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Abstract. Rather than attempting to fully interpret visual scenes in a
parallel fashion, biological systems appear to employ a serial strategy by
which an attentional spotlight rapidly selects circumscribed regions in the
scene for further analysis. The spatiotemporal deployment of attention
has been shown to be controlled by both bottom-up (image-based) and
top-down (volitional) cues. We describe a detailed neuromimetic com-
puter implementation of a bottom-up scheme for the control of visual
attention, focusing on the problem of combining information across mo-
dalities (orientation, intensity, and color information) in a purely stimulus-
driven manner. We have applied this model to a wide range of target
detection tasks, using synthetic and natural stimuli. Performance has,
however, remained difficult to objectively evaluate on natural scenes,
because no objective reference was available for comparison. We
present predicted search times for our model on the Search_2 database

Pasadena, California 91125 of rural scenes containing a military vehicle. Overall, we found a poor

correlation between human and model search times. Further analysis,
however, revealed that in 75% of the images, the model appeared to
detect the target faster than humans (for comparison, we calibrated the
model’s arbitrary internal time frame such that 2 to 4 image locations
were visited per second). It seems that this model, which had originally
been designed not to find small, hidden military vehicles, but rather to
find the few most obviously conspicuous objects in an image, performed
as an efficient target detector on the Search_2 dataset. Further devel-
opments of the model are finally explored, in particular through a more
formal treatment of the difficult problem of extracting suitable low-level
features to be fed into the saliency map. © 2001 Society of Photo-Optical
Instrumentation Engineers. [DOI: 10.1117/1.1389063]

Subject terms: visual attention; saliency; preattentive; inhibition of return; winner-
take all; bottom-up; natural scene; Search_2 dataset.
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1 Introduction directs the spotlight of attention under cognitive, volitional

Biological visual systems are faced with, on the one hand, control. Normal vision employs both processes simulta-
the need to process massive amounts of incoming informa-Neously. _ _ _
tion, and on the other hand, the requirement for nearly real-  Koch and Ulmani introduced the idea of a saliency map
time capacity of reaction. Surprisingly, instead of employ- t0 @ccomplish preattentive selectitsee also the concept of
ing a purely parallel image analysis approach, primate & master mép. This is an explicit two-dimensional map
vision systems appear to employ a serial computational that encodes the saliency of objects in the visual environ-
strategy when inspecting complex visual scenes. Specificment. Competition among neurons in this map gives rise to
locations are selected based on their behavioral relevancet Single winning location that corresponds to the most sa-
or on local image cues, using either rapid, saccadic eyellent object, which constitutes the next target. If this loca-
movements to bring the fovea onto the object, or covert tion is subsequently inhibited, the system automatically
shifts of attention. It consequently appears that the incred- shifts to the next most salient location, endowing the search
ibly difficult problem of full-field image analysis and scene process with internal dynamics.
understanding is taken on by biological visual systems We describe a computer implementation of a preatten-
through a temporal serialization into smaller, localized tive selection mechanism based on the architecture of the
analysis tasks. primate visual system. We address the thorny problem of
Much evidence has accumulated in favor of a two- how information from different modalities—from 42 maps
component framework for the control of where in a visual encoding intensity, orientation, and color in a center-
scene attention is focused'td a bottom-up, fast and  surround fashion at a number of spatial scales—can be
primitive mechanism that biases the observer toward select-combined into a single saliency map. Our algorithm quali-
ing stimuli based on their saliency, and a second slower, tatively reproduces human performance on a number of
top-down mechanism with variable selection criteria, which classical search experiments.
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Fig. 1 General architecture of the model. Low-level visual features
are extracted in parallel from nine spatial scales, using a biological
center-surround architecture. The resulting 42 feature maps are
combined to yield three conspicuity maps for color, intensity and
orientation. These, in turn, feed into a single saliency map, consist-
ing of a 2D layer of integrate-and-fire neurons. A neural winner-take-
all network shifts the focus of attention to the currently most salient
image location. Feedback inhibition then transiently suppresses the
currently attended location, causing the focus of attention to shift to
the next most salient image location.

