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Diagnostic brain MRI scans are usually performed by trained
medical technologists who manually prescribe the position and
orientation of a scanning volume. In this study, a fully automatic
computer algorithm is described which compensates for vari-
able patient positioning and acquires brain MRI scans in a
predefined reference orientation. The method involves acquir-
ing a rapid water-only pilot scan, segmenting the brain surface,
and matching it to a reference surface. The inverse matching
transformation is then used to adapt a geometric description of
the desired scanning volume, defined relative to the reference
surface, to the current patient. Both pilot scan and processing are
performed within 30 sec. The method was tested in 25 subjects,
and consistently recovered orientation differences between the
reference and each subject to within 65°. Compared to manual
prescription, automatic scan prescription promises many poten-
tial benefits, including reduced scan times, reproducible scan
orientations along anatomically preferable orientations, and better
reproducibility for longitudinal studies. Magn Reson Med 45:
486–494, 2001. © 2001 Wiley-Liss, Inc.
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MRI scans are generally performed according to manual
prescriptions by specially trained MR technologists. For
instance, the determination of the location, size, and ori-
entation of a scanning volume requires detailed input and
adjustments by a technologist. A typical scanning session
begins with the acquisition of a localizer or pilot scan,
which provides an overview of the major anatomical fea-
tures of a patient’s organ to be scanned. The technologists
then use the pilot scan to visually determine the location
and orientation of scan planes for the subsequent series of
high-resolution scans. However, manual prescription of
scan geometry is relatively time consuming; for example,
precise manual definition of scan orientation and bound-
aries can take up to several minutes when patients have
unusual positions in the scanner. Therefore, operators of-
ten do not fully explore all degrees of freedom, such as 3D
rotations, despite the relatively imprecise positioning of
subjects in the scanner. Finally, manual scan prescription
often is not reproducible as it suffers from both intra- and
inter-operator variability—for instance, in defining the ex-
tent of anatomical coverage or the slice orientations. Con-
sequently, MRI scans are typically performed in a non-
standardized fashion, yielding scan orientations that vary
from one patient to another. Therefore, there is a need for
computer algorithms for the automatic prescription of MRI
scans according to standardized protocols which could
permit faster and more reproducible scans of the same
organ at different points in time.

In this work we present a software algorithm for the
automatic prescription of MRI scans of the human brain.
The method is related to existing algorithms for post hoc
image coregistration and reorientation. Such algorithms
have been widely used in research to determine the differ-
ence in orientation and position between scans acquired
on one or several different machines. Typically, the orien-
tation and position of one scan are iteratively adjusted
until they match those of another scan (1). The matching
criterion can be based on a measure of generalized dis-
tance between 3D surface outlines of the brain from both
scans (2,3), on distances between external or anatomical
landmarks (4,5), or on comparison of image intensities in
overlapping brain regions (6,7). Rather than reorienting
scans after data acquisition to match a common reference
template, our method directs the scanner to acquire scans
that natively match the geometry (i.e., scanning volume
boundaries and 3D orientation) of the reference template.
The algorithm automatically determines an optimal scan-
ning geometry, defined relative to a template human brain,
that matches the positioning and morphology of a patient.
For every new patient a pilot scan is first acquired, from
which the outer surface of the patient’s brain is automati-
cally extracted. By automatically matching the patient’s
brain surface to the template brain surface using coregis-
tration, geometric information about the size, location, and
orientation of the current brain relative to the template
brain is computed. The resulting transformation between
current and template brains is finally used to transform the
location and orientation of optimal scanning planes, as
defined in the template, to the current patient. Subsequent
scans can then be acquired according to the desired scan-
ning geometry and independently of patient positioning
(Fig. 1).

