divisive inhibition (e.g.,
sharpening orientation tuning and reducing its depen-
dence on contrast).59,60

Another feature of the interactions implemented in the
model was that we found the inhibitory pool to be narrow
in the orientation domain. This property results from
our masking data, which do not exhibit any cross-
orientation inhibition. This connectivity is directly sup-
ported by studies of intrinsic connections in cat hypercol-
umns (e.g., Ref. 49), where excitatory connections are
found predominantly between cells with the same tuning,
and inhibitory connections are found between cells with
similar tuning but not between cells with orthogonal tun-
ing (see also Refs. 119 and 120). Our model does not
make a clear prediction for either narrow52,121 or
broad56,122 pools in spatial period.

Although our decision stage is purely abstract and is
not intended as a model of any particular level of cortical
processing, it is interesting to note that neural networks
are well suited for computing statistically efficient esti-
mates of stimulus attributes such as contrast, orientation,
and spatial frequency.64,85,86,103

5. CONCLUSIONS
We conclude that a wide range of spatial vision thresholds
reflect a single level of visual processing, most likely cor-
responding to primary visual cortex. Furthermore, the
visual processing in question is described quite well by di-
visive inhibition among overlapping visual filters. Both
conclusions follow from our finding that divisive inhibi-
tion simultaneously predicts contrast-increment thresh-
olds, orientation and spatial frequency discrimination
thresholds, and contrast-masking thresholds. The pa-
rameters of divisive inhibition, as inferred from threshold
data, are tightly constrained. For the most part, they are
in excellent agreement with what is known about visual
processing at the level of primary visual cortex. To ac-
count for these behavioral thresholds, we found it impor-
tant to employ a statistically efficient decision that avoids
any bias in favor of one threshold or another. To this
end, we describe a generalized Fisher-information ap-
proach that can be adapted to arbitrary psychophysical
tasks (see Appendix A).

We have shown elsewhere that the present model ac-
counts also for threshold changes by visual
attention.70,123,124 Specifically, a change in one param-
eter of divisive inhibition (the exponent of the power law)
replicates the contrast-increment thresholds, orientation,
and spatial frequency discrimination thresholds, as well
as contrast-masking thresholds for stimuli that are poorly
attended. On the basis of these findings, we have pro-
posed that divisive inhibition implements a winner-take-
all competition among visual filters, a competition that is
intensified by visual attention. By intensifying competi-
tion, attention enhances visual filters that respond rela-
tively well to a given stimulus and attenuates visual fil-
ters that respond relatively less well. In the (near)
absence of competition, the system acts in a more linear,
superpositional mode. Thus divisive inhibition provides
a surprisingly general framework for analyzing the per-
ceptual and neural basis for a wide range of basic visual
thresholds. The main challenges lying ahead are to link
divisive inhibition to specific circuits in visual cortex59,112

and to characterize the important inhibitory and excita-
tory influences originating at more distant visual
locations.32,33,35,36

APPENDIX A: FISHER INFORMATION FOR
A GAUSSIAN RANDOM VARIABLE
Consider a Gaussian random variable X with mean m and
variance s 2, both of which are functions of a stimulus at-
tribute z. We now derive the Fisher information of X
with respect to z. The probability of observing x given z,
p(xuz), and its derivative with respect to z, p8(xuz), are

p~xuz! 5
1

sA2p
expF2

~x 2 m!2

2s 2 G , (A1)

p8~xuz! 5 p~xuz!F ~x 2 m!2

s 3 s8 1
x 2 m

s 2 m8 2
s8

s
G . (A2)

If we denote the expectation of f(x) with respect to p(xuz)
with E@ f(x)#, then, for any function f,

E@ f~x !# 5 E
2`

1`

f~x !p~xuz!dx, (A3)

the definition of Fisher information (e.g., Ref. 83) yields
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where m8 and s8 are the derivatives of m and s, respec-
tively, with respect to z. In the special case of s 2 5 ma

(Poissona noise), the Fisher information becomes

J~z! 5
m82

m2 S m22a 1
a2

2 D . (A5)

This expression is identical to Eq. (7).

