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Abstract. Rather than attempting to fully interpret visual scenes in a
parallel fashion, biological systems appear to employ a serial strategy by
which an attentional spotlight rapidly selects circumscribed regions in the
scene for further analysis. The spatiotemporal deployment of attention
has been shown to be controlled by both bottom-up (image-based) and
top-down (volitional) cues. We describe a detailed neuromimetic com-
puter implementation of a bottom-up scheme for the control of visual
attention, focusing on the problem of combining information across mo-
dalities (orientation, intensity, and color information) in a purely stimulus-
driven manner. We have applied this model to a wide range of target
detection tasks, using synthetic and natural stimuli. Performance has,
however, remained difficult to objectively evaluate on natural scenes,
because no objective reference was available for comparison. We
present predicted search times for our model on the Search–2 database
of rural scenes containing a military vehicle. Overall, we found a poor
correlation between human and model search times. Further analysis,
however, revealed that in 75% of the images, the model appeared to
detect the target faster than humans (for comparison, we calibrated the
model’s arbitrary internal time frame such that 2 to 4 image locations
were visited per second). It seems that this model, which had originally
been designed not to find small, hidden military vehicles, but rather to
find the few most obviously conspicuous objects in an image, performed
as an efficient target detector on the Search–2 dataset. Further devel-
opments of the model are finally explored, in particular through a more
formal treatment of the difficult problem of extracting suitable low-level
features to be fed into the saliency map. © 2001 Society of Photo-Optical
Instrumentation Engineers. [DOI: 10.1117/1.1389063]

Subject terms: visual attention; saliency; preattentive; inhibition of return; winner-
take all; bottom-up; natural scene; Search–2 dataset.
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1 Introduction

Biological visual systems are faced with, on the one ha
the need to process massive amounts of incoming infor
tion, and on the other hand, the requirement for nearly r
time capacity of reaction. Surprisingly, instead of emplo
ing a purely parallel image analysis approach, prim
vision systems appear to employ a serial computatio
strategy when inspecting complex visual scenes. Spe
locations are selected based on their behavioral releva
or on local image cues, using either rapid, saccadic
movements to bring the fovea onto the object, or cov
shifts of attention. It consequently appears that the incr
ibly difficult problem of full-field image analysis and scen
understanding is taken on by biological visual syste
through a temporal serialization into smaller, localiz
analysis tasks.

Much evidence has accumulated in favor of a tw
component framework for the control of where in a visu
scene attention is focused to1–4: a bottom-up, fast and
primitive mechanism that biases the observer toward se
ing stimuli based on their saliency, and a second slow
top-down mechanism with variable selection criteria, wh
1784 Opt. Eng. 40(9) 1784–1793 (September 2001) 0091-3286/2001/
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directs the spotlight of attention under cognitive, volition
control. Normal vision employs both processes simul
neously.

Koch and Ullman5 introduced the idea of a saliency ma
to accomplish preattentive selection~see also the concept o
a master map6!. This is an explicit two-dimensional ma
that encodes the saliency of objects in the visual envir
ment. Competition among neurons in this map gives rise
a single winning location that corresponds to the most
lient object, which constitutes the next target. If this loc
tion is subsequently inhibited, the system automatica
shifts to the next most salient location, endowing the sea
process with internal dynamics.

We describe a computer implementation of a preatt
tive selection mechanism based on the architecture of
primate visual system. We address the thorny problem
how information from different modalities—from 42 map
encoding intensity, orientation, and color in a cent
surround fashion at a number of spatial scales—can
combined into a single saliency map. Our algorithm qua
tatively reproduces human performance on a number
classical search experiments.
$15.00 © 2001 Society of Photo-Optical Instrumentation Engineers
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Itti, Gold, and Koch: Visual attention . . .
Vision algorithms frequently fail when confronted wit
realistic, cluttered images. We therefore studied the per
mance of our search algorithm using high-resolut
~614434096 pixels! photographs containing images
military vehicles in a complex rural background~Search–2
dataset7,8!. Our algorithm shows, on average, superior p
formance compared to human observers searching for
same targets, although our system does not yet include
top-down task-dependent tuning.