METHODS

MRI Scans

All MRI scans were acquired on a 1.5 T whole body scan-
ner (GE Signa 5.8, Milwaukee, WI) equipped with fast
shielded gradients (SR 120). The method was developed
and tested using scans from 13 volunteers (training data
sets), and subsequently validated with no further modifi-
cation of the algorithm on scans from 12 additional volun-
teers (test data sets). These 25 scans constitute all the scans
acquired for the purpose of this study, and no scans were
excluded from the analysis. First, a single-shot fast spin
echo scan with fat suppression was acquired (TE
900 msec, 5 mm slices with 1 mm gap, 256 3 256 matrix,
and 25 slices), which essentially shows signal from CSF
only due to its extremely long TE. Although such a scan
contains little anatomical information for human interpre-
tation (Fig. 1), it can be acquired in a very short time
(typically 10–20 sec) and provides sufficient information
for an automated segmentation of the cortical surface.
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In three of the volunteers, the head was intentionally
positioned in an extremely tilted position (see Fig. 2).
Following off-line determination of the desired scan ori-
entations, as described below, an additional validation
scan was acquired according to the computed geometry.
The validation scans used a segmented spin-echo echo
planar imaging (EPI) sequence (TE 100 msec, TR
3000 msec, 5 mm slice with 1 mm gap, and 256 3
256 matrix).

Template

For the present study, a template was created containing a
3D geometric description of the outer surface of a human
brain and a desired parallelepipedic scanning volume. The
template brain surface was automatically segmented (3)
from a high-resolution inversion-recovery scan of a normal
volunteer (TR 4000 msec, TI 120 msec, TE 32 msec,

3.5 mm slices with no gap, and 256 3 256 matrix). The
desired scanning geometry was defined relative to the
template brain surface by manually selecting the 3D posi-
tion, orientation, and size of a parallelepiped representing
the volume to be scanned.

Image Processing

The algorithm to determine the spatial relationship be-
tween the brain in the current study and the template
brain, and ultimately the slice plane orientations, was
implemented as an extension of a customized coregistra-
tion software package developed in our laboratory (3,8,9).
Typical processing times discussed in this study were
obtained on a 500 MHz Compaq Alpha XP1000 Unix
workstation. All algorithms described were written in
language C.

The coregistration program is based on a two-step sur-
face-matching algorithm. In the first primary step, the
brain surface from the current CSF pilot scan is automat-
ically extracted using an extension of the techniques de-
scribed by Alpert et al. (10) and Mangin et al. (11). All
processing is performed on a data set that is downsized by
a factor of 2 in all three directions to reduce image pro-
cessing time; hence, future pilot scans could be acquired at
a lower resolution. Pixels with signal intensity outside the
range of CSF intensity (e.g., background noise) are ex-
cluded using window thresholding: A pixel is considered
CSF if its intensity is between 10% and 100% of the
maximum intensity in the entire volume. The low thresh-
old of 10% is chosen to include as much CSF as possible
while excluding background noise. To avoid inclusion of
the eyes in the brain segmentation, the eyes are eliminated
using a 3D filter which maximally responds to a spherical
object of 12-mm diameter on an empty background. The
3D convolution kernel for this filter hence contains values
1 inside the sphere and –1 outside. A threshold is applied
to the result of the convolution to isolate the eyes, which
are subsequently masked from the CSF scan. The resulting
binary 3D volume within the accepted intensity range and
with eyes removed is then subjected to isotropic 3D binary
morphological dilation, with the objective of filling gaps in
the outline of the brain derived from the CSF images. The
morphological dilation operator replaces each non-zero
pixel in the volume by a filled sphere of 3-cm diameter.
Fast isotropic 3D dilation is obtained by thresholding an
anisotropic chamfer distance map (3,12). Next, the dilated
binary brain is isolated using an 8-connected 3D flooding
algorithm, starting at the centroid of the dilated volume.
As a result, non-brain structures with pixel intensities
within the CSF range are eliminated. To recover the orig-
inal brain size from the dilated and isolated binary brain,
a 3D binary morphological erosion then is applied by
thresholding an anisotropic chamfer distance map. Total
processing time for this fully automatic brain segmenta-
tion is 7 sec.