Vision algorithms frequently fail when confronted with
realistic, cluttered images. We therefore studied the perfor-
mance of our search algorithm using high-resolution
(6144x 4096 pixels photographs containing images of
military vehicles in a complex rural backgrou8earch 2
dataset®). Our algorithm shows, on average, superior per-

2.1 Extraction of Early Visual Features

With r, g, and b being the red, green, and blue channels of
the input image, an intensity imageis obtained asl
=(r+g+b)/3. Froml is created a Gaussian pyraniics),
wheres={0...8} is the scale. The r, g, and b channels are
normalized byl, at the locations where the intensity is at
least 10% of its maximum, to decorrelate hue from inten-
sity. Four broadly tuned color channels are creatRd:
=r—(g+hb)/2 for red, G=g—(r+b)/2 for green, B
=b—(r+g)/2 for blue, andY=(r+g)/2—|r—g|/2—b for
yellow (negative values are set to zgrd-our Gaussian
pyramidsR(s), G(s), B(s), and Y(s) are created from
these color channels. Frory four orientation-selective
pyramids are also created using Gabor filtering at 0, 45, 90,
and 135 deg.

Differences between a center fine scalend a surround
coarser scales yield six feature maps for each intensity
contrast, red-green double opponency, blue-yellow double
opponency, and the four orientations. A total of 42 feature
maps is thus created, using six pairs of center-surround
scales in seven types of features.

2.2 Saliency Map

The task of the saliency map is to compute a scalar quantity
representing the salience at every location in the visual
field, and to guide the subsequent selection of attended lo-
cations. The feature maps provide the input to the saliency
map, which is modeled as a neural network receiving its
input at scale 4.

2.2.1 Fusion of information

One difficulty in combining different feature maps is that
they represena priori not comparable modalities with dif-
ferent dynamic ranges and extraction mechanisms. Also,
because a total of 42 maps is combined, salient objects
appearing strongly in only a few maps risk to be masked by
noise or less salient objects present in a larger number of

formance compared to human observers searching for themaps. _
same targets, although our system does not yet include any Previously, we have shown that the simplest feature

top-down task-dependent tuning.

2 Model

combination scheme—to normalize each feature map to a
fixed dynamic range, and then sum all maps—yields very
poor detection performance for salient targets in complex
natural scene¥. One possible way to improve performance

The model has been presented in more detail in Ref. 9 andis to learn linear map combination weights, by providing

is only briefly described her@-ig. 1). Input is provided in
the form of digitized color images. Different spatial scales
are created using Gaussian pyrantiisyhich consist of
progressively low-pass filtering and subsampling the input
image. Pyramids have a depth of 9 scales, providing hori-
zontal and vertical image reduction factors ranging from
1:1 (scale 0; the original input imagé¢o 1:256(scale 8 in

the system with examples of targets to be detected. While
performance improves greatly, this method presents the dis-
advantage of yielding different specialized modglst is,
sets of map weighjs for each target detection task
studied!

When no top-down supervision is available, we propose
a simple normalization scheme, consisting of globally pro-

consecutive powers of two. Each feature is computed by moting those feature maps in which a small number of

center-surround operations akin to visual receptive fields,

strong peaks of activityconspicuous locationss present,

implemented as differences between a fine and a coarsgyhile globally suppressing feature maps that contain com-
scale: the center of the receptive field corresponds to a plxe|parab|e peak responses at numerous locations over the vi-

at scalec={2,3,4} in the pyramid, and the surround to the
corresponding pixel at scage=c+d, with d={3,4}, yield-
ing six feature maps for each type of feature. The differ-

sual scene. This within-feature competitive scheme
coarsely ressembles nonclassical inhibitory interactions,
which have been observed electrophysiologicHily.

ences between two images at different scales are obtained The specific implementation of these interactions in our
by oversampling the image at the coarser scale to the resomodel has been described elsewftsnd can be summa-

lution of the image at the finer scale.

rized as follows(Fig. 2): Each feature map is first normal-
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Fig. 2 lllustration of the spatial competition for salience imple-
mented within each of the 42 feature maps. Each map receives
input from the linear filtering and center-surround stages. At each
step of the process, the convolution of the map by a large
Difference-of-Gaussians (DoG) kernel is added to the current con-
tents of the map. This additional input coarsely models short-range
excitatory processes and long-range inhibitory interactions between
neighboring visual locations. The map is half-wave rectified, such
that negative values are eliminated, hence making the iterative pro-
cess non-linear. Ten iterations of the process are carried out before
the output of each feature map is used in building the saliency map.