2 Model

The model has been presented in more detail in Ref. 9
is only briefly described here~Fig. 1!. Input is provided in
the form of digitized color images. Different spatial scal
are created using Gaussian pyramids,10 which consist of
progressively low-pass filtering and subsampling the in
image. Pyramids have a depth of 9 scales, providing h
zontal and vertical image reduction factors ranging fro
1:1 ~scale 0; the original input image! to 1:256~scale 8! in
consecutive powers of two. Each feature is computed
center-surround operations akin to visual receptive fie
implemented as differences between a fine and a co
scale: the center of the receptive field corresponds to a p
at scalec5$2,3,4% in the pyramid, and the surround to th
corresponding pixel at scales5c1d, with d5$3,4%, yield-
ing six feature maps for each type of feature. The diff
ences between two images at different scales are obta
by oversampling the image at the coarser scale to the r
lution of the image at the finer scale.

Fig. 1 General architecture of the model. Low-level visual features
are extracted in parallel from nine spatial scales, using a biological
center-surround architecture. The resulting 42 feature maps are
combined to yield three conspicuity maps for color, intensity and
orientation. These, in turn, feed into a single saliency map, consist-
ing of a 2D layer of integrate-and-fire neurons. A neural winner-take-
all network shifts the focus of attention to the currently most salient
image location. Feedback inhibition then transiently suppresses the
currently attended location, causing the focus of attention to shift to
the next most salient image location.
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2.1 Extraction of Early Visual Features

With r, g, and b being the red, green, and blue channel
the input image, an intensity imageI is obtained asI
5(r1g1b)/3. FromI is created a Gaussian pyramidI (s),
wheres5$0...8% is the scale. The r, g, and b channels a
normalized byI, at the locations where the intensity is
least 10% of its maximum, to decorrelate hue from inte
sity. Four broadly tuned color channels are created:R
5r2~g1b!/2 for red, G5g2~r1b!/2 for green, B
5b2~r1g!/2 for blue, andY5(r1g)/22ur2gu/22b for
yellow ~negative values are set to zero!. Four Gaussian
pyramidsR(s), G(s), B(s), and Y(s) are created from
these color channels. FromI, four orientation-selective
pyramids are also created using Gabor filtering at 0, 45,
and 135 deg.

Differences between a center fine scalec and a surround
coarser scales yield six feature maps for each intensi
contrast, red-green double opponency, blue-yellow dou
opponency, and the four orientations. A total of 42 featu
maps is thus created, using six pairs of center-surro
scales in seven types of features.

2.2 Saliency Map

The task of the saliency map is to compute a scalar quan
representing the salience at every location in the vis
field, and to guide the subsequent selection of attended
cations. The feature maps provide the input to the salie
map, which is modeled as a neural network receiving
input at scale 4.

2.2.1 Fusion of information

One difficulty in combining different feature maps is th
they representa priori not comparable modalities with dif
ferent dynamic ranges and extraction mechanisms. A
because a total of 42 maps is combined, salient obje
appearing strongly in only a few maps risk to be masked
noise or less salient objects present in a larger numbe
maps.

Previously, we have shown that the simplest feat
combination scheme—to normalize each feature map
fixed dynamic range, and then sum all maps—yields v
poor detection performance for salient targets in comp
natural scenes.11 One possible way to improve performanc
is to learn linear map combination weights, by providin
the system with examples of targets to be detected. W
performance improves greatly, this method presents the
advantage of yielding different specialized models~that is,
sets of map weights! for each target detection tas
studied.11

When no top-down supervision is available, we propo
a simple normalization scheme, consisting of globally p
moting those feature maps in which a small number
strong peaks of activity~conspicuous locations! is present,
while globally suppressing feature maps that contain co
parable peak responses at numerous locations over th
sual scene. This within-feature competitive sche
coarsely ressembles nonclassical inhibitory interactio
which have been observed electrophysiologically.12

The specific implementation of these interactions in o
model has been described elsewhere11 and can be summa
rized as follows~Fig. 2!: Each feature map is first norma
1785Optical Engineering, Vol. 40 No. 9, September 2001
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Itti, Gold, and Koch: Visual attention . . .
ized to a fixed dynamic range~between 0 and 1! to elimi-
nate feature-dependent amplitude differences due
different feature extraction mechanisms. Each feature m
is then iteratively convolved by a large 2-D derivative-o
Gaussians~DoG! filter. The DoG filter, a section of which
is shown in Fig. 2, yields strong local excitation at ea
visual location, which is counteracted by broad inhibiti
from neighboring locations. At each iteration, a given fe
ture map receives input from the preattentive feature
traction stages described before, to which results of
convolution by the DoG are added. All negative values
then rectified to zero, thus making the iterative proc
highly nonlinear. This procedure is repeated for 10 ite
tions.

