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Abstract:

Volumes of white matter lesions were determined using FLAIR MRI in 23 AIDS patients
with progressive multifocal leukoencephalopathy. Manual outlining was compared to an
automated method based on region growing and adaptive thresholding. Lesion volumes
from the two methods correlated well (61 lesions, r=0.99, p < 10~*), although the volumes
differed substantially (12.8 + 13.7%, mean+S.D). Interscan intrasubject reproducibility was
better for the automated than the manual method (2.9 &+ 3.2% vs. 12.4 £+ 16.2% volume
difference, p=0.02).
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Accurate and reproducible segmentation of white matter lesions is necessary to obtain re-
liable quantitative assessment of disease progression [1]. While the total volume of lesion (the
lesion load) is only an approximate measure of clinical disease severity, high reproducibility
in measuring the lesion load is essential for longitudinal monitoring of disease progression. In
this study, we evaluate the reproducibility of segmentation of progressive multifocal leukoen-
cephalopathy (PML) lesions in patients with AIDS. Reliable segmentation will be particularly
important as pharmacological treatments become available for PML, and must be assured
before the efficacy of a given treatment for reducing lesion load can be concluded. However,
two major sources of quantitation error may affect reproducibility: (1) The expert’s sub-
jectivity when interactive outlining methods are employed, and (2) technical imperfections
such as poor lesion contrast, magnetic field inhomogeneities and partial volume effects [2],
which vary with patient positioning.

[Figure 1 about here]

We evaluated quantitation errors from both subjective and technical sources, using the
Fluid-Attenuated Inversion-Recovery (FLAIR) MR sequence for its high contrast between
lesions and both normal tissue and cerebrospinal fluid (CSF) [3, 4]. Manual outlining was
compared to an automated segmentation algorithm; furthermore, the reproducibility of both
methods was assessed using pairs of scans acquired consecutively with different patient po-

sitions (figure 1).

Methods. Patients and data acquisition: Twenty-three male patients with one to four PML
lesions (44 distinct lesions) were imaged on a 1.5T GE Signa MR scanner (General Electric
Medical Systems, Milwaukee, WI, USA) using a FLAIR sequence (TE=140, TR=10000,
TT=2200, 0.9375 x 0.9375 x 5 mm? voxels). For 9 patients (17 lesions), repeat scans were
acquired within 30 minutes after patient repositioning (with orientation differences of more
than 30°; figure 1). Datasets were processed on a DEC Alpha workstation (Digital Equipment
Corporation, MA, USA) using customized software.

Manual Segmentation: The manual method consisted of outlining the edges of the lesions

on all slices, using a mouse pointer. Dedicated software allowed an experienced operator to
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draw and edit polygonal lines on the magnified FLAIR images. All of the displaying and
drawing guidelines proposed by Filippi et al. [5] were applied.

Automated segmentation: Lesions appeared as hyperintense regions in the white mat-
ter [6, 7] surrounded by relatively uniform, lower intensity normal tissue. From a manually
selected starting point (seed), a lesion was extracted by three-dimensional (3D) flooding into
neighboring volume elements (voxels) with intensities higher than a given threshold ¢. The
flooding process is a 3D extension of the “bucket paint” algorithms present in most graphics
manipulation software. It consists of growing the region, from the seed point, into adjacent
voxels on the same slice as well as on adjacent slices (Figure 2). The region grows only into
those neighboring voxels whose intensity is above ¢, and the process is recursively applied
until all voxels above ¢ that are connected to the initial seed point have been flooded. Be-
cause of its 3D nature, this algorithm requires the operator to only seed each lesion on one
slice where it is visible, as the algorithm will spread into adjacent slices as required.