N

Iteration 8 lteration 10

ized to a fixed dynamic rangdetween 0 and)lto elimi- i
nate feature-dependent amplitude differences due to §%
different feature extraction mechanisms. Each feature map g&#
is then iteratively convolved by a large 2-D derivative-of- &
GaussiangDoG) filter. The DoG filter, a section of which

is shown in Fig. 2, yields strong local excitation at each lteration 0
visual location, which is counteracted by broad inhibition

from neighboring locations. At each iteration, a given fea-

ture map receives input from the preattentive feature ex-
traction stages described before, to which results of the
convolution by the DoG are added. All negative values are
then rectified to zero, thus making the iterative process
highly nonlinear. This procedure is repeated for 10 itera-
tions. Iteration 6 Iteration 8 Iteration 10 Iteration 12

The choice of the number of iterations is somewhat ar-
bitrary. In the limit of an infinite number of iterations, any Fig. 3 Example of operation of the long-range iterative competition
nonempty map will converge toward a single peak, hence & *SieTes WIER o 0 2, o Gesens Sl S
const|tut|ng Or,]ly a poor represem"?‘tlon of the: ,Scer,]e' With bs thesé Ioc);tions; the net result after a few iteratigns is an en-
too few iterations, however, spatial competition is very hancement of the initially stronger location(s), and a suppression of
weak and inefficient. Two examples showing the time evo- the weaker locations. When no location is clearly stronger, all loca-
lution of this process are shown in Fig. 3, and illustrate that tions send anq reqeive approximately the'same amount of inhibition;
the order of 10 iterations yields adequate distinction be- }L‘ﬁig‘iif?ﬁ '%éh;f];;?fg'lfog‘;}yagljgg?é';’s”esd‘_”ogress“’e'y become
tween the two example images shown. As expected, feature
maps with initially numerous peaks of similar amplitude
are suppressed by the interactions, while maps with one or
a few initially stronger peaks are enhanced. It is interesting
to note that this within-feature spatial competition scheme
resembles a winner-take-all network with localized inhibi-
tory spread, which allows for a sparse distribution of win-
ners across the visual scene.

After normalization, the feature maps for intensity,
color, and orientation are summed across scales into three?-2-2
separate conspicuity maps, one for intensity, one for color, By definition, at any given time, the maximum of the sa-
and one for orientatiofFig. 1). liency map’s neural activity is at the most salient image

Each conspicuity map is then subjected to another 10 location, to which the focus of attentidiFOA) should be
iterations of the iterative normalization process. The moti- directed. This maximum is detected by a winner-take-all
vation for the creation of three separate channels and their(WTA) network inspired from biological architectures.
individual normalization is the hypothesis that similar fea- The WTA is a 2-D layer of integrate-and-fire neurons with
tures compete strongly for salience, while different modali- a much faster time constant than those in the saliency map,
ties contribute independently to the saliency map. Although and with strong global inhibition reliably activated by any
we are not aware of any supporting experimental evidence neuron in the layer. To create dynamical shifts of the FOA,

Iteration 4

for this hypothesis, this additional step has the computa-
tional advantage of further enforcing that only a spatially

sparse distribution of strong activity peaks is present within
each visual feature, before combination of all three features
into the scalar saliency map.