The choice of the number of iterations is somewhat
bitrary. In the limit of an infinite number of iterations, an
nonempty map will converge toward a single peak, he
constituting only a poor representation of the scene. W
too few iterations, however, spatial competition is ve
weak and inefficient. Two examples showing the time e
lution of this process are shown in Fig. 3, and illustrate t
the order of 10 iterations yields adequate distinction
tween the two example images shown. As expected, fea
maps with initially numerous peaks of similar amplitud
are suppressed by the interactions, while maps with on
a few initially stronger peaks are enhanced. It is interest
to note that this within-feature spatial competition sche
resembles a winner-take-all network with localized inhi
tory spread, which allows for a sparse distribution of w
ners across the visual scene.

After normalization, the feature maps for intensi
color, and orientation are summed across scales into t
separate conspicuity maps, one for intensity, one for co
and one for orientation~Fig. 1!.

Each conspicuity map is then subjected to another
iterations of the iterative normalization process. The mo
vation for the creation of three separate channels and t
individual normalization is the hypothesis that similar fe
tures compete strongly for salience, while different moda
ties contribute independently to the saliency map. Althou
we are not aware of any supporting experimental evide

Fig. 2 Illustration of the spatial competition for salience imple-
mented within each of the 42 feature maps. Each map receives
input from the linear filtering and center-surround stages. At each
step of the process, the convolution of the map by a large
Difference-of-Gaussians (DoG) kernel is added to the current con-
tents of the map. This additional input coarsely models short-range
excitatory processes and long-range inhibitory interactions between
neighboring visual locations. The map is half-wave rectified, such
that negative values are eliminated, hence making the iterative pro-
cess non-linear. Ten iterations of the process are carried out before
the output of each feature map is used in building the saliency map.
1786 Optical Engineering, Vol. 40 No. 9, September 2001
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for this hypothesis, this additional step has the compu
tional advantage of further enforcing that only a spatia
sparse distribution of strong activity peaks is present wit
each visual feature, before combination of all three featu
into the scalar saliency map.

2.2.2 Internal dynamics and trajectory generation

By definition, at any given time, the maximum of the s
liency map’s neural activity is at the most salient ima
location, to which the focus of attention~FOA! should be
directed. This maximum is detected by a winner-take-
~WTA! network inspired from biological architectures5

The WTA is a 2-D layer of integrate-and-fire neurons w
a much faster time constant than those in the saliency m
and with strong global inhibition reliably activated by an
neuron in the layer. To create dynamical shifts of the FO

Fig. 3 Example of operation of the long-range iterative competition
for salience. When one (or a few) locations elicit stronger re-
sponses, they inhibit more the other locations than they are inhibited
by these locations; the net result after a few iterations is an en-
hancement of the initially stronger location(s), and a suppression of
the weaker locations. When no location is clearly stronger, all loca-
tions send and receive approximately the same amount of inhibition;
the net result in this case is that all locations progressively become
inhibited, and the map is globally suppressed.
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Itti, Gold, and Koch: Visual attention . . .
rather than permanently attending to the initially most
lient location, it is necessary to transiently inhibit, in th
saliency map, a spatial neighborhood of the currently
tended location. This also prevents the FOA from imme
ately coming back to a strong, previously attended locat
Such an inhibition of return mechanism has been dem
strated in humans.13 Therefore, when a winner is detecte
by the WTA network, it triggers three mechanisms~Fig. 4!:

Fig. 4 Dynamical evolution of the potential of some simulated neu-
rons in the saliency map (SM) and in the winner-take-all (WTA) net-
works. The input contains one salient location (a), and another input
of half the saliency (b); the potentials of the corresponding neurons
in the SM and WTA are shown as a function of time. During period
(1), the potential of both SM neurons (a) and (b) increases as a
result of the input. The potential in the WTA neurons, which receive
inputs from the corresponding SM neurons but have much faster
time constants, increases faster. The WTA neurons evolve indepen-
dently of each other as long as they are not firing. At about 80 ms,
WTA neuron (a) reaches threshold and fires. A cascade of events
follows: First, the focus of attention is shifted to (a); second, both
WTA neurons are reset; third, inhibition-of-return (IOR) is triggered,
and inhibits SM neuron (a) with a strength proportional to that neu-
ron’s potential (i.e., more salient locations receive more IOR, so that
all attended locations will recover from IOR in approximately the
same time). In period (2), the potential of WTA neuron (a) rises at a
much slower rate, because SM neuron (a) is strongly inhibited by
IOR. WTA neuron (b) hence reaches threshold first. (3)–(7): In this
example with only two active locations, the system alternatively at-
tends to (a) and (b). Note how the IOR decays over time, allowing
for each location to be attended several times. Also note how the
amount of IOR is proportional to the SM potential when IOR is trig-
gered (e.g., SM neuron (a) receives more IOR at the end of period
(1) than at the end of period (3)). Finally, note how the SM neurons
do not have an opportunity to reach threshold (at 20 mV) and to fire
(their threshold is ignored in the model). Since our input images are
noisy, we did not explicitly incorporate noise into the neurons’ dy-
namics.
-

1. The FOA is shifted so that its center is at the locati
of the winner neuron.

2. The global inhibition of the WTA is triggered an
completely inhibits~resets! all WTA neurons.

3. Inhibitory conductances are transiently activated
the saliency map, in an area corresponding to the s
and new location of the FOA.

To slightly bias the model to jump next to salient loc
tions spatially close to the currently attended locatio
small excitatory conductances are also transiently activa
in a near surround of the FOA in the saliency map~prox-
imity preference rule proposed by Koch and Ullman5!.

Since we do not model any top-down mechanism,
FOA is simply represented by a disk whose radius is fix
to one twelfth of the smaller of the input image width
height. The time constants, conductances, and firing thre
olds of the simulated neurons are chosen so that the F
jumps from one salient location to the next in appro
mately 30 to 70 ms~simulated time!, and so that an at-
tended area is inhibited for approximately 500 to 900 m
as it has been observed psychophysically.13 The difference
in the relative magnitude of these delays proved suffici
to ensure thorough scanning of the image by the FOA
prevent cycling through a limited number of locations.

Figure 4 demonstrates the interacting time courses
two neurons in the saliency map and the WTA network
a very simple stimulus consisting of one weaker and o
stronger pixels in an otherwise empty map.

2.2.3 Alternate center-surround mechanisms

The low-level feature extraction stages of our model cr
cally depend on simple center-surround mechanisms, wh
we efficiently implemented as differences between pi
values across different spatial scales. This approach
based on experimental results that suggest a linear sum
tion of luminance within both the center and antagonis
surround regions of neurons in the lateral genicul
nucleus.14 However, such a simple difference between ce
ter and surround mean activities cannot correctly detect
dissimilarity between the center and surround regions
may be present in the higher-order spatial statistics of
input. For example, consider the case where the center
surround are two different textures with similar means b
different higher-order statistics, e.g., variance. A simp
comparison of the mean pixel values between the ce
and surround regions would show a low saliency, wh
perceptually, both textures may appear drastically dissi
lar.

An alternative method of computing saliency usin
center-surround mechanisms is to take into account
only the mean values in the center and surround, but als
use higher-order statistics. Saliency would then repres
not the difference between mean center and surround a
ity, but a statistical measure of how different the distrib
tions of pixel values are between the center and surro
regions. In the first experiment, we consider only seco
order statistics~variance of pixel distributions!, and make
the underlying assumption that the distributions of pix
values are Gaussian. Although this clearly is incorrect
many types of images, it represents a better approxima
to the true distributions of pixel values than the mean-o
1787Optical Engineering, Vol. 40 No. 9, September 2001
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Itti, Gold, and Koch: Visual attention . . .
model, which makes the underlying assumption that th
distributions are Dirac~point! distributions.