APPENDIX B: COMPARISON OF NOISE
AND DECISION MODELS
It is instructive to compare different noise and decision
models for filters with relatively simple response proper-
ties for which the different approaches yield similar, and
in some cases identical, results. Of course, this close cor-
respondence breaks down for filters with more complex
response properties, such as the sigmoidal contrast-
response functions used in our model. First we derive
the Fisher information for Poisson and constant noise,
and then we compare decisions based on one filter, on all
filters, and on the Minkowski norm.

1. Poisson Noise
Consider a visual filter i tuned to orientation u i and spa-
tial frequency v i whose response is a Gaussian random
variable with mean Ri and variance Vi

2 given by

Ri 5 Acf expF2
~u 2 u i!

2

2su
2 GexpF2

~v 2 v i!
2

2sv
2 G ,

Vi
2 5 bRi , (B1)

where A is the sensitivity; f is the power of the contrast
dependence; su and sv are the tuning widths for orienta-
tion and spatial frequency, respectively; b the noise level;
and c, u, and v are the contrast, orientation, and spatial
frequency of the stimulus, respectively. Note that such a
filter differs from those used in our model by neglecting
background activity, by using a power function for the
contrast dependence, by fixing a 5 1, and by being inde-
pendent of other filters (i.e., filters with other tuning
properties).

To derive the Fisher information with respect to c, u,
and v, we note that

]Ri

]c
5

fRi

c
,

]Ri

]u
5 2Ri

u 2 u i

su
2 ,

]Ri

]v
5 2Ri

v 2 v i

sv
2 . (B2)

Equation (7) yields the Fisher information with respect to
attribute z, Ji

z , where z 5 c,u,v:
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1
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2. Constant Noise
Identical results can be obtained for constant noise, at
least for the simple visual filters considered here. Let

Ri 5 AAcf/2 expF2
~u 2 u i!

2

4su
2 GexpF2

~v 2 v i!
2

4sv
2 G ,

Vi
2 5

b

4
, (B4)

where the constants have been chosen to facilitate com-
parison with the case of Poisson noise. Note that the
signal-to-noise ratio Ri /Vi is four times larger with con-
stant than with Poisson noise. The derivatives for con-
stant noise are

]Ri

]c
5

fRi

2c
,

]Ri

]u
5 2Ri

u 2 u i

2su
2

]Ri

]v
5 2Ri

v 2 v i

2sv
2 , (B5)

and the Fisher information with respect to attribute z is

Ji
z 5

4

b
S ]Ri

]z
D 2

, Ji
c 5

f 2

c2

Ri
2

b
,

Ji
u 5

~u 2 u i!
2

su
4

Ri
2

b
, Ji

v 5
~v 2 v i!

2

sv
4

Ri
2

b
. (B6)

This result is identical to the one obtained for Poisson
noise.

3. Most Informative Filters
The threshold in a 2AFC experiment can be related to the
Fisher information by letting performance equal 3/4 and
reformulating Eq. (6) to
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Dz 5 uz1 2 z2u 5 kA1/J~z1! 1 1/J~z2!

2

'
k

AJ@~z1 1 z2!/2#
; k 5 2 erf 21

1

2
. (B7)

If we base the decision on only one filter, we can choose
the most informative filters, in other words, the ones with
the largest Fisher information. For contrast discrimina-
tion, Ji

c is maximal when u i 5 u and v i 5 v; for orienta-
tion discrimination, Ji

u is maximal when (u i 2 u)2

5 2su
2 and v i 5 v; and for spatial frequency discrimina-

tion, Ji
v is maximal when (v i 2 v)2 5 2sv

2 and u i 5 u.
The thresholds that result from a decision based on these
filters can be obtained from Eq. (B3) or Eq. (B6):

Dc

c
' 2kA b

Af2cf , Du ' A2ekAbsu
2

Acf ,

Dv ' A2ekAbsv
2

Acf . (B8)

4. All Filters
Alternatively, we may base the decision on all filters by
computing the Fisher information for the entire popula-
tion. For simplicity, consider a population of filters
spaced Du and Dv apart and covering the entire
orientation/spatial frequency plane. The total Fisher in-
formation for this population is

Jtot 5 (
ui ,vi

Ji 5
1

DuDv (
ui ,vi

JiDuDv '
r

susv
EEJidudv,

(B9)

where r is the filter density in units of 1/susv . As the
filter density increases, the approximation becomes more
and more exact. With the help of

1

A2psu
2
E expF2

~u 2 u i!
2

2su
2 Gdu 5 1,

1

A2psu
2
E ~u 2 u i!