Internal dynamics and trajectory generation
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Fig. 4 Dynamical evolution of the potential of some simulated neu-
rons in the saliency map (SM) and in the winner-take-all (WTA) net-
works. The input contains one salient location (a), and another input
of half the saliency (b); the potentials of the corresponding neurons
in the SM and WTA are shown as a function of time. During period
(1), the potential of both SM neurons (a) and (b) increases as a
result of the input. The potential in the WTA neurons, which receive
inputs from the corresponding SM neurons but have much faster
time constants, increases faster. The WTA neurons evolve indepen-
dently of each other as long as they are not firing. At about 80 ms,
WTA neuron (a) reaches threshold and fires. A cascade of events
follows: First, the focus of attention is shifted to (a); second, both
WTA neurons are reset; third, inhibition-of-return (IOR) is triggered,
and inhibits SM neuron (a) with a strength proportional to that neu-
ron’s potential (i.e., more salient locations receive more IOR, so that
all attended locations will recover from IOR in approximately the
same time). In period (2), the potential of WTA neuron (a) rises at a
much slower rate, because SM neuron (a) is strongly inhibited by
IOR. WTA neuron (b) hence reaches threshold first. (3)—(7): In this
example with only two active locations, the system alternatively at-
tends to (a) and (b). Note how the IOR decays over time, allowing
for each location to be attended several times. Also note how the
amount of IOR is proportional to the SM potential when IOR is trig-
gered (e.g., SM neuron (a) receives more IOR at the end of period
(1) than at the end of period (3)). Finally, note how the SM neurons
do not have an opportunity to reach threshold (at 20 mV) and to fire
(their threshold is ignored in the model). Since our input images are
noisy, we did not explicitly incorporate noise into the neurons’ dy-
namics.

1. The FOA is shifted so that its center is at the location
of the winner neuron.

2. The global inhibition of the WTA is triggered and
completely inhibits(reset$ all WTA neurons.

3. Inhibitory conductances are transiently activated in
the saliency map, in an area corresponding to the size
and new location of the FOA.

To slightly bias the model to jump next to salient loca-
tions spatially close to the currently attended location,
small excitatory conductances are also transiently activated
in a near surround of the FOA in the saliency mapox-
imity preference rule proposed by Koch and Ullman

Since we do not model any top-down mechanism, the
FOA is simply represented by a disk whose radius is fixed
to one twelfth of the smaller of the input image width or
height. The time constants, conductances, and firing thresh-
olds of the simulated neurons are chosen so that the FOA
jumps from one salient location to the next in approxi-
mately 30 to 70 mgsimulated timg¢ and so that an at-
tended area is inhibited for approximately 500 to 900 ms,
as it has been observed psychophysicdllJhe difference
in the relative magnitude of these delays proved sufficient
to ensure thorough scanning of the image by the FOA and
prevent cycling through a limited number of locations.

Figure 4 demonstrates the interacting time courses of
two neurons in the saliency map and the WTA network for
a very simple stimulus consisting of one weaker and one
stronger pixels in an otherwise empty map.

2.2.3 Alternate center-surround mechanisms

The low-level feature extraction stages of our model criti-
cally depend on simple center-surround mechanisms, which
we efficiently implemented as differences between pixel
values across different spatial scales. This approach is
based on experimental results that suggest a linear summa-
tion of luminance within both the center and antagonistic
surround regions of neurons in the lateral geniculate
nucleust* However, such a simple difference between cen-
ter and surround mean activities cannot correctly detect any
dissimilarity between the center and surround regions that
may be present in the higher-order spatial statistics of the
input. For example, consider the case where the center and
surround are two different textures with similar means but
different higher-order statistics, e.g., variance. A simple
comparison of the mean pixel values between the center
and surround regions would show a low saliency, while,
perceptually, both textures may appear drastically dissimi-
lar.

An alternative method of computing saliency using
center-surround mechanisms is to take into account not
only the mean values in the center and surround, but also to
use higher-order statistics. Saliency would then represent
not the difference between mean center and surround activ-

rather than permanently attending to the initially most sa- ity, but a statistical measure of how different the distribu-
lient location, it is necessary to transiently inhibit, in the tions of pixel values are between the center and surround
saliency map, a spatial neighborhood of the currently at- regions. In the first experiment, we consider only second-
tended location. This also prevents the FOA from immedi- order statisticgvariance of pixel distributions and make
ately coming back to a strong, previously attended location. the underlying assumption that the distributions of pixel
Such an inhibition of return mechanism has been demon-values are Gaussian. Although this clearly is incorrect for
strated in human¥ Therefore, when a winner is detected many types of images, it represents a better approximation

by the WTA network, it triggers three mechanistiag. 4):