An efficient method for calculating the mean and sta
dard deviation of the pixel distribution in a region repr
sented by a pixel at a given level in a pyramid is necess
to use this method in practice. We propose an approach
creates two pyramids that simply cumulate the sum and
sum of the squares of all the pixels up to the chosen leve
the pyramids. That is, at a given leveln in the sum pyra-
mid, each pixel is the sum of the pixel valuesxi of the
(dn)2 corresponding pixels at the base level of the pyram
whered is the scaling between levels in the pyramid~2 in
our implementation!. The sum-of-squares pyramid is sim
lar except that an image of the squares of the pixel value
the original image is used as the base of the pyramid. W
this data already calculated and stored in two pyramids,
mean and standard deviation for any pixel at leveln in the
pyramid can be easily calculated as

m5
1

n (
i

xi

s25S 1

n21D F(
i

xi
21S 1

n22
2

nD S (
j

xj D 2G
n5~dn!2,

where we have used the small sample approximation
computation of the standard deviation. Saliency is then
rived from a comparison between means and standard
viations computed in the center and surround regions.
have experimented with several measures, including
ideal-observer discrimination,15 the Euclidean distance be
tween the~mean, standard-deviation! pairs, and the Kull-
back J-divergence. At the end of the following section,
present preliminary results using this alternate model
the Euclidean distance. All other simulations described
the standard mean-only model.

3 Results

3.1 General Performance

We tested our model on a wide variety of real imag
ranging from natural outdoor scenes to artistic paintin
All images were in color, contained significant amounts
noise, strong local variations in illumination, shadows a
reflections, large numbers of objects often partially o
cluded, and strong textures. Most of these images can
interactively examined, and new images can be submi
for processing on the Web at: http://iLab.usc.edu/bu/.

Overall, the results indicate that the system scans
image in an order that makes functional sense in most
havioral situations. In addition, the system performs
markably well at picking out salient targets from clutter
environments. Experimental results include the reprod
tion by the model of human behavior in classical visu
search tasks16: a demonstration of very strong robustness
the salience computation with respect to image noise9; the
automatic detection of traffic signs and other salient obje
in natural environments filmed by a consumer-grade co
video camera11; and the detection of pedestrians in natu
1788 Optical Engineering, Vol. 40 No. 9, September 2001
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scenes~see http://iLab.usc.edu!. What is remarkable in
these results is not only the wide range of applications,
using color images in which high amounts of noise, clutt
variations in illumination conditions, shadows, and occ
sions were always present. Even more interesting is tha
same model is able, with absolutely no tuning or modific
tion, to detect salient traffic signs in roadside images ta
from a low-resolution camera~5123384 pixels! mounted
on a vehicle, pedestrians in urban settings, various sa
objects in indoor scenes, or salient ads in screen grab
web pages. Although dedicated, handcrafted, and fin
tuned computer vision algorithms exist for, e.g., the det
tion of traffic signs, those typically cannot pick up pede
trians or other types of objects. It should be noted that i
not straightforward to establish objective criteria for t
performance of the system with such images. Unfor
nately, nearly all quantitative psychophysical data on att
tional control are based on synthetic stimuli. In additio
although the scan paths of overt attention~eye movements!
have been extensively studied,17 it is unclear to what exten
the precise trajectories followed by the attentional spotli
are similar to the motion of covert attention. Most probab
the requirements and limitations~e.g., spatial and tempora
resolutions! of the two systems are related but n
identical.18

Although our model is mostly concerned with shifts
covert attention and ignores all of the mechanistic details
eye movements, we attempt a quantitative comparison
tween human and model target search times in comp
natural scenes, using the Search–2 database of images con
taining military vehicles hidden in a rural environment.

3.2 Search–2 Results

We propose a difficult test of the model using the Search–2
dataset, in which target detection is evaluated using a d
base of complex natural images, each containing a milit
vehicle~the target!. Contrary to our previous studies with
simplified version of the model,9,11 which used low-
resolution image databases with relatively large targ
~typically about 1/10 the width of the visual scene!, this
study uses very high resolution images~614434096 pix-
els!, in which targets appear very small~typically 1/100 the
width of the image!. In addition, in the present study
search time is compared between the model’s predicti
and the average measured search times from 62 no
human observers.7,8