Subjective and technical segmentation variabilities were reduced through the automatic
and adaptive determination of the appropriate threshold for each lesion: Starting from the
intensity at the seed point, approximated by its closest multiple of a constant a (¢ = 5
intensity units in our implementation), the threshold was progressively decreased by the
discrete amount a. For every threshold value ¢, flooded lesion volume and its ratio r to the
volume obtained with the previous threshold (¢ + a) were computed. The algorithm ceased
to calculate for the next smaller ¢ value when the ratio r exploded (i.e., r was greater than a
constant b = 6), as flooding began to spread into normal brain tissue or large extents of the
extracranial structures. The constant b was determined empirically under two competing
constraints: with small values for b, the algorithm would only detect lesions with uniform
intensity (which typically is not the case), while using larger values for b presents the risk
that flooding would extend into normal white matter when the transition between lesion and
white matter is smooth. The final threshold for segmentation was the value of ¢ at which the
explosion occurred, plus an increment d (d = 7 in our implementation). d determined the

tolerance of the algorithm with respect to partial volume effects at lesion boundaries; with
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smaller values, more voxels with partial lesion volume were included in the segmentation.
The value d = 7 was determined empirically.
[Figure 2 about here]

By construction, this algorithm yielded exactly reproducible segmentation from a given
seed point. In addition, segmentation proved largely independent of the choice of the seed
location (figure 1). Although manual editing of the segmentation results was possible, it was
not used in this study.

[Figure 3 about here]

Results. Manual drawing correlated well with automated extraction (figure 3.a) for all
61 lesions (17 of which were from the repeat scans with different orientations). However,
lesion volumes from the two methods differed substantially (up to 59% in absolute value for
the smallest lesions, and 12.8 + 13.7% on average; figure 3.b). Better agreement was found
for larger lesions; for instance, the difference was 6.8 £+ 4% for lesions larger than 9cc.

The automated method proved more reproducible than the manual method with respect
to different patient orientation (figure 3.c,d,e). For the 17 lesions evaluated from two con-
secutive scans, good correlations were found between the volumes measured in the first and
second scan, both with manual drawing (r=0.989, p < 10~*) and with the automated method
(r=0.999, p < 10~*). However, paired t-tests showed significantly different relative volume
differences in the two orientations with the manual versus the automated method (p=0.02).
This is due to the smaller volume differences for the automated method compared to manual
drawing. For all 17 lesions, the volume difference was 12.4 4+ 16.2% for the manual method,
and only 2.9 &+ 3.2% for the automated method. For the 14 larger lesions with volumes
above 2cc, average and maximum volume differences were 11.6% and 47.5% for the manual

method, and only 1.8% and 5.4% for the automatic method.

Discussion. We found substantial discrepancies between the manual and automated
methods, especially for the smaller lesions. The major sources of discrepancies were (figure 4):
[Figure 4 about here]

a) Imaging artifacts. The FLAIR sequence presents obvious advantages over the regular
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T2-weighted sequences [4, 9, 8]. However, it suffers from the presence of artifactual hyperin-
tensities at the interface between tissues and surrounding CSF [10]. These artifacts are easily
misclassified by automated methods, while human observers have less difficulty identifying
them. Improved FLAIR sequences may however improve the performance of the automated
method [4].

b) Uncertain three-dimensional (3D) shape coherence. Even when adjacent slices are avail-

able, human observers experience difficulties in identifying the 3D shape of a lesion. The most
common manual misclassification in this study was the omission of small isolated regions,
which were disconnected from the main the lesion in the slice plane, but were connected to
the lesion in an adjacent slice. The 3D automated method did not suffer from this problem.

c¢) Shape irregularities. The manual segmentation results typically had smoother shape

than the automated results. When lesion boundaries were uncertain, the observer approx-
imated them with a straight line segment. This was particularly true for larger lesions,
which required drawing of numerous long polygonal contours. While this source of subjec-
tive variability is less problematic in diseases with smaller and smooth lesions, it was more
apparent with the larger, highly irregularly-shaped PML lesions. Containing no smoothness
constraint, the automated algorithm yielded more objective delineation of lesion boundaries.

d) Inconsistent drawing rules. Finally, the major source of interscan variability was the

inconsistency of manual drawing rules. Although the operator always tried to include the
same amount of partial volume around each lesion, manually drawn outlines were more
conservative in some regions than in others. It could be argued that this constitutes an
advantage for the manual method, which is guided by expert knowledge of certain technical
imaging irregularities. For sequential scans however, accurate absolute volume quantitation is
less important than interscan intrasubject reproducibility. With this respect, the automated

method was superior to the manual method for longitudinal studies.