2

2su
2 expF2

~u 2 u i!
2

2su
2 Gdu 5

1

2
,

we obtain the following expressions for the total Fisher
information and the discrimination threshold:

Jtot
c '

r

susv
EEJi

cdudv 5
2psusvAf 2cfr
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Dc
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p
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Af2cfr
, (B10)
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r
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ududv 5
2psv Acfr
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Jtot
v '

r
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EEJi

vdudv 5
2psu Acfr

bsv

,

Dv ' A2

p
kAbsv

2

Acfr
. (B12)

Note that the contrast threshold based on all filters is
smaller than the threshold based on the most informative
filter, by a factor of 1/A2p. The difference in orientation
and spatial frequency thresholds is even larger, by a fac-
tor of 1/Aep.

5. Minkowski Norm
The Minkowski norm has been one of the most popular
ways to model a perceptual decision.68,91 Because
thresholds reflect the magnitude of the response differ-
ence with respect to two stimulus alternatives, one ex-
pects that thresholds will be proportional to the deriva-
tive of the response Ri with respect to a stimulus
attribute z. Specifically, one may postulate that thresh-
old is reached when the response difference DRi equals
the standard deviation Vi of the response:

DRi 5 U]Ri

]z
UDz 5 Vi ,

DRi

Vi
5

1

Vi
U]Ri

]z
UDz 5 1.

(B13)

When the decision is based on multiple filters, threshold
is reached when the Minkowski norm of the ratios DRi /Vi
reaches unity:

1 5 S (
i

UDRi

Vi
UQD 1/Q

. (B14)

The ratios DRi /Vi stand in a simple relation to the Fisher
information, which is obtained both for constant noise
and for Poisson noise:

DRi

Vi
5

1

Ab
U]Ri

]z
UDz 5 AJi

zDz. (B15)

In the special case of Q 5 2, the Minkowski norm pre-
dicts the same thresholds as does Fisher information, ex-
cept for a proportionality constant:

1 5 F(
i

S DRi

Vi
D 2G 1/2

5 DzS (
i

Ji
zD 1/2

, Dz 5
1

AJtot
z

.

(B16)
In the general case (Q . 2), however, the predictions of
the Minkowski norm differ from those of Fisher informa-
tion. This is particularly true when information is dis-
tributed over many filters. To see this, consider a popu-
lation of N filters with identical DRi /Vi 5 AJi

z 5 AJz:

DzMinkowski 5 F(
i

S DRi

Vi
D QG21/Q

5 N21/Q~Jz!
21/2

DzFisher 5 S (
i

Ji
zD 21/2

5 N21/2 5 ~Jz!
21/2. (B17)

The factor by which the Minkowski norm overpredicts
thresholds, N1/221/Q, grows with increasing N if Q . 2.
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APPENDIX C: ANALYSIS OF MODEL FITS
The robustness and stability of model fits can be analyzed
with the help of two approximations: a linear approxi-
mation of the threshold function and a quadratic approxi-
mation of the fit error function. These approximations
allow us to derive analytical expressions for (i) the region
around the optimal value to which each parameter is con-
strained by data and (ii) the varying extents to which dif-
ferent data points constrain the model.

Let X be the vector of ten model parameters and X0 be
the best-fit value of these parameters. Each threshold
prediction ti(X) for each data point i is linearized around
X0 as

ti~X ! 5 ti~X0! 1 Jti

T ~X 2 X0!, (C1)

where Jti
is the Jacobian of ti at X0 . Similarly, the fit

error to the data e(X) is approximated by the second-
order formulation:

e~X ! 5 e~X0! 1 Je
T~X 2 X0! 1 ~X 2 X0!THe~X 2 X0!,

(C2)
where Je is the Jacobian and He the Hessian of e at X0 .
At the minimum of e in X0 , we know that Je 5 0 and He
is symmetric and positive.

