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4Service de Médecine Nucléaire, Centre Antoine Lacassagne, Nice, France 06189
5Department of Radiolody, Harbor-UCLAMedical Center, Torrance, California 90509

r r

Abstract:We present a robust intrasubject registration method for the synergistic use of multiple neuroimaging
modalities, with applications to magnetic resonance imaging (MRI), functional MRI, perfusion MRI, MR
spectroscopy, and single-photon emission computed tomography (SPECT). This method allows user-friendly
processing of difficult examinations (low spatial resolution, advanced pathology, motion during acquisition, and
large areas of focal activation). Registration of three-dimensional (3D) brain scans is initially estimated by
first-order moment matching, followed by iterative anisotrophic chamfer matching of brain surfaces. Automatic
brain surface extraction is performed in all imaging modalities. A new generalized distance definition and new
specific methodologies allow registration of scans that cover only a limited range of brain surface. A new
semiautomated supervision scheme allows fast and intuitive corrections of possible false automatic registration
results. The accuracy of the MRI/SPECT anatomical-functional correspondence obtained was evaluated using
simulations and two difficult clinical populations (tumors and degenerative brain disorders). The average
discrimination capability of SPECT (12.4 mm in-plane resolution, 20 mm slice thickness) was found to be better
than 5 mm after registration with MRI (5 mm slice thickness). Registration accuracy was always better than
imaging resolution. Complete 3D MRI and SPECT registration time ranged between 6–11 min, in which surface
matching represented 2–3 min. No registration failure occurred. In conclusion, the application of several new
image processing techniques allowed efficient and robust registration. Hum. Brain Mapping 5:3–17,
1997. r 1997Wiley-Liss,Inc.
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INTRODUCTION

A variety of physical principles are applied in
modern neuroimaging techniques such as magnetic

resonance imaging (MRI), functional MRI (fMRI), per-
fusion MRI (pMRI), magnetic resonance spectroscopy
(MRS), single photon emission computed tomography
(SPECT), and positron emission tomography (PET).
These different mechanisms make simple comparisons
and synergistic use of the images for brain mapping
difficult and often ambiguous. A major problem is the
precise localization of physically corresponding re-
gions in multiple data sets. The goal of multimodality
registration is to fuse two or more sets of images in
order to combine the information from each technique
into a composite correlated data set. This requires a
reliable physical correspondence, i.e., a registration
transformation, to be established between the original
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images. Such a correspondence is not known a priori,
because considerable positioning freedom is allowed
in imaging devices. Applications of mono- and multi-
modality registration have been reviewed in several
papers [Levin et al., 1988; van den Elsen et al., 1993]. In
particular, the understanding of the relationship be-
tween brain structure (MRI) and function (fMRI, pMRI,
SPECT, PET, and MRS) is of major importance for
differentiating diseases and for understanding how
brain physiology maps onto brain anatomy. For ex-
ample, the applicability of SPECT to focal activation
studies has been demonstrated by Crosson et al. [1994]
and Yoshizawa et al. [1995] and would greatly benefit
from correlation with anatomy and other functional
modalities. New techniques such as pMRI and MRS
would also benefit from registration with other ana-
tomical and functional imaging modalities.
We are particularly interested in registration of

routine clinical examinations, because we believe that
one of the most promising applications of anatomical-
functional brain mapping is in the study of brain
disorders. Therefore, our registration method was
developed to allow processing of difficult data, such as
low-resolution SPECT images (12–20 mm resolution)
and relatively low-resolution MR acquisitions (5–8
mm slice thickness). Registration in the clinical setting
also might encounter technical difficulties (due to
motion during the acquisitions or variability of imag-
ing sequences and agents) and a high variability of the
populations studied (such as focal activation, ad-
vanced brain degeneration, surgical resections, and
structural abnormalities).
Ourmethodwas consequently defined by the follow-

ing eight guidelines: 1) Only intrasubject registration
would be performed, with the assumption that the
imaged brain was not subject to deformations [van den
Elsen et al., 1993]. Consequently, global rigid transfor-
mations (three-dimensional (3D) rotation, 3D transla-
tion, and 3D uniform scaling) would be performed. 2)
No external markers would be required [Ende et al.,
1991; Fright and Linney, 1993; Loats, 1993; Grabowski
et al., 1995], which would allow retrospective registra-
tion. 3) No constraint would exist concerning the
orientation, resolution, slice thickness or spacing, and
total number of slices in each study. 4) Registration of
scans covering only part of the brain as well as full
head examinations would be possible. This require-
ment might pose difficulties to some moments-based
methods [Alpert et al., 1990; Moshfeghi and Rusinek,
1992; Arata and Dhawan, 1992] and to some surface-
based methods: e.g., a partial sagittal MRI of the left
half of the head and a partial axial SPECT have
different axes of inertia as well as different surfaces

(but see Dhawan et al. [1995] for more developments
on this point). 5) Unless necessary, internal (anatomi-
cal) landmarks would not be used to guide registration
[Wang et al., 1994], because most such landmarks are
difficult to precisely delineate in our low-resolution
SPECT. 6) Methods based on comparisons of image
intensities [Woods et al., 1993; Friston et al., 1995] did
not seem very well-adapted to our problem, since little
correlation may exist between some of our imaging
modalities (see Results, concerning the registration of
MRI to thallium SPECT, in which most of the brain
except for tumors and choroid plexus appears as
noise). 7) Interactive matching methods [Evans et al.,
1991; Wang et al., 1994] were avoided if automatic
methods could be devised. 8) The process needed to be
robust enough to allow registration of virtually any set
of images from a large number of modalities, while
remaining highly or fully automatic.
Our method is an extension of the surface-based

paradigm [Pelizzari et al., 1989; Holman et al., 1991;
Besl and McKay, 1992; Jiang et al., 1992; Mangin et al.,
1994; van Herk and Kooy, 1994, Turkington et al, 1995].
It has been designed to meet our objectives, with
particular attention given to the problem of registering
low-resolution, technically imperfect data sets.