In the second primary step, the brain surface from the
current CSF scan is iteratively matched to that from the
template. The surface from the current scan is considered
mobile, whereas the template surface is a fixed reference.
Therefore, 3D vertices are used to describe the current

FIG. 1. Flow chart of the computer software algorithm utilized for
automatic prescription of scan geometry. A reference template is
created from a high-resolution MRI scan, and contains a brain
surface and desired scanning geometry relative to that surface (top
right). For each new subject (top left), a CSF pilot scan is acquired.
The outer surface of the subject’s brain is automatically segmented
and matched to the reference surface. The 3D rotation resulting
from matching the two surfaces is then used to transform the
geometric description of the desired scanning volume from the
reference to the current scan. Subsequent scans can finally be
acquired according to this geometry, and will natively have a 3D
orientation which matches that of the reference.
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surface, whereas the template surface is represented by
means of a chamfer distance map. Such a 3D distance map
contains, for each pixel in a 3D volume, an approximation
to the Euclidean distance between that particular pixel
and the closest pixel on the template brain surface (3,13)
(Fig. 3). Such a representation allows for fast computation
of the distance between an arbitrary 3D vertex v and the
closest point on the template brain surface, through a
simple readout of the value in the distance map at the
location of v (using trilinear interpolation). The computa-
tion of the distance map only needs to be performed once
when the template is created, since it is associated with
the template brain surface. To match the two brain sur-
faces, the vertices v of the mobile surface of the current
patient, described by their 3D coordinates, are iteratively
transformed to new vertices v9 using a 3D transformation
with nine parameters:

v9 5 Av 1 T, [1]

where the vector T represents a translation (three param-
eters), and the 3 3 3 matrix A has six free parameters: three
for rotations and three for scaling. The centers of mass of
the two data sets are used to obtain an appropriate starting
translation value for the iterative algorithm; the starting
values for the rotations are 0 and those for scaling are
1. The mismatch between the two brain surfaces is then

evaluated by calculating a generalized distance measure D
from the locations of the transformed vertices v9 in the
chamfer map. The distance measure is an approximation
to the mean squared Euclidean distance between the ver-
tices on the mobile surface and the reference surface.
Thus, the generalized distance D provides a measure of the
quality of fit between the two brain surfaces. Because the
current CSF pilot scan may not cover the entire brain, the
generalized distance measure D is defined in such a way
that it is possible to match scans with incomplete overlap
(3). Since the resulting distance measure may not be a
continuous variable, Powell’s minimization algorithm for
nonregular functions is used to iteratively modify A and T
in order to minimize the distance D between the two brain
surfaces (14).

This initial surface matching is further refined using an
alternate distance map; the convergence point of the initial
matching is used as a starting point. The alternate distance
map is identical to the original distance map except that it
contains voids in the nasal sinus region (Fig. 3); conse-
quently, the second surface matching step is insensitive to
the inclusion of the sinuses in the mobile brain surface.
This is necessary because large amounts of fluid in the
nasal sinuses of a few subjects, due to sinusitis, were
included in the initial brain segmentation. A similar strat-
egy could be used to render the matching process insen-

FIG. 2. MRI scans from a subject with markedly tilted head position, before (a) and after (b) adjusting the scan geometry. Note that the
optimized scan (a) mirrors the slight rotation about the z-axis present in the reference template scan (c).
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sitive to other segmentation artifacts. The total processing
time for both surface matching steps is less than 6 sec.

Once the geometric relationship between template and
current brain surface is known, it can be used to compute
the boundaries and orientations of the desired scanning
volume for the current patient. The geometric description
of the desired scanning volume associated with the tem-
plate brain (e.g., rotation of the slice planes relative to the
brain) is simply converted to the frame of reference of the
current brain, using the inverse of the best-fit transforma-
tion (see Eq. [1]). The desired scan geometry relative to the
current brain can then be used to acquire all subsequent
scans for the current patient.

Validation

The accuracy with which our algorithm was able to deter-
mine 3D rotations between the template and current brains
was evaluated by comparing the positions of anatomical
landmarks in the template scan and in the pilot CSF scan
resliced according to the geometric transformation from
the surface matching. Ideally, these anatomical landmarks
should be at the same spatial locations in the template and
resliced pilot scans, and all three rotation angles derived
from comparing these landmarks should be close to zero.
To determine the residual differences in the x-rotation
between template and current scan (rotation about an axis
along the left/right direction), a line joining the most infe-
rior point of the frontal lobe and the most superior point of
the cerebellum was manually drawn on the mid-sagittal
slice. The angular difference between the line drawn on
the template and on the current scan was then computed.
To determine the y-rotation (rotation about an axis along

the anterior/posterior direction), a line joining the cen-
troids of both eyes was determined using the eye detection
algorithm described above. Finally, to determine the z-
rotation (rotation about an axis along the superior/inferior
direction), a line was manually drawn along the midline,
on the first transaxial slice above the ventricles. In this
study, we detail estimated and residual rotation parame-
ters, which are critical in evaluating the usefulness of the
method, and simply report a summary of translation and
scaling parameters.