To determine the tolerance range within which model
parameters are constrained by data, we need to project
the subspace e(X) < e(X0) 1 e onto each parameter’s
axis (see Ref. 95, Chap. 15 and Fig. 9 below). This pro-
jection yields a measure of the maximum variation ob-
tained for each parameter when all parameters are al-
lowed to arbitrarily vary while the fit error is kept within
e of the best-fit error. We can write this projection prob-
lem as a constrained optimization problem: Denoting Ej
the basis vector corresponding to the axis of parameter j,
we want to extremize

Ej
TX subject to ~X 2 X0!THe~X 2 X0! < e. (C3)

To carry out this extremization, we write the Lagrange
multiplier for this problem:

Ej
TX 2 l@~X 2 X0!THe~X 2 X0! 2 e#. (C4)

Differentiating this expression successively with respect
to each parameter yields a system of equations that we
can write in matrix form:

Ej 2 2lHe~X 2 X0! 5 0. (C5)

Using this equation and the expression for the constraint,
we solve for l and then for X:

X 5 X0 6 A e

Ej
THe

21Ej
He

21Ej , (C6)

hence

Ej
TX 5 Ej

TX0 6 AeEj
THe

21Ej, (C7)

and the tolerance range for parameter j (given in Table 1)
is defined as the difference between Ej

TX0 and the maxi-
mum or minimum of Ej

TX:

s j 5 AeEj
THe

21Ej. (C8)
To determine the relative importance of different data
points in constraining the model, we need to investigate
the extent of the variations in each threshold prediction
ti(X) when X is allowed to arbitrarily vary while ensuring
that e(X) < e(X0) 1 e. Since He is symmetric and posi-
tive, we can transform, through diagonalization of He ,
this quadratic constraint into a simple spherical inequal-
ity: We first decompose He as He 5 VDV21, where D is
diagonal and V is an orthogonal change-of-basis matrix.
Because He > 0, all its eigenvalues are positive, such that

He 5 VD1/2D1/2V21. (C9)

In addition, because V is orthogonal, V21 5 VT. We can
now rewrite the constraint as

~X 2 X0!TVD1/2D1/2VT~X 2 X0! < e, (C10)

@D1/2VT~X 2 X0!#T@D1/2VT~X 2 X0!# < e,
(C11)

WTW < e, i.e., iWi2 < e, W 5 D1/2VT~X 2 X0!.
(C12)

Consequently, the region of the parameter space where
e(X) , e(X0) 1 e is the interior of the hypersphere
iWi2 5 e. In order to compute the envelopes of all model
predictions when the parameters are inside this hyper-
sphere, we need to find the minimum and maximum of
each ti(X) subject to the constraint iWi2 < e. Since we
locally approximate ti by the linear form ti(X) 5 ti(X0)
1 Jti

T (X 2 X0), we trivially know that the extrema of
this linear form will be obtained for X such that iWi2

5 e; indeed, we simply write

ti~X ! 5 ti~X0! 1 Jti

TV2TD21/2D1/2VT~X 2 X0!, (C13)

ti~X ! 5 ti~X0! 1 KTW (C14)

with K 5 D21/2VTJti
such that the extremization problem

becomes that of finding the minimum and maximum of

Fig. 9. Approximation of the error surface near the point of best
fit, X0 . The error surface is approximated by a paraboloid
based on the Hessian matrix at X0 . With this approximation,
all points at which the fit error e(X) < e(X0) 1 e are within an
ellipsoid (thick curve). The actual isocontour at which e(X)
< e(X0) 1 e is indicated by the arrow. For each parameter,
the tolerance range within which e(X) < e(X0) 1 e is obtained
by projecting the ellipsoid onto the associated axis (dotted lines).
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ti(X0) 1 KTW subject to iWi2 < e. Because we have re-
duced the function to extremize to a simple dot product
between two vectors, we now see that these extrema will
be obtained when W is collinear with K and, more pre-
cisely, when

W 5 6Ae
K

iKi
. (C15)

Finally, for the two values of W that extremize ti , we can
compute the minimum and the maximum of the model
prediction for datapoint i from Eq. (C14):

ti
extr 5 ti~X0! 6 Ae iKi . (C16)

With this method, we can estimate the extrema of the
range of threshold predictions obtained from arbitrary pa-
rameter values X within a certain neighborhood of the
best-fit point X0 @e(X) < e(X0) 1 e#. The accuracy of
this estimate is limited only by the accuracy of the (very
reasonable) approximations for ti and e.
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