3.2.1 Experimental setup

The 44 original photographs were taken during a distr
uted interactive simulation, search and target acquisit
fidelity ~DISSTAF! field test in Fort Hunter Liggett, Cali-
fornia, and were provided to us, along with all human da
by the TNO Human Factors in the Netherlands.7,8 The field
of view for each image is 6.934.6 deg. Each scene con
tained one of nine possible military vehicles, at a distan
ranging from 860 to 5822 m from the observer. Each sl
was digitized at 614434096 pixels resolution. Sixty two
human observers aged between 18 and 45 years and
visual acuity better than 1.25 arcmin21 participated in the
experiment~about half were women and half men!.
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Itti, Gold, and Koch: Visual attention . . .
Subjects were first presented with three close-up vie
of each of the nine possible target vehicles, followed b
test run of ten trials. A Latin square design7 was then used
for the randomized presentation of the images. The sli
were projected such that they subtended a 65346 deg vi-
sual angle to the observers~corresponding to a linear mag
nification by about a factor of 10 compared to the origin
scenery!. During each trial, observers pressed a button
soon as they had detected the target, and subsequent
dicated at which location on a 10310 projected grid they
had found the target. Further details on these experim
can be found in Ref. 7. The model was presented with e
image at full resolution. Contrary to the human experime
no close-ups or test trials were presented to the model.
generic form of the model described before was used, w
out any specific parameter adjustment for this experim
Simulations for up to 10,000 ms of simulated time~about
200 to 400 attentional shifts! were done on a Digital Equip
ment Alpha 500 workstation. With these high-resoluti
images, the model comprised about 300 million simula
neurons. Each image was processed in approximately
min with a peak memory usage of 484 Mbytes~for com-
parison, a 6403480 scene was typically processed in 10
and processing time approximately scaled linearly with
number of pixels!. The FOA was represented by a disk wi
a radius of 340 pixels~Figs. 5, 6, and 7!. Full coverage of
the image by the FOA would require 123 shifts~with some
unavoidable overlap due to the circular shape of the FO!;
a random search would thus be expected to find the ta
after 61.5 shifts on average. The target was considered
tected when the focus of attention intersected a binary m
representing the outline of the target, which was provid
with the images. Three examples of scenes and model
jectories are presented in Figs. 5, 6, and 7. In the one
age, the target was immediately found by the model,
another, a serial search was necessary before the t
could be found, and in the last, the model failed to find
target.

3.2.2 Simulation results

The model immediately found the target~first attended lo-
cation! in seven of the 44 images. It quickly found th
target~fewer than 20 shifts! in another 23 images. It found
the target after more than 20 shifts in 11 images, and fa
to find the target in 3 images. Overall, the model con
quently performed surprisingly well, with a number of a
tentional shifts far below the expected 61.5 shifts of a r
dom search in all but 6 images. In these 6 images, the ta
was extremely small~and hence not conspicuous at al!,
and the model cycled through a number of more sali
locations.

3.2.3 Tentative comparison to human data

The following analysis was performed to generate the p
presented in Fig. 8. First, a few outlier images were d
carded, when either the model did not find the target wit
2000 ms of simulated time~about 40 to 80 shifts; 6 im-
ages!, or when half or more of the humans failed to find t
target ~3 images!, for a total of 8 discarded images. A
average of 40 ms per model shift was then derived from
simulations, and an average of 3 overt shifts per sec
was assumed for humans, allowing us to scale the mod
-
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simulated time to real time. An additional 1.5 s was th
added to the model time to account for human motor
sponse time. With such calibration, the fastest react
times for both model and humans were approximately 2
and the slowest approximately 15 s, for the 36 images a
lyzed.

The results plotted in Fig. 8 overall show a poor corr
lation between human and model search times. Surprisin
however, the model appeared to find the target faster t
humans in 3/4 of the images~points below the diagonal!,
despite the rather conservative scaling factors used to c
pare the model to human time. To make the model fas
than humans in no more than half of the images, one wo
have to assume that humans shifted their gaze not fa
than twice per second, which seems unrealistically sl
under the circumstances of a speeded search task on a
tionary, nonmasked scene. Even if eye movements w
that slow, most probably humans would still shift cove
attention at a much faster rate between two overt fixatio

3.2.4 Comparison to spatial frequency content
models

In our previous studies with this model, we have sho
that the within-feature long-range interactions are one

Fig. 5 Example of image from the Search2 dataset (image 0018).
The algorithm operated on the 24-bit color image. Top: original im-
age; humans found the target in 2.8 sec on average. Bottom: model
prediction; the target was the first attended location. After scaling of
model time such that two to four attentional shifts occurred each
second on average, and addition of 1.5 sec to account for latency in
human motor response, the model found the target in 2.2 sec.
1789Optical Engineering, Vol. 40 No. 9, September 2001
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the key aspects of the model. To illustrate this point, we
compute a simple measure of local spatial frequency c
tent~SFC! at each location in the input image, and compa
this measure to our saliency map.