MATERIALS AND METHODS

Image acquisition and processing hardware

MRI was performed on a clinical (non-echo planar)
1.5 Tesla General Electric SIGNA imaging system
(General Electric Medical Systems, Milwaukee, WI) in
axial, sagittal, or coronal orientations. MR sequences
used for structural imaging were T1, T2, T1 with
contrast agent, 3D spoiled-grass, inversion recovery,
and multiecho. Localized 1H MR spectroscopy was
performed using a point resolved spectroscopy (PRESS)
sequence [Bottomley, 1987] (echo time (TE) 30 msec,
relaxation time (TR) 3 sec, 64 averages). Absolute
quantitation of the spectra was achieved as previously
described [Ernst et al., 1993; Kreis et al., 1993].
Perfusion MRI (pMRI) was performed on a single

8-mm slice using a gradient echo sequence (TE 18
msec, TR 40 msec, flip angle 10°, 2.5 sec per scan). This
slice was acquired sequentially 40 times, yielding a
total scan time of 1 min 43 sec. Twenty ml of gadolin-
ium contrast agent Prohance (Squibb, Princeton, NJ)
was injected as an intravenous bolus. Perfusion maps
were then computed using a numerical integration
algorithm developed in our laboratory.
Cortical activation during visual or motor stimula-

tion was observed using blood oxygenation level-
dependent (BOLD) fMRI contrast. Five oblique slices
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through the primary visual or motor cortices were
scanned using a spoiled gradient echo sequence (TE 50
msec, TR 60 msec, 1 excitation, 64 phase-encoding
steps, flip angle 10°, field of view 48 cm,
1.875 3 1.875 3 8 mm3 voxels). A T2-weighted struc-
tural localizer was used to position the five slices for
fMRI. Visual stimulation was performed by flashing a
pair of goggles with a frequency of 4 Hz, and motor
stimulation consisted of a simple finger-tapping task.
The activation protocol comprised two baseline scans
(five slices each), two scans during stimulation, and
two more baseline and stimulated scans, yielding a
total of eight images per slice. The images were
processed using an IDL-based program (Research
Systems, Boulder, CO) to compute a z-map.
SPECT studies were performed with a Shimadzu

Headtome II dedicated brain unit (Shimadzu, Kyoto,
Japan). It provides 11 nonuniformly-spaced slices (four
bed shifts with three fixed ring detectors, one slice
being redundant), with a spatial resolution of 12.4 mm
in plane (full width at half maximum, FWHM) and 20
mm slice thickness. Spatial oversampling performed
by the camera’s reconstruction software yielded 3.3 3
3.3 3 20 mm3 voxels. A variety of agents was used:
HMPAO (technetium-99mhexamethyl propyleneamine
oxime; Ceretec, Amersham, Arlington Heights, IL) for
relative cerebral blood flow [Chang et al., 1994; Mas-
deu et al., 1994]; 133Xe (Xenon-133;Dupont, Billerica,
MA) for absolute blood flowmeasurements and calibra-
tion of HMPAO images [Kanno and Lassen, 1979]; and
MIBI (technetium-99m methoxy-isobutyl-isonitrile;
Cardiolite, Dupont-Merck, Billerica, MA) and 201Tl
(201-thallous chloride,Mallinckrodt,MarylandHeights,
MD) for tumor metabolism studies [Chiu et al., 1990;
Masdeu et al., 1994]. Standard SPECT images with
parallelepipedic voxels (6.25 3 6.25 36.25 mm3), ac-
quired on a Sophy Camera DSX (Sopha Medical,
Columbia, MD), were also used.
The registration package was developed on a Sun

SPARCStation LX (Sun Microsystems, Mountain View,
CA), using the AVS graphical interface and object-
oriented development tool (Advanced Visual Systems,
Waltham, MA) and specifically written (language C)
AVS modules and networks of modules.