to the true distributions of pixel values than the mean-only
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model, which makes the underlying assumption that those scenes(see http://iLab.usc.edlu What is remarkable in
distributions are Dirac¢point) distributions. these results is not only the wide range of applications, all
An efficient method for calculating the mean and stan- using color images in which high amounts of noise, clutter,
dard deviation of the pixel distribution in a region repre- variations in illumination conditions, shadows, and occlu-
sented by a pixel at a given level in a pyramid is necessary sions were always present. Even more interesting is that the
to use this method in practice. We propose an approach thatsame model is able, with absolutely no tuning or modifica-
creates two pyramids that simply cumulate the sum and thetion, to detect salient traffic signs in roadside images taken
sum of the squares of all the pixels up to the chosen level of from a low-resolution cameré12x 384 pixel$ mounted
the pyramids. That is, at a given levelin the sum pyra- on a vehicle, pedestrians in urban settings, various salient

mid, each pixel is the sum of the pixel valugs of the objects in indoor scenes, or salient ads in screen grabs of
(d™? corresponding pixels at the base level of the pyramid, web pages. Although dedicated, handcrafted, and finely
whered is the scaling between levels in the pyraniidin tuned computer vision algorithms exist for, e.g., the detec-

our implementation The sum-of-squares pyramid is simi- tion of traffic signs, those typically cannot pick up pedes-
lar except that an image of the squares of the pixel values intrians or other types of objects. It should be noted that it is
the original image is used as the base of the pyramid. With not straightforward to establish objective criteria for the
this data already calculated and stored in two pyramids, theperformance of the system with such images. Unfortu-

mean and standard deviation for any pixel at lavéh the nately, nearly all quantitative psychophysical data on atten-
pyramid can be easily calculated as tional control are based on synthetic stimuli. In addition,
although the scan paths of overt attentiege movemenis
1 have been extensively studiétif is unclear to what extent
m= HZ X the precise trajectories followed by the attentional spotlight

are similar to the motion of covert attention. Most probably,
the requirements and limitatiorie.g., spatial and temporal
resolutiong of the two systems are related but not
identicall®

Although our model is mostly concerned with shifts of
n=(d")?, covert attention and ignores all of the mechanistic details of

eye movements, we attempt a quantitative comparison be-

where we have used the small sample approximation for tween human and model target search times in complex
computation of the standard deviation. Saliency is then de- natural scenes, using the Sear2ldatabase of images con-
rived from a comparison between means and standard detaining military vehicles hidden in a rural environment.
viations computed in the center and surround regions. We
have experimented with several measures, including the
ideal-observer discriminatiol,the Euclidean distance be- 3-2 Seéarch_2 Results
tween the(mean, standard-deviatippairs, and the Kull-  We propose a difficult test of the model using the Seafch
back J-divergence. At the end of the following section, we dataset, in which target detection is evaluated using a data-
present preliminary results using this alternate model and base of complex natural images, each containing a military
the Euclidean distance. All other simulations described use vehicle(the target Contrary to our Plrevious studies with a

()| =

3l

n n

the standard mean-only model. simplified version of the modé&l!* which used low-
resolution image databases with relatively large targets

3 Results (typically about 1/10 the width of the visual scenéhis
study uses very high resolution imag@l44x 4096 pix-

3.1 General Performance els), in which targets appear very smépically 1/100 the

width of the imagé In addition, in the present study,
search time is compared between the model's predictions
and the average measured search times from 62 normal
human observers®

We tested our model on a wide variety of real images,
ranging from natural outdoor scenes to artistic paintings.
All images were in color, contained significant amounts of
noise, strong local variations in illumination, shadows and
reflections, large numbers of objects often partially oc-
_cluded,.and strong textures. Most of these images can bes 5 1 Experimental setup
interactively examined, and new images can be submitted o . o
for processing on the Web at: http://iLab.usc.edu/bul/. The 44 original photographs were taken during a distrib-
Overall, the results indicate that the system scans thel,.lted' interactive S|mulat|on,_search and target acquisition
image in an order that makes functional sense in most be-fidelity (DISSTAR field test in Fort Hunter Liggett, Cali-
havioral situations. In addition, the system performs re- fornia, and were provided to us, along with all human data,
markably well at picking out salient targets from cluttered DY the TNO Human Factors in the NetherlaridéThe field
environments. Experimental results include the reproduc- Of view for each image is 6X94.6 deg. Each scene con-
tion by the model of human behavior in classical visual tained one of nine possible military vehicles, at a distance
search task& a demonstration of very strong robustness of ranging from 860 to 5822 m from the observer. Each slide
the salience computation with respect to image ﬁoig'@ was digitized at 6144 4096 pixels resolution. Sixty two
automatic detection of traffic signs and other salient objects human observers aged between 18 and 45 years and with
in natural environments filmed by a consumer-grade color visual acuity better than 1.25 arcmihparticipated in the
video camert; and the detection of pedestrians in natural experiment(about half were women and half men
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Subjects were first presented with three close-up views
of each of the nine possible target vehicles, followed by a
test run of ten trials. A Latin square desfgmas then used
for the randomized presentation of the images. The slides
were projected such that they subtended & 86 deg vi-
sual angle to the observefsorresponding to a linear mag-
nification by about a factor of 10 compared to the original