Overall, the automated algorithm extracted lesions rapidly and with high reproducibility.
The particular technique proposed here has the advantage of being largely independent of

the manually chosen seed point (figure 1), while such dependence has been pointed out as
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an important weakness of automated procedures [5]. Although it still is possible to obtain
a small number of different segmentation outcomes with our algorithm, based on different
seed locations, these outcomes are usually so dissimilar that only one is acceptable.

In principle, the algorithm can be applied directly to any type of lesion and any imaging
sequence, under the condition that lesions should appear significantly more intense than
surrounding normal tissue. Standard T2-weighted sequences would hence be appropriate
for the detection of small lesions deep into the white matter, but would pose problems if
lesions are adjacent to the ventricles or other fluid-filled spaces (which appear as hyperintense
in T2-weighted imaging), as the flooding algorithm would spread from the lesion into the
ventricles. The algorithm is also directly applicable to the detection of abnormalities seen in
Diffusion-Weighted Imaging (DWT), especially when those are small or when their irregular

shape renders them difficult to manually delineate.

Conclusion. PML lesions are often large and irregularly shaped; hence, they pose
different quantitation challenges from many other white matter diseases. We found that three
of the four major sources of quantitation variability, uncertain 3D shape coherence, shape
irregularities and inconsistent drawing rules, could be minimized by using an automated
segmentation procedure. The fourth source of error, imaging artifacts with the FLAIR
sequence, was more easily identified by manual drawing. However, with improved FLAIR
sequences [4], this problem may no longer exist. Our study demonstrates that an automated
approach, coupled with careful inspection and possible interactive editing, is more reliable
and efficient than manual drawing. Therefore, automated segmentation of lesion volume

provides an objective measure for monitoring disease progression.
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Figure 1: Automated extraction of a medium-sized lesion in two scans acquired consecutively
with two head orientations (top: First scan; bottom: Second scan). Crosses on the left
indicate several manually-selected seed points, which, given individually as input to the

automated algorithm, all yielded the segmented result shown on the right.
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Figure 2: (a) Neighborhood used during flooding: the region will grow into volume elements
(voxels) with intensities above a threshold ¢ and adjacent to a voxel already known to belong
to the lesion (shown in gray), on the same slice as well as on the two adjacent slices. This local
flooding is applied recursively until no neighbors above ¢ can be found. (b) The threshold ¢
is adaptively determined for each lesion, by starting from the intensity value at the manually
selected seed point, and progressively decreasing the threshold by discrete amounts a, until
the ratio of flooded lesion volumes obtained for ¢ and ¢ + a becomes greater than a given
constant b. This typically ocurs as the lesion volume explodes when the threshold becomes

sufficiently low as to include voxels in the normal white matter.
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Figure 3: Results of the analysis. (a): Lesion volume computed with the automated al-
gorithm correlated well with the volume found with the manual outlining method. (b):
However, the difference between manual and automated volumes was often large, particu-
larly for small lesions (for which an error of only a few pixels can be significant). (c)—(e):
Experiments with pairs of repositioned scans. Correlation of computed lesion volumes be-
tween scans 1 and 2 was excellent for the automated method (c), and also very good for
the manual method (d). Volume differences were, however, much lower with the automated

method (e; black circles) than with the manual method (e; triangles).
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Figure 4: Major sources of discrepancies between the automated (top) and manual (bottom)
methods: (a) Imaging artifacts: Hyperintensities at the brain/fluid interface are ambiguous
for the automated algorithm; (b) 3D shape coherence: Here the human observer omitted
a small island connected to the main body of the lesion in another slice; (¢) Small shape
irregularities: The manual drawing smoothed out the exact shape of the lesion, which was
correctly followed by the automated algorithm; and (d) Inconsistent drawing rules in the

manual method, more conservative in some regions (left arrow) than others (right arrow).