Automated brain surface segmentation

All images were converted from their original 16-bit
intensity range to 8-bit range, in order to halvememory
requirements during processing. The marginal surface
of the brain was used for registration, since it is one of
the few large structures visible in all imaging modali-
ties. Automatic extraction of this surface was achieved

by an extended version of the method of Malandain
[1992]. His method, as well as those of Mangin et al.
[1994] and Alpert et al. [1996], use binary morphologi-
cal erosion to separate the brain from surrounding
tissues, followed by detection of the brain as the largest
3D connected component, and binary morphological
dilation to recover original brain size.We extended this
method by first providing an automatic interpretation
of the intensity distribution histogram of the volume.
This eliminates all objects unambiguously outside
brain intensity range by applying an upper and lower
threshold to binarize the volume. For example, with
T1-weighted MR images, the lower threshold Tmin
eliminates the background noise and skull, while the
higher threshold Tmax eliminates most of the fat. The
interpretation algorithm first applies median filtering
and boxcar smoothing to the histogram. The local
minimum towards lower intensities m is then detected
(Fig. 1, top), and separates background noise (towards
lower intensities) from signal (towards higher intensi-
ties). The maximum M of the histogram for intensities
higher than m is then detected and usually corre-
sponds to a white-matter intensity. The lower thresh-
old Tmin is computed as a linear combination of m, M,
and the point between m and M showing the most
abrupt change in the histogram’s slope. The upper
threshold Tmax is determined by a linear combination
between M and the point with intensities higher than
M showing the most abrupt change in slope. The
parameters for these linear combinations were deter-
mined empirically for three broad classes of MR
sequences (T1/proton-density/first echo, T2/second
echo, and inversion-recovery). The resulting volume
contained a binarized representation of the brain, and
of objects with similar intensities (e.g., parts of the
skin, muscles, and nerves). At this stage, the separation
between brain and surrounding tissues was imperfect
in several locations (Fig. 1).
An isotropic 3D binary morphological erosion

[Schmitt andMattioli, 1994] of the thresholded volume
was consequently applied to separate the brain from
adjacent objects. Contracy to 2D methods, 3D erosion
accentuates brain contours not only within slices, but
also towards adjacent slices, which is important when
only partial brain contours are present in some slices
after the initial thresholding. Fast 3D erosion is ob-
tained by thresholding a chamfer distance map
[Wacken, 1994]. This fast implementation is equivalent
to using the conventional implementation with a
structuring element that is a solid sphere for the
chamfer distance used, with radius equal to the thresh-
old applied to the distance map. Although this sphere
is defined by all points equidistant from its center, it
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Figure 1.
Visual outline (from left to right, top to bottom) of our automatic
brain segmentation method, applied without manual intervention,
to the MRI of a patient with a large right frontal defect (enlarged
sinuses). The MRI volume had 0.9375 3 0.9375 3 5 mm3 voxels
and 26 slices (first echo of TR 5 2,500 msec, TE 5 30 and 100
msec, 2 excitations, 192 views; secondechowasnotused).Automatic
double thresholding (top left) based on the gray-level histogram
(top) allowed most brain contours to be seen, although they were

mixed with other contours and only partly defined. Morphological
isotropic erosion (efficiently computed by thresholding an aniso-
tropic distance map) accentuated these contours. 3D flooding of
the brain then isolated it from remaining neighboring masses, and
morphological dilation (computed by thresholding another dis-
tance map) recovered its original size. In regions where brain
contours were present in the initial thresholded image (top left),
they were used to refine the dilated brain shape.



may not look spherical if the distance used is not
isotropic. This is the case when the distance is ex-
pressed in units of voxels and the voxels are not cubic.
We consequently devised a new anisotropic chamfer
distance map (ACDM; detailed in Surface Matching,
below) to obtain truly isotropic erosion. This improve-
ment yields more reliable erosion for data sets with
large slice thickness because it erodes approximately
the same actual volume in all directions, rather than
the same number of pixels (Fig. 2), making the method
insensitive to voxel geometries. In our implementa-
tion, the erosion size defaulted to the longest diagonal
voxel size in the data set processed; this proved
sufficient in most cases to fully disconnect the brain
from surrounding tissues. Isolation of the eroded
binary brain from the remaining parasitic masses
(eroded tongue, etc.) was achieved by an 8-connected
3D flooding of the brain, starting from the centroid of
the eroded volume. Because this centroid might fall
into a cavity in the eroded volume, such as the
ventricles, a 3D cross was automatically drawn to con-
nect it to the binary brain.
After erosion and extraction of the binary brain, a 3D

binary morphological dilation [Schmitt and Mattioli,
1994] of the extracted brain was applied to recover its
original size. Morphological dilation, which is the dual
operation to erosion, can be intuitively interpreted as
an inflation of the objects in an image by a fixed size.
Fast 3D dilation by a solid sphere with slightly larger
radius than the one used for erosion was obtained by
thresholding an ACDM. Since peripheral objects have
been eliminated in the previous step, only the brain is

dilated. The resulting brain shape is smooth, which is
characteristic of morphological dilation, and larger
than the actual brain by 1–2 mm. Brain shape refine-
mentwas hence applied bymasking the dilated volume
with the first thresholded binary volume, in which
most brain contours already existed amongmany other
contours. The effect of this masking is two-fold: in
regions where brain contours are present in the first
thresholded volume, they are exactly recovered and
the dilated brain size is sufficiently small not to include
unwanted meninges and muscle; in regions where no
contours are present in the first thresholded volume
(typically reigons where even human observers have
difficulty defining the brain surface), the actual brain
shape is approximated by the dilated shape. Cavities in
the brain were then flooded, and the final detection of
themarginalcontoursof therefinedbrainwasperformed
by a simple binary 2D contour extraciton algorithm in
every slice. This method is preferable to 3D contour
detection when using thick slices (5–20 mm), because it
always yields accurate 1-pixel-wide contours even
when the brain shape changes rapidly between adja-
cent slices. The contours were finally converted to a set
of 3D vertices (3 coordinates per point) for interactive
real-time 3D display. A visual summary of this method
is presented in Figure 1 for a patient with a gross
structual abnormality. Our brain segmentationmethod
can be used for axial, sagittal, and coronal orientations.
The erosion and dilation steps are not necessary for

HMPAO SPECT images, which show no significant
peripheral uptake close to the brain. No SPECT histo-
gram interpretation was necessary, since full SPECT
brain surface extraction is achieved in only a few
seconds, making manual threshold adjustments fast
and easy. The lower and higher thresholds simply
default to 45% and 100% of the maximum voxel count
for xenon-calibrated HMPAO SPECT; the method is
fully automatic in most cases. SPECT slices may be
discarded if they are blurred or outside the brain.