RESULTS

The algorithm to extract the brain surfaces from the cur-
rent pilot scan, as well as the surface matching, worked
reliably in all 25 volunteers. Although the algorithm had
been tuned and optimized using the first 13 subjects (the
training set), it was successfully applied with no further
modification to the 12 additional volunteers who were
scanned subsequently (the test set). Using separate train-
ing and test sets allowed us to determine whether our
optimizations of the algorithm to yield good performance
on the training set would generalize to entirely new scans
after algorithmic development had been frozen. Typical
processing time for the entire automatic scan prescription,
including pilot scan, brain surface extraction, surface
matching, and computation of desired scanning geometry,
was approximately 30 sec (with processing done on a
500 MHz Compaq Alpha XP1000 Unix workstation; see
Methods). Figures 4 and 5 show the individual angular
differences between patients and template, as estimated
from the automatic prescription, for the training and test

FIG. 3. Anisotropic chamfer distance map associated with the reference template brain (a). For each location the intensity in the map
represents an approximation to the Euclidean distance between that location and the nearest location on the reference brain surface. In a
refined version of the distance map (b) we have manually set the distance to zero (black) in the region of the nasal sinuses; vertices from
the mobile surface falling in this region will thus be ignored during the computation of the generalized surface matching measure D. This
modification renders the surface matching algorithm insensitive to segmentation artifacts in the region of the nasal sinuses. Similar
modifications of the distance map could be used to render the algorithm robust to other classes of common structural abnormalities.
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FIG. 4. Estimated (a) and residual (b) rotation angles for the 13 subjects in the training set (used to optimize the algorithm). In red are shown
the three subjects who had been intentionally placed in the scanner with large rotation angles relative to typical patient positioning. In cyan
are shown the two subjects who had large amounts of water in their nasal sinuses (due to sinusitis); their sinuses were incorrectly included
in the brain surface by the automatic segmentation algorithm. The residual rotation angles of these five subjects fall within the range of the
other subjects (dark blue).



FIG. 5. Estimated (a) and residual (b) rotation angles for the 12 subjects in the test set processed without further modifications after
optimizing the algorithm on the training set. The algorithm yields robust results for all 12 subjects, including two who had large amounts
of water in their nasal sinuses (cyan). The ranges of residual rotation angles are similar to those obtained with the training set (Fig. 4).



sets, respectively. As mentioned previously, the initial
angles for the first three subjects are particularly large
because these subjects had been intentionally placed in
the scanner with severely tilted head orientations (Fig. 2).
Four subjects had large amounts of water in their nasal
sinuses, which were included in the brain surface by the
surface segmentation algorithm. For these subjects, the
second surface matching step, with the refined distance
map, allowed the algorithm to ignore the sinuses and
accurately recover scan orientations. For all other subjects,
this second matching had no effect.

After matching, the average generalized distance be-
tween the patient and template brain surfaces was
3.0460.34 mm (training set) and 2.9860.40 mm (test set;
Table 1). The residual rotation angles between template
and reoriented pilot scans according to the geometric
transformation derived by the algorithm are shown in Ta-
ble 1. Note that the subjects with either large initial rota-
tions (subjects 1–3 of training set), or water in the nasal
sinuses (subjects 12 and 13 of the training set, and subjects
11 and 12 of the test set), do not appear as outliers in the
results, but yield residual rotation angles within the range
obtained for the other subjects. This suggests that the sur-
face matching algorithm was robust with respect to initial

conditions and to possible artifacts on the brain surface in
the region of the nasal sinuses. The average 3D distance
between landmarks was reduced by our algorithm from
40.5 6 25.0 mm to 6.9 6 2.9 mm for the training set, and
from 35.8 6 9.7 mm to 6.2 6 2.0 mm for the test set. The
scaling parameters recovered by our algorithm were
0.999 6 0.026 for the training set (average of values for x,
y, and z) and 0.998 6 0.029 for the test set, indicating very
small differences in brain size between subjects and tem-
plate.