soon as they had detected the target, and subsequently in
dicated at which location on a ¥010 projected grid they
had found the target. Further details on these experiments

image at full resolution. Contrary to the human experiment,
no close-ups or test trials were presented to the model. The
generic form of the model described before was used, with-
out any specific parameter adjustment for this experiment.
Simulations for up to 10,000 ms of simulated tirf@out

200 to 400 attentional shiftsvere done on a Digital Equip-
ment Alpha 500 workstation. With these high-resolution
images, the model comprised about 300 million simulated [
neurons. Each image was processed in approximately 15
min with a peak memory usage of 484 Mbytdsr com- B
parison, a 648480 scene was typically processed in 10 s,
and processing time approximately scaled linearly with the
number of pixels The FOA was represented by a disk with

a radius of 340 pixel¢Figs. 5, 6, and ) Full coverage of

the image by the FOA would require 123 shiftgith some
unavoidable overlap due to the circular shape of the FOA

a random search would thus be expected to find the target
after 61.5 shifts on average. T-he t_arget was Con-Sidered de-Fig. 5 Example of image from the Search2 dataset (image 0018).
tected Wh.en the fOCU$ of attention mtersec.ted a binary maSkThe algorithm operated on the 24-bit color image. Top: original im-
representing the outline of the target, which was provided age; humans found the target in 2.8 sec on average. Bottom: model
with the images. Three examples of scenes and model tra-prediction; the target was the first attended location. After scaling of
jectories are presented in Figs. 5, 6, and 7. In the one im-model time such that two to four attentional shifts occurred each
age, the target was immediately found by the model, in second on average, and addition of 1.5 sec to account for latency in
another, a serial search was necessary before the targef%uman motor response, the model found the target in 2.2 sec.
could be found, and in the last, the model failed to find the

target.

simulated time to real time. An additional 1.5 s was then
3.2.2 Simulation results added to the model time to account for human motor re-

The model immediately found the targ@irst attended lo- sponse time. With such calibration, the fastest reaction
cation in seven of the 44 images. It quickly found the UMeS for both model and humans were approximately 2 s,
target(fewer than 20 shifsin another 23 images. It found and the slowest approximately 15 s, for the 36 images ana-

the target after more than 20 shifts in 11 images, and failed Iyz_?ﬂ. results plotted in Fia. 8 overall show ' corre-
to find the target in 3 images. Overall, the model conse- € results piotte 9. © overall Show a poor corre

o ; lation between human and model search times. Surprisingly
quently performed surprisingly well, with a number of at- .
tentional shifts far below the expected 61.5 shifts of a ran- havn\:i\:\ir,irghse/ings?rlea?rggare((ado}gtgnbdeltgv?/ F[ﬁreg?jti;ats)ail than
dom search in all but 6 images. In these 6 images, the targeﬁes ite the rather conservgtif})e scaling factors usgd to com-
was extremely smal{and hence not conspicuous at)all P 9

and the model cycled through a number of more salient pare the mod_el to human time. To makg the model faster
locations. than humans in no more than half of the images, one would

have to assume that humans shifted their gaze not faster

3.2.3 Tentative comparison to human data than twice per second, which seems unrealistically slow

) ) under the circumstances of a speeded search task on a sta-
The following analysis was performed to generate the plot tjonary nonmasked scene. Even if eye movements were
presented in Fig. 8. First, a few outlier images were dis- {41 slow, most probably humans would still shift covert

carded, when either the model did not find the target within attention at a much faster rate between two overt fixations.
2000 ms of simulated timéabout 40 to 80 shifts; 6 im-

ages, or when half or more of the humans failed to find the . .