Surface matching

For the registration of two different data sets, the
data set with higher spatial resolution is usually
chosen as a fixed reference for the other (mobile) data
set. The previously extracted volume of brain contours
is used for the reference brain surface, while the
previously extracted 3D vertices are used for the
mobile surface. We present here the general surface-
matching algorithm; specific applications are dis-
cussed in the next section.
Reference brain contours first undergo a contours

interpolation to create a three-dimensionally coherent

Figure 2.
a: Structuring element obtained by thresholding an isotropic
distance map would have the same radius, measured in voxels, in all
directions (here 3 voxels). Using this element does not yield
isotropic erosion. b: In contrast, thresholding our anisotropic
distance map yields a much more spherical structuring element
than in (a) for the same 3-voxel height. Morphological erosion with
the element (b) hence does not favor any particular direction, and
makes the erosion more insensitive to voxel geometry.
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set of contours with high accuracy: a new slice is
created between two adjacent original slices, contain-
ing the interpolated transition between the contours in
the slices immediately above and below. The resulting
brain shape is hence fully 3D coherent even when the
brain sections vary largely between adjacent slices. It is
also more accurate than the result of a 3D edge
detection because the slice thickness in the enhanced
volume is half the original one. The contour interpola-
tion is achieved by flooding and logical operations.
Interpolated reference brain contours are then trans-

formed into an ACDM. Such a map approximates the
Euclidean distance, but is computed considerably
more quickly (linear complexity). We extended the
3/4/5 chamfer distance transform as presented by
Borgefors [1986] by using an anisotropic 3 3 3 3 3
elementary distance pattern.With this approach, scaled
approximations of the real Euclidean distances be-
tween one voxel and its 26 adjacent 3D neighbors are
used instead of the values 3 (for straight neighbors), 4
(for diagonal neighbors in the same plane), and 5 (for
diagonal neighbors in adjacent planes). This enhance-
ment was devised to account for elongated parallelepi-
pedic voxels. Distances are stored in the ACDM as
8-bit values, and loss of precision is avoided by the
following scaling: the elementary distance between
diagonal voxels in two adjacent slices is scaled to the
value 50; the same scale factor is applied to the other
elementary distances in the 3 3 3 3 3 pattern, and the
results are rounded to the closest integer value (Fig. 3).
Mobile surface data points, which are stored as 3D

vertices, are modified according to a global rigid
transformation with up to 9 parameters: 3 rotations, 3
translations, and 3 scale factors. Scaling should not be
used if the voxel dimensions are known precisely from
the imaging devices. Scaling parameters can easily be
disabled in our method. In a first step, the first-order
moments, i.e., centers of mass, of the reference and
mobile surfaces are matched. This is used as a fast
automatic method for computing an appropriate start-
ing point for subsequent surface matching. The match-
ing error between transformed mobile vertices and
reference contours is then evalated as a function
(generalized distance) of the values read in the dis-
tance map at the locations of the transformed vertices.
This general method is known as a chamfer-matching
technique [Barrow et al., 1977; Mangin et al., 1994; van
Herk and Kooy, 1994].
In order to allow the robust registration of partial

brain volumes, we propose a new definition for the
generalized distance D. Given a reference volume of
brain contours bounded in the x, y, and z directions by

(xmin, xmax), (ymin, ymax), and (zmin, zmax), and a mobile
surface (a set of vertices)SMob, the generalized distance
is computed as the root mean square of individual
point-to-contour distances, evaluated differently for
two subsets of SMob (S1 and S2 defined below):

D 5
1

card(S1) 1 card(S2)Œ1 o
p[S1

dref
2 (p)2 1 card(S2) dmax

2

with card(S) being the number of elements in a set S
and:

5
S1 5 5p [ SMob; zmin # zp # zmax; ymin # yp # ymax; xmin # xp # xmax 6

S2 5 5p [ SMob; zmin # zp # zmax; yp , ymin 0yp . ymax; xp , xmin 0xp . xmax6

where the (x, y) plane is the reference slice plane and
dref(p) is the distance (read in the distance map with
trilinear interpolation) between a point p in the trans-
formed mobile surface SMob and the reference brain
contours. Points in S1 are within the reference volume
boundaries (xmin, xmax; ymin, ymax; zmin, zmax) and yield
conventional point-to-contours distance measure-
ments. Points in S2 (outside the reference bounds in x
or y but within bounds in z) yield themaximal possible
distance dmax (255 in our implementation) because the
head of the subject should remain within the x and y