As an example of the quality of our algorithm, Fig. 2a
shows MR images from one of the three volunteers with
severely tilted head orientation (see also Table 1 and Fig.
4, subject 3 of training set). The matching algorithm recov-
ered rotations of 12°, 22°, and 67° (x, y, and z) relative to
the template scan. A repeat scan, acquired with the scan-
ning geometry derived from the automatic prescription
algorithm, showed symmetric brain structures (Fig. 2b)
and closely resembled the template scan (Fig. 2c).

DISCUSSION

This study demonstrates the feasibility of automatic pre-
scription of scan planes for brain MRI. The total time for

Table 1
Estimated Rotation Angles, Residual Rotation Angles, and Residual Surface Matching Distance

Subject

Estimated Residual
Distance

(mm)X-rotation
(deg)

Y-rotation
(deg)

Z-rotation
(deg)

X-rotation
(deg)

Y-rotation
(deg)

Z-rotation
(deg)

Training set
1 14.56 4.47 38.51 20.81 24.68 1.82 2.54
2 3.54 217.49 240.01 20.40 1.69 3.63 3.25
3 12.33 221.89 267.40 1.22 21.19 2.00 3.41
4 23.84 0.33 28.39 20.24 21.07 0.50 3.17
5 28.70 21.54 21.38 0.88 0.55 1.35 2.91
6 215.92 22.61 2.71 23.51 2.26 0.22 3.67
7 25.52 0.31 26.57 3.78 22.70 3.26 2.55
8 28.80 24.79 214.77 0.25 2.34 20.08 3.08
9 0.86 26.14 211.84 2.68 2.51 20.47 2.55

10 6.07 26.23 21.96 4.23 1.07 20.67 3.03
11 221.33 23.98 22.79 5.67 2.70 1.15 3.11
12 212.80 1.90 22.28 5.49 22.22 0.60 3.20
13 9.78 21.06 24.97 1.22 0.27 1.84 3.05
Average 22.29 24.52 29.32 1.57 0.12 1.16 3.04
SD 11.23 7.47 24.19 2.68 2.33 1.33 0.34

Test set
1 23.16 24.92 25.02 2.81 0.93 0.32 2.76
2 25.44 24.18 212.45 2.26 20.24 0.52 2.71
3 12.49 0.48 27.13 25.58 2.00 1.53 2.90
4 1.26 29.90 29.14 4.17 1.11 1.58 2.93
5 4.62 22.17 21.76 20.71 20.82 1.21 2.83
6 9.07 23.46 22.86 1.85 22.30 20.15 3.02
7 4.41 2.68 23.05 20.66 0.26 2.20 3.09
8 8.84 0.03 23.34 0.59 20.70 0.83 3.63
9 22.81 22.96 0.04 22.48 1.47 0.99 2.19

10 24.32 6.54 14.71 3.26 21.96 1.79 2.78
11 0.62 22.13 26.81 0.29 20.87 1.60 3.21
12 9.34 21.80 24.70 0.94 0.87 2.38 3.68
Average 2.91 21.82 23.46 0.56 20.02 1.23 2.98
SD 6.11 4.08 6.66 2.70 1.35 0.76 0.40

SD, standard deviation.
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the autoprescription, including pilot scan and image pro-
cessing, was approximately 30 sec, which is short enough
for an automated prescan protocol. The use of single-shot
FSE images, showing CSF only, allowed efficient extrac-
tion of the brain surface of the current subject with no user
interaction. The surface matching algorithm proved very
robust with respect to initial positioning and to surface
segmentation artifacts. Our algorithm also provides a qual-
ity control measure, the generalized distance (in mm) be-
tween the current and the template brain surfaces. This
measure could be used to initiate a manual procedure if it
is found to be above a certain threshold, indicating a
failure of the surface matching.