target (3 image, for a total of 8 discarded images. An 3-2:4 Comparison to spatial frequency content

average of 40 ms per model shift was then derived from the models

simulations, and an average of 3 overt shifts per secondIn our previous studies with this model, we have shown
was assumed for humans, allowing us to scale the model'sthat the within-feature long-range interactions are one of
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Fig. 6 A more difficult example of image from the Search2 dataset
(image 0019). Top: original image; humans found the target in 12.3
sec on average. Bottom: model prediction; because of its low con-
trast to the background, the target had lower saliency than several
other objects in the image, such as buildings. The model hence
initiated a serial search and found the target as the 10" attended
location, after 4.9 sec (using the same time scaling as in the previ-
ous figure).

Fig. 7 Example of image from the Search2 dataset (image 0024) in
which the model did not find the target. Top: original image; humans
found the target in 8.0 sec on average. Bottom: model prediction;
the model failed to find the target, whose location is indicated by the
white arrow. Inspection of the feature maps revealed that the target
yielded responses in the different feature dimensions which are very
similar to other parts of the image (foliage and trees). The target was
hence not considered salient at all.

the key aspects of the model. To illustrate this point, we can ) . i
compute a simple measure of local spatial frequency con-the saliency map contains a much sparser representation
tent(SFQ at each location in the input image, and compare Of the scene, where only locally unique regions are pre-
this measure to our saliency map. served.

It could indeed be argued that the preattentive, mas-
sively parallel feature extraction stages in our model con- . . . iy
stitute a simple set of spatially and chromatically bandpass 3.2.5  Preliminary experiments with statistical center-
filters. A possibly much simpler measure of saliency could surround computations
be based on a more direct measure of power or of ampli- We further experimented with variants of the model using
tude in different spatial and chromatic frequency bands. different center-surround mechanisms. In this section we
Such simpler measure has been supported by human studbriefly present preliminary results with a version of the
ies, in which local spatial frequency contgnteasured by ~ model that used a second-order intensity pyraimdvhich
the Haar wavelet transfopmwas higher at the points of  both mean intensity and its standard deviation are stored for
fixations during free viewing than on average over the en- each location and scalénstead of the standard Gaussian
tire visual scendsee Ref. 9 for details intensity pyramid. Saliency was computed as the Euclidean

We illustrate in Fig. 9, with one representative example distance between the mean and standard deviation of image
image, that our measure of saliency actually differs greatly intensities in the center and surround regions. The model
from a simple measure of SFC. The SFC was computed, asimmediately found the targétirst attended locatiorin five
shown previously in Ref. 9, by taking the average ampli- of the 44 images. It quickly found the targé¢wer than 20
tude of nonnegligible FFT coefficients computed for the shifts) in another 26 images. It found the target after more
luminance channel as well as the red, green, blue, and yel-than 20 shifts in 8 images, and failed to find the target in 5
low channels. images. Using the same exclusion criteria and analysis as in

While the SFC measure shows strong responses atthe previous section, this variant of the model also found
numerous locations, e.g., at all locations with sharp edges,the target faster than humans in 75% of the 36 images
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Fig. 8 Mean reaction time to detect the target for 62 human observ-
ers and for our deterministic algorithm. Eight of the 44 original im-
ages are not included, in which either the model or the humans
failed to reliably find the target. For the 36 images studied, and using
the same scaling of model time as in the previous two figures, the
model was faster than humans in 75% of the images. In order to
bring this performance down to 50% (equal performance for humans
and model), one would have to assume that no more than two visual
locations can be visited each second. Arrow (a) indicates the “pop-
out” example of Fig. 6, and arrow (b) the more difficult example
presented in Fig. 6.

shown in Fig. 10. This alternate model found the target in
the image of Fig. 5in 2.1 s, and that of the image in Fig. 6
in 6.5 s.