Figure 3.
The 3/4/5 chamfer distance transform (a) was originally designed
for isotropic lattices, but is inadequate for data sets in which the
slice thickness is larger than the in-slice resolution (b). Better
approximations of the real Euclidean distance are obtained in (b)
with our anisotropic chamfer distance transform. The largest Euclidean
distance between the center location and one of its neighbors is
scaled to 50; the same scale factor is then applied in the elementary
3 3 3 3 3 lattice to all the other Euclidean distances to the center.
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reference slice boundaries. On the contrary, points in
SMob but neither in S1 nor in S2 (outside the reference
bounds in z, but not in x nor y) are simply undeter-
mined since there are no reference slices at those
particular locations. Hence, these points do not contrib-
ute to the generalized distance, allowing for registra-
tion of partial brain volumes. Because the number of
points participating in the calculation of D varies with
the position and orientation of the mobile surface, D is
not continuous. This prevents the use of conventional
gradient-based minimization techniques.
Powell’s minimization algorithm for nonregular

functions [Powell, 1964; Pelizzari et al., 1989; Press et
al., 1992; van Herk and Kooy, 1994] is consequently
used as a local automatic matching method to mini-
mize the distance between both surfaces. This algo-
rithm consists of iterative uses of a minimization
algorithm for one-dimensional functions along clev-
erly chosen vectors (directions) in the multidimen-
sional parameter space. Its power resides in the use of
linear combinations of the provided parameters as
search directions. This allows the algorithm to find
minima in regions of the 9D search space where
searches along orthogonal directions would not lead.
Like all local algorithms, Powell’s algorithm might

converge to a local minimum of the arbitrarily shaped
distance function, instead of finding the global mini-
mum. Therefore, we devised specific semiautomatic
supervision tools to correct for possible false conver-
gences. Manually chosen 2D sections of the 9D dis-
tance hypersurface show the evolution of the general-
ized distance with the selected parameter (620 mm for
translation parameters, 620° for rotation parameters,
or 60.1 for scaling factors). If necessary, the parameter
value yielding the minimum distance in the 2D section
may be transferred automatically to the corresponding
starting parameter value for Powell’s algorithm to find
the next closest local minimum. This simple supervi-
sion scheme also solves, with minimal user interaction,
the problem of the initial relative positioning of partial
brain scans, for which first-order moment matching
might not yield a satisfactory starting point. The
success of the surface matching can also be checked
visually in fast low-resolution 2D reslicing. Isocon-
tours extracted from the reference data set are dis-
played on the correspondingmobile image to check for
internal structures as well as brain contours. Real-time
3D display of both brain surfaces with mouse-driven
translation, rotation, and zooming also allows inspec-
tion of the registration accuracy and immediate detec-
tion of false convergences.
Finally, our method includes the possibility of elimi-

nating all the points in the mobile surface that are

farther than a specified distance from the reference
surface (outliers) [Mangin et al., 1994]. This step was
usually applied after an initial coarse surface match-
ing. It was included to account for differences in brain
shapes from functional and structural imagingmodali-
ties (e.g., focal cortical hypoperfusion), and can be
introduced during matching to obtain a more precise
final convergence. Its effects can be observed in the 2D
distance sections: small local minima are eliminated
and the slope of the distance function around the
global maximum is increased.
After convergence to the surface-matching process,

the mobile data set was resliced to the orientation and
spatial resolution of the reference data set using trilin-
ear interpolation. The original 16-bit image intensities
were used for reslicing, in order to avoid the potential
loss of quantitative accuracy resulting from the conver-
sion to 8-bit performed prior to image segmentation.

Applications

Our method has been successfully applied to the
registration of MRI, fMRI, pMRI, MRS, and SPECT
scans (Figs. 4, 5). The registration of pMRI or fMRI
with other functional modalities such as SPECT is
performed through two successive registrations. First,
the SPECT volume is registered with a structural MR
localizer volume. Second, this structural MRI is regis-
tered with the fMRI or pMRI, using the relative
positioning known from the scanner as a starting
point. This second registration corrects for possible
small head motion between the structural and func-
tional MR scans. The first structural view from the
functional time sequences (e.g., one of the 40 sequen-
tially scanned MR images forming a single-slice pMRI
map) is used for registration, rather than the postpro-
cessed z-score or perfusion maps.
All six rotation and translation parameters are used

for registration of multislice fMRI and MRI, since the
starting point provided by the MR scanner is usually
quite accurate, making the registration process un-
likely to diverge. Contrarily, only the two translations
within the pMRI slice plane and the rotation about the
axis orthogonal to this plane are used for registration
of pMRI and MRI, because coregistration of a plane
and a volume is particularly ill-posed. We hence
neglect head shifts along the axial direction between
the MRI and subsequent pMRI acquisitions, while we
account for left- or right-sided head tilts. The possibil-
ity of headmotion during the functional time sequence
acquisition, currently being studied in our laboratory,
is not addressed here.
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Figure 4.
Applications of our registration method to a normal volunteer (top
and middle) and to a tumor patient (bottom). Top: An MRI
localizer (middle) was used as fixed reference for registration of
xenon-calibrated HMPAO SPECT, using 3D rotations and transla-
tions (left), and perfusion MRI, using the two translations and one
rotation in the pMRI plane (right). Middle: Functional MRI (left;
right hand finger-tapping task) was registered to the same refer-