The emphasis of the present study is to develop a rapid
and robust algorithm with reasonable accuracy. The rela-
tively low residual rotation angles consistently measured
for all subjects are within the expected error margin of a
human operator who uses interactive graphical prescrip-
tion tools. These residual angles might be further reduced
at the cost of increased computational expense. For exam-
ple, using the pilot scans at full resolution may yield
slightly more accurate surface segmentation. However,
since the two brain surfaces to be matched are from differ-
ent subjects, interindividual differences in the brain shape
may limit the potential gain in accuracy with increased
spatial resolution. If the lower resolution is used in a
routine implementation, scans should be acquired at re-
duced resolution, rather than at a high resolution followed
by down-sampling.

Two special measures markedly improved the robust-
ness of our algorithm. First, the eyes were automatically
detected, and subsequently eliminated from the brain seg-
mentation. Second, exclusion of the nasal sinuses in the
second surface matching step significantly improved the
matching in subjects with large amounts of water in the
sinuses. In the subjects in whom the surface segmentation
algorithm correctly excluded the nasal sinuses, the second
matching step yielded transformation parameters identical
to those from the first matching step. Because the alternate
distance map (sinuses excluded) is spatially less complete
than the original one, correct matching in the second
matching step relies on a fairly accurate adjustment of the
current brain surface to the template surface by the first
matching step. Therefore, the use of two successive surface
matching steps is more robust than a single-step matching
algorithm that uses only the alternate distance map.

Our sample datasets included male and female subjects,
both normal controls and patients, and sampled a range of
possible head positions and orientations. We have previ-
ously studied the effect on our surface matching algorithm
of artificially introducing a large structural defect (an el-
lipsoid with diameters of 10 3 20 3 40 mm was cut out of
the frontal lobe of one of two surfaces to be coregistered).
For 11 coregistrations, we found that this artificial artifact
only slightly degraded registration accuracy, by about 0.5°
in x, y, and z rotation, and 0.25 mm in x, y, and z trans-
lation (3). Together with the good surface matching results
reported in the present study when surface segmentation
artifacts were encountered (in the region of the nasal si-
nuses), these findings suggest that our algorithm is robust
to structural differences between the current and template

brain surfaces. Furthermore, our method for overcoming
surface segmentation artifacts in the nasal sinuses could be
generalized to other regions of the head if future studies
demonstrate frequent segmentation or registration prob-
lems for particular patient populations.

One of the consequences of the limited use of the avail-
able freedom in scanning geometry in manual prescription
by human operators is a nonstandardized prescription,
which yields scan orientations that vary from one patient
to another. This intersubject variability can make interpre-
tation of the images more difficult, and may ultimately
lead to reduced quality of radiologic readings. Another
consequence of the variability in the scan orientations is
limited intrasubject reproducibility for repeat scans. Very
different images may be obtained when the same subject is
scanned in different sessions, such as for follow-up med-
ical evaluations, making direct comparison of scans from
different sessions unnecessarily difficult. Although a pos-
teriori coregistration and realignment of follow-up scans
have been demonstrated in research studies, these tech-
niques have not yet been integrated into the standard
clinical environment. Most diagnostic interpretation is
performed on films or electronic displays of the scans in
their native orientation, especially since post hoc reorien-
tation may yield image degradation when the image reso-
lution is not isotropic. In contrast, our method could be
used in routine clinical settings since it corrects for patient
positioning prior to scan acquisition and requires no hu-
man interaction. Furthermore, although we have included
only a geometric description of scanning volume bound-
aries in our template, future implementations of our tech-
nique could include other geometric objects, such as loca-
tions of MR spectroscopy voxels, or a narrow range of slice
positions for detailed imaging of anatomical structures
such as the pituitary gland.

Our matching algorithm currently determines the trans-
lation, scaling, and rotation parameters between the refer-
ence and the new brains. Additional parameters, such as
shearing, could also be determined by the same algorithm
by allowing all nine parameters in the transformation ma-
trix A (Eq. [1]) to be optimized (9). While this may improve
the quality of the surface matching algorithm, it poses the
problem of recovering pure rotation angles from the trans-
formation matrix determined by the algorithm.

In summary, automatic scan prescription promises
many future improvements over manual prescription, in-
cluding reduced scan times, reproducible intersubject
scan orientations along anatomically preferable orienta-
tions (such as the anterior-commissure posterior-commis-
sure (AC-PC) line), and better reproducibility for intra-
subject repeat studies. Our study demonstrates the feasi-
bility of automatic scan prescription for the brain with
high accuracy.
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