It could indeed be argued that the preattentive, m
sively parallel feature extraction stages in our model c
stitute a simple set of spatially and chromatically bandp
filters. A possibly much simpler measure of saliency co
be based on a more direct measure of power or of am
tude in different spatial and chromatic frequency ban
Such simpler measure has been supported by human
ies, in which local spatial frequency content~measured by
the Haar wavelet transform! was higher at the points o
fixations during free viewing than on average over the
tire visual scene~see Ref. 9 for details!.

We illustrate in Fig. 9, with one representative exam
image, that our measure of saliency actually differs grea
from a simple measure of SFC. The SFC was computed
shown previously in Ref. 9, by taking the average amp
tude of nonnegligible FFT coefficients computed for t
luminance channel as well as the red, green, blue, and
low channels.

While the SFC measure shows strong responses
numerous locations, e.g., at all locations with sharp edg

Fig. 6 A more difficult example of image from the Search2 dataset
(image 0019). Top: original image; humans found the target in 12.3
sec on average. Bottom: model prediction; because of its low con-
trast to the background, the target had lower saliency than several
other objects in the image, such as buildings. The model hence
initiated a serial search and found the target as the 10th attended
location, after 4.9 sec (using the same time scaling as in the previ-
ous figure).
1790 Optical Engineering, Vol. 40 No. 9, September 2001
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the saliency map contains a much sparser representa
of the scene, where only locally unique regions are p
served.

3.2.5 Preliminary experiments with statistical center-
surround computations

We further experimented with variants of the model usi
different center-surround mechanisms. In this section
briefly present preliminary results with a version of th
model that used a second-order intensity pyramid~in which
both mean intensity and its standard deviation are stored
each location and scale! instead of the standard Gaussia
intensity pyramid. Saliency was computed as the Euclid
distance between the mean and standard deviation of im
intensities in the center and surround regions. The mo
immediately found the target~first attended location! in five
of the 44 images. It quickly found the target~fewer than 20
shifts! in another 26 images. It found the target after mo
than 20 shifts in 8 images, and failed to find the target in
images. Using the same exclusion criteria and analysis a
the previous section, this variant of the model also fou
the target faster than humans in 75% of the 36 ima

Fig. 7 Example of image from the Search2 dataset (image 0024) in
which the model did not find the target. Top: original image; humans
found the target in 8.0 sec on average. Bottom: model prediction;
the model failed to find the target, whose location is indicated by the
white arrow. Inspection of the feature maps revealed that the target
yielded responses in the different feature dimensions which are very
similar to other parts of the image (foliage and trees). The target was
hence not considered salient at all.



t in
. 6

in-
ard
the
es
wn
nd
or-
est
ha

n a
le-
ons
be-

sing
ple

hi-
y
ets
of

nd
di-
arc
an

we
han
ical
op-
of
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shown in Fig. 10. This alternate model found the targe
the image of Fig. 5 in 2.1 s, and that of the image in Fig
in 6.5 s.

The results obtained are, as a group, virtually indist
guishable from the results obtained with the stand
model. On an image per image basis, however, using
different front-end in the intensity channel sometim
yielded large differences in time to find the target, as sho
by the different distributions of data points in Figs. 8 a
10. Although preliminary, these results suggest an imp
tant direction for future investigations: even at the earli
stages of processing, the computation of visual features
a great influence on the final behavior of the model o
given image. Further investigations of the neural imp
mentation of feature detectors and their spatial interacti
may eventually allow us to improve the resemblance
tween the model and human observers.

4 Discussion

We have demonstrated that a relatively simple proces
scheme, based on some of the key organizational princi
of preattentive early visual cortical architectures~center-
surround receptive fields, nonclassical within-feature in
bition, multiple maps! in conjunction with a single salienc
map, performs remarkably well at detecting salient targ
in cluttered natural and artificial scenes. Key properties
our model, in particular its usage of inhibition-of-return a
the explicit coding of saliency independently of feature
mensions, as well as its behavior on some classical se
tasks, are in good qualitative agreement with the hum
psychophysical literature.