ence MRI, using 3D rotations and translations; MR spectroscopy
(right), naturally aligned with the reference MRI, could be corre-
lated to pMRI and SPECT. Bottom: MRI, 201-TI SPECT, and MIBI
SPECT could be registered without manual adjustments during
surface matching, despite anatomical and technical abnormalities (3
blurred slices in each SPECT (not shown), and slight ghost artifacts
in MRI).
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For registration of MRS voxels with functional vol-
umes, such as SPECT, registration is first performed
between SPECT and the 3D MRI localizer for the
spectroscopy voxels. The coordinates of the MRS
voxels, known from the MR scanner in the referential
of the MRI localizer, are then directly known in the
referential of the reconstructed SPECT. Using the MRS
voxel size information provided by the MR scanner, a
3D region of interest is created for accurate quantita-
tive measures from SPECT and MRI within the MRS
voxel.

Validation

The validity of our process was assessed with
simulations, and the combined accuracy of registration
and drawing of regions of interest was assessed with

images from two clinical populations. Validation was
performedwithMRI and SPECT registration, since it is
our most widely used application, and the most
difficult because of the low resolution and contrast of
SPECT.
The first part of our validation addresses the accu-

racy and robustness of the proposed procedure using
MRI and simulated SPECT images. In the following, a
‘‘transformation’’ means three rotations of 65–615°
and three translations of 65–615 mm, performed
by one of the authors (L.C.) and recovered blindly
by another (L.I.) Eleven different transformations
were used. In order to allow accurate SPECT simula-
tions through 3D convolutions, an axial T1-weighted
contiguous MRI covering the whole head and
neck was acquired (TE 5 8 msec, TR 5 500 msec,
0.9375 3 0.9375 3 5 mm3 voxels, 51 slices). The accu-

Figure 5
Superimposed visualization of registered T1-weighted MRI (TE 5 8 msec, TR 5 500 msec,
0.9375 3 0.9375 3 5 mm3 voxels, 1 mm gap) and 99mTc-HMPAO SPECT. Total range of the sagittal
MRI is 6.6 cm (11 slices), and the axial SPECT shows severe frontal hypoperfusion. No manual
adjustment was performed.
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racy of the surface-matching procedure and ACDM
was evaluated by automatically extracting the brain
surface of this volume, truncated to our usual scanning
size (26 slices, from the bottom of the cerebellium to 1
cm from the top of the skull), and by matching this
surface to a transformed version of itself. Additional
errors due to reslicing the MRI surface extraction were
then investigated by reslicing the truncated MRI to
0.9375 3 0.9375 3 5 mm3 voxels according to a given
transformation, automatically extracting its surface
(no manual adjustment), and matching it to the origi-
nal truncated MRI. Additional errors due to low
SPECT resolution were then evaluated by removing
the fat from the full original volume by simple treshold-
ing, reslicing it according to a given transformation,
convolving it by a separable 3D Gaussian of
12.4 3 12.4 3 20 mm3 FWHM, subsampling it to
3.3 3 3.3 3 20 mm3 voxels, automatically extracting its
surface using our SPECT segmentation method, and
matching it to the original truncated MRI. Since we are
only interested in extracting the SPECT brain surface,
it was not necessary to remap the MRI gray/white
matter intensities to typical SPECT counts; however,
eliminating the fat from the T1-weighted MRI prior to
convolution was necessary to avoid spurious SPECT
active spots in the fatty regions of the head. Additional
errors due to noise in SPECT acquisitions were evalu-
ated by adding strong Poisson noise independently to
each voxel of the previous simulated SPECT (variance
equal to intensity of a given voxel) and repeating the
previous steps. Finaly, additional errors due to anatomi-
cal-functional shape differences were evaluated by
truncating the right frontal lobe of the noisy simulated
SPECT by an ellipsoid with diameters of 10 3 20 3 40
mm and repeating the previous steps.
In order to evaluate the combined accuracy of the

registration method, imaging modalities, and manual
drawing of regions of interest with clinical data sets,
MIBI SPECT vs. MRI 1 gadolinium registration was
performed in 6 brain tumor patients. MIBI images are
particularly difficult to register because of their low
contrast and because there is almost no uptake in
normal brain tissue [Chiu et al., 1990]. Images were
registered using automatic brain surface extraction for
MRI (some manual threshold adjustments were re-
quired for SPECT) and the automatic surface-matching
method. The eyeballs were visible in MIBI SPECT as
hypoactive spots, and the choroid plexus of the lateral
ventricles showed high MIBI uptake. These three
structures were outlined independently in both SPECT
and MRI, and distances between the centroids of these
landmarks were measured.