The results obtained are, as a group, virtually indistin-
guishable from the results obtained with the standard
model. On an image per image basis, however, using the
different front-end in the intensity channel sometimes
yielded large differences in time to find the target, as shown
by the different distributions of data points in Figs. 8 and
10. Although preliminary, these results suggest an impor-
tant direction for future investigations: even at the earliest
stages of processing, the computation of visual features has
a great influence on the final behavior of the model on a
given image. Further investigations of the neural imple-
mentation of feature detectors and their spatial interactions
may eventually allow us to improve the resemblance be-
tween the model and human observers.

Fig. 9 Comparison of SFC and saliency maps for image 0018
(shown in Fig. 6). Top: the SFC map shows strong response at all
4 Discussion locations which have “rich” local textures; that is almost everywhere
in this image. Middle: The within-feature, spatial competition for sa-
We have demonstrated that a relatively simple processinglience however demonstrates efficient reduction of information by

scheme, based on some of the key organizational principleseliminating large areas of similar textures. Bottom: The maximum of
of preattentive early visual cortical architectur@enter- e saliency map (circle) is at the target, which appeared as a very

. . . sy ... strong isolated object in a few intensity maps because of the specu-
sg_rround r(_aceptlve f'_elds’ noncl_assm_al Wlthm'featu_re inhi- lar reflection on the vehicle. The maximum of the SFC map is at
bition, multiple mapgin conjunction with a single saliency  another location on the road.
map, performs remarkably well at detecting salient targets
in cluttered natural and artificial scenes. Key properties of
our model, in particular its usage of inhibition-of-return and Using reasonable scaling of model to human time, we
the explicit coding of saliency independently of feature di- found that the model appeared to find the target faster than
mensions, as well as its behavior on some classical searcthumans in 75% of the 36 images studied. One paradoxical
tasks, are in good qualitative agreement with the human explanation for this superior performance might be that top-
psychophysical literature. down influences play a significant role in the deployment of
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16 T ' — , for individual images. These preliminary results suggest

e that the correlation between human and model search times
R might also improve by using slightly more sophisticated
,, : elementary feature detectors than have been implemented
in our base model.
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5 Conclusion

A In conclusion, our model yielded respectable results on the
P ] Search 2 dataset, especially considering the fact that no
= x o ] particular adjustment was made to the model's parameters

A to optimize its target detection performance. The model
’ 1 used with these images, indeed, is the same as we have also

[
T
N
\
N

-t

model reaction time (sec)
F-Y
.
»

il , , , used to detect psychophysical targets, traffic signs, pedes-
0 4 8 12 16 trians, and other objects.
human reaction time (sec) One important issue that needs to be addressed is that of
(n=62) the poor correlation between model and human search
_ _ o times. We hypothesized in this study that top-down, voli-
Fig. 10 Comparison between model and human reaction times for tional attentional bias might actually have degraded human
the alternate model using differences in mean and variance of pixel - . .
distributions in the center and surround regions to compute salience performance for this particular ‘?'ataset: becayse trying to
in the intensity channel. The format of this figure is identical to that understand the scene and to willfully follow its structure
of Fig. 8. was of no help in finding the target. A verification of this
hypothesis should be possible once the scanpaths of human
fixations during the search become available for the
Search 2 dataset.

attention in natural scenes. Top-down cues in humans might
indeed bias the attentional shifts, according to the progres-
sively constructed mental representation of the entire scene,ACk”0"V/edgmentS
in ways that may be counterproductive for the particular We thank Dr. A. Toet from TNO-HFRI for providing us
target detection task studied. Our model lacks any high- with the Search2 dataset and all human data. This work
level knowledge of the world and operates in a purely was supported by NSKCaltech ERG, NIMH, ONR,
bottom-up manner. This does suggest that for cef(adrs- NATO, the Charles Lee Powell Foundation, and the USC
sibly limited) scenarios, such high-level knowledge might School of Engineering. The original version of this material
interfere with optimal performance. For instance, human was first published by the Research and Technology Orga-
observers are frequently tempted to follow roads or other nization, North Atlantic Treaty OrganizatidiiRTO/NATO)
structures, or may consciously decide to thoroughly exam-in MP-45 (Search and Target Acquisitipim March 2000.
ine the surroundings of salient buildings that have popped- This proceedings is available at http://www.rta.nato.int/
out, while the vehicle might be in the middle of a field or in  Pubs/RTO-MP-045.htm.
a forest.
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