Fig. 8 Mean reaction time to detect the target for 62 human observ-
ers and for our deterministic algorithm. Eight of the 44 original im-
ages are not included, in which either the model or the humans
failed to reliably find the target. For the 36 images studied, and using
the same scaling of model time as in the previous two figures, the
model was faster than humans in 75% of the images. In order to
bring this performance down to 50% (equal performance for humans
and model), one would have to assume that no more than two visual
locations can be visited each second. Arrow (a) indicates the ‘‘pop-
out’’ example of Fig. 6, and arrow (b) the more difficult example
presented in Fig. 6.
s

s

h

Using reasonable scaling of model to human time,
found that the model appeared to find the target faster t
humans in 75% of the 36 images studied. One paradox
explanation for this superior performance might be that t
down influences play a significant role in the deployment

Fig. 9 Comparison of SFC and saliency maps for image 0018
(shown in Fig. 6). Top: the SFC map shows strong response at all
locations which have ‘‘rich’’ local textures; that is almost everywhere
in this image. Middle: The within-feature, spatial competition for sa-
lience however demonstrates efficient reduction of information by
eliminating large areas of similar textures. Bottom: The maximum of
the saliency map (circle) is at the target, which appeared as a very
strong isolated object in a few intensity maps because of the specu-
lar reflection on the vehicle. The maximum of the SFC map is at
another location on the road.
1791Optical Engineering, Vol. 40 No. 9, September 2001
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attention in natural scenes. Top-down cues in humans m
indeed bias the attentional shifts, according to the prog
sively constructed mental representation of the entire sc
in ways that may be counterproductive for the particu
target detection task studied. Our model lacks any hi
level knowledge of the world and operates in a pur
bottom-up manner. This does suggest that for certain~pos-
sibly limited! scenarios, such high-level knowledge mig
interfere with optimal performance. For instance, hum
observers are frequently tempted to follow roads or ot
structures, or may consciously decide to thoroughly exa
ine the surroundings of salient buildings that have popp
out, while the vehicle might be in the middle of a field or
a forest.

Although our model was not originally designed to d
tect military vehicles, our results also suggest that th
vehicles were fairly salient, according to the measure
saliency implemented in the model. This is also surprisi
since one would expect such vehicles to be designed n
be salient. Looking at the details of individual featu
maps, we realized that in most cases of quick detection
the target by the model, the vehicle was salient due t
strong, spatially isolated peak in the intensity or orientat
channels. Such peak usually corresponded to the locatio
a specular reflection of sunlight onto the vehicle. Specu
reflections were very rare at other locations in the imag
and hence were determined to pop-out by the model.
cause these reflections were often associated with loc
rich SFC, and because many other locations also sho
rich SFC, the SFC map could not detect them as relia
Because these regions were spatially unique in one typ
feature, they, however, popped-out for our model. O
model would have shown much poorer performance if
vehicles had not been so well maintained.

In the present study, we have only started to explor
number of variations around our basic model. Not un
pectedly, but interestingly, we have shown that using a
ferent low-level feature extraction mechanism for the inte
sity channel already yielded variations in the search tim

Fig. 10 Comparison between model and human reaction times for
the alternate model using differences in mean and variance of pixel
distributions in the center and surround regions to compute salience
in the intensity channel. The format of this figure is identical to that
of Fig. 8.
1792 Optical Engineering, Vol. 40 No. 9, September 2001
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for individual images. These preliminary results sugg
that the correlation between human and model search ti
might also improve by using slightly more sophisticat
elementary feature detectors than have been impleme
in our base model.

5 Conclusion

In conclusion, our model yielded respectable results on
Search–2 dataset, especially considering the fact that
particular adjustment was made to the model’s parame
to optimize its target detection performance. The mo
used with these images, indeed, is the same as we have
used to detect psychophysical targets, traffic signs, pe
trians, and other objects.

One important issue that needs to be addressed is th
the poor correlation between model and human sea
times. We hypothesized in this study that top-down, vo
tional attentional bias might actually have degraded hum
performance for this particular dataset, because trying
understand the scene and to willfully follow its structu
was of no help in finding the target. A verification of th
hypothesis should be possible once the scanpaths of hu
fixations during the search become available for
Search–2 dataset.
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