HMPAO SPECT and MRI from 10 subjects (5 nor-
mals and 5 patients with advanced frontotemporal
dementia) were registered using the same analysis
procedure as for the MIBI study. The five pathological
studies were chosen to evaluate the robustness of the
registration method for subjects with very large re-
gions of hypoperfusion in SPECT. Most of the extent of
their frontal lobes showed blood flow below 40% of the
blood flow measured in the primary visual cortices.
Because the shapes of internal brain structures seen in
SPECT do not correlate accurately with their anatomi-
cal counterparts (see the shapes of the basal ganglia
and of the thalami in the top row of Fig. 4), we used
three other objective anatomical landmarks visible in
both MRI and SPECT: the centers of the eyeballs and
the most medial point of the posterior section of the
superior sagittal sinus (SSS). Although it lies on the
brain’s surface, the SSS was used because of the lack of
any other objective MRI and SPECT landmark in the
orbito-meatal plane. Triangles connecting these three
points were drawn independently on MRI and SPECT,
on the highest and lowest slices in which they were
visible. Comparisons of the triangles from SPECT and
MRI allowed measurements of real 3D dismatch. The
distance between the centroids of the triangles and the
maximal distance between corresponding vertices from
both triangles were computed as a measure of accu-
racy. This validation was designed to check all the
registration parameters.

RESULTS

The multimodality registration method presented
has been used with a variety of SPECT agents, and
MRI sequences and orientations, and has never failed
after more than 350 registrations performed. Table I
shows a representative sample of the global processing
time for MRI and SPECT registration with normal
subjects and advanced brain degeneration patients.
These times were measured externally and, for a
multitasking networked system, are about twice the
actual processing times used by our algorithms. The
total registration time in this sample varied from 6–11
min, depending on the size of the data sets and the
specific problems associated with each imaging study.
Registration of the other images presented above
(pMRI, fMRI) was generally easier due to the higher
spatial resolution of these data sets, and usually did
not require user interaction.
Results of the simulations are presented in Table II.

Matching a surface to a transformed version of itself
yielded accuracies of the order of the convergence
criterion of Powell’s algorithm (1.0E-7 in our implemen-
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tation; see Press at al. [1992] and demonstrated the
accuracy of our ACDM-based surface-matching proce-
dure. Errors are larger for Z-translations because of the
larger voxel size in this direction (5 mm slice thick-
ness). After reslicing to MRI resolution, automatic
surface extraction, and matching, the errors obtained
were approximately 10 times smaller than imaging
resolution (to compare rotation and translation errors,
we note that a rotation of 1° would yield a translation
of 1.75 mm at 10 cm from the center). After blurring of
the transformed MRI volumes, the errors remained
approximately 10 times smaller than SPECT resolu-
tion, with the exception of Z-translations, probably
because only 11 SPECT slices did not provide sufficient
information in this direction. Addition of noise to the
simulated SPECTs did not uniformly degrade the
accuracy of the registration, which suggests that our
simple method for extracting SPECT surfaces is ad-
equate. The introduction of a large ellipsoidal defect
finally added errors far below SPECT resolution, and
the parameters recovered with and without the defect
were identical with submillimetric accuracy. This sug-

gests that our elimination of outliers was efficient in
matching surfaces in the presence of anatomical-
functional shape differences.
Results of the MIBI study (Table III) show that the

maximum distance between the centroids of the tri-
angles drawn was in the order of the SPECT resolution
(12.4 mm FWHM). Several slices were blurred in
studies 2, 4, and 6 by patient motion. In addition, the
MRI of patient 4 (presented in the bottom row of Fig. 4)
was slightly blurred. Tumors extending through the
cortex yielded dissimilar brain shapes in SPECT and
MRI (patients 2, 4, and 6; see Fig. 4 for patient 4)
because of different uptake mechanisms for MIBI
[Chiu et al., 1990] and gadolinium [Hasso, 1993].
Despite these difficulties, the average combined accu-
racy of the registration procedure and the drawing of
small regions on SPECT and MRI was approximately
5 mm.
The HMPAO study (Table IV) indicates that the

maximal error in the localization of a precise structure
in SPECT using registered MRI was on the order of the
SPECT resolution. The mean combined registration

TABLE I. MRI/HMPAO SPECT registration times determined for a representative sample of normal subjects, and for
patients with Alzheimer’s disease and fronto-temporal dementia*

Patient

MRI exam
Convert to AVS Extract surfaces Match

Reslice,
2 ways
(min:sec)

Residual
distance
(mm)

Total
timeb

(min:sec)

Thick-
ness
(mm)

Slices
(no.)

MRI
(min:sec)

SPECT
(min:sec)

MRI
(min:sec)

IC
(no.)

ACDT
(min:sec)

SPECT
(min:sec) (min:sec)

ICa

(no.)

Axial proton density
Normal 1 5.0 26 0:45 0:25 1:16 0 0:56 0:45 2:24 0 1:16 1.66 08:47
Normal 2 5.0 29 0:50 0:25 1:30 0 1:01 0:39 2:16 0 1:21 1.76 09:02
Normal 3 5.0 26 0:45 0:25 2:34 1 0:58 0:47 1:45 0 1:13 1.50 09:27
AD 1 7.5 18 0:40 0:25 0:58 0 0:38 0:43 2:37 0 0:52 1.64 07:53
AD 2 5.0 25 0:45 0:25 4:13 3 0:55 0:31 1:36 0 1:10 1.87 10:35
AD 3 5.0 26 0:45 0:25 1:26 0 0:56 0:51 1:32 0 1:14 1.69 08:09
AD 4 5.0 29 0:50 0:25 1:30 0 0:59 0:34 2:05 0 1:22 1.73 08:45
AD 5 5.0 28 0:50 0:25 1:29 0 0:58 1:12 3:38 3 1:20 1.86 10:52
FTD 1 7.5 17 1:45 0:25 0:53 0 0:36 0:37 1:44 0 0:49 1.94 07:49
FTD 2 5.0 26 0:45 0:25 1:19 0 0:57 0:48 2:56 1 1:19 2.05 09:29
Sagittal T1-weighted
AD 6 6.0 11 0:35 0:25 1:10 1 0:23 0:31 1:55 0 0:36 1.98 06:35
AD 7 6.0 11 0:35 0:25 1:01 1 0:22 0:51 1:45 0 0:38 1.87 06:37
AD 8 6.0 11 0:35 0:25 0:38 0 0:22 0:34 1:50 0 0:35 1.65 05:59
AD 9 6.0 11 0:35 0:25 2:00 2 0:23 1:12 2:29 1 0:38 1.84 08:42
FTD 3 5.0 17 0:40 0:25 1:31 1 0:35 0:41 1:34 0 0:45 1.83 07:11
AVS program load time 0:05 0:05 0:15 0:10 0:25 0:10 01:10

Minimum 11 0:35 0:25 0:38 0 0:22 0:31 1:32 0 0:35 1.50 05:59
Maximum 29 1:45 0:25 4:13 3 1:01 1:12 3:38 3 1:22 2.05 10:52
Average 21 0:47 0:25 1:34 0.6 0:44 0:45 2:08 0.3 1:01 1.79 08:23
Standard deviation 7 0:16 0:00 0:50 0.9 0:15 0:12 0:34 0.8 0:18 0.14 01:22

*AD, Alzheimer’s disease; FTD, fronto-temporal dementia.
a IC 5 number of interactive corrections needed (each consists of one intuitive mouse-driven modification of one parameter).
b Total time includes an extra 1:00 for patient and menu selection by unexperienced users.
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and drawing error was ,4 mm, despite the extremely
low uptake in the frontal lobes of patients 8, 9, and 10.
In all difficult cases studied, the interactive correc-

tionmethods proved useful to quickly overcome atypi-
cal difficulties. For example, no more than 10–20 sec of
interaction were needed during supervision of the
surface-matching algorithm, although we observed
initial angles as large as 35° and translations as large as
40 mm.

DISCUSSION

Our registration method has been optimized to
increase the efficiency and robustness of surface-
matchingmethods, particularly with difficult data sets.
All registration steps are automatic, but quick and easy
manual adjustments are available for difficult studies,
making the method more robust with atypical cases.
Automatic surface extraction is up to 20 times faster

than manual drawing (1 min, 40 sec for 30 slices, vs. 1
min at best per slice in manual methods). Automatic
MRI brain surface extraction was achieved for all the
studies regardless of orientation, technical quality, and
anatomical abnormalities. Manual drawing or editing
of brain contours was never needed, and no tool has
been implemented for this function. The fully 3D
morphological approach allows surface extraction from
a single set of images, whereas more classical cluster-
ing methods usually requie multiecho datasets [Arde-
kani et al, 1994]. Our automatic histogram interpreta-
tion eliminated in most cases the need for interactive

threshold adjustments reported previously [Mangin et
al., 1994; Alpert et al., 1996]. Because different MR
sequences yield highly variable histogram shapes, the
automatic interpretation may fail with unusual MR
sequences. However, it rarely fails with the proton-
density MR sequence, for which it was originally
designed. The flat histograms of some images would
also cause failure in modal histogram analysis meth-
ods [DeCarli et al., 1992]. An occasional segmentation
difficulty is the inclusion of part of the eyes in the
extracted brain, due to similar MR signals in the brain
and the optic tracts. It can always be solved by one or
two simple manual threshold adjustments. Similar
difficulties have been reported by Zijdenbos et al.
[1994], who suggested that mathematical morphology
might solve the problem. Contrary to previousmorpho-
logical methods [Mangin et al., 1994; Alpert et al.,
1996], our isotropic morphological operations are
largely insensitive to voxel geometries. Consequently,
modifications of the erosion and dilation parameters
were only necessary when data sets were highly
blurred by patient motion, while Alpert et al. [1996]
reported modifications related to slice thickness. Our
method is indifferent to even gross structural abnor-
malities (Fig. 1), because it only defines the brain as a
central large mid-gray object mostly surrounded by
dark or light layers. The 3D approach allows extraction
of more than one 2D structure in some slices. The
cerebellum and temporal lobes are thus correctly
extracted, although they are three unconnected 2D
objects in the lower axial slices. Our simulations and

TABLE II. Registration accuracy assessed using MRI (0.937 3 0.9375 3 5 mm3 voxels; 51 slices used for simulation of
SPECT through convolution, 26 slices used for surface matching) and simulated SPECT (12.4 mm in-plane FWHM, 20

mm slice thickness; 11 nonuniformly spaced slices with 3.3 3 3.3 3 20 mm3 voxels)*

Rotation-X
(degrees)

Rotation-Y
(degrees)

Rotation-Z
(degrees)

Transl-X
(mm)

Transl-Y
(mm)

Transl-Z
(mm)

1) MRI surface vs. itself displaced Average 1.38E-06 6.86E-07 7.87E-07 6.50E-07 3.71E-07 1.23E-06
Maximum 1.65E-06 2.55E-06 1.40E-06 2.23E-06 1.23E-06 2.10E-06

2) MRI vs. displaced MRI Average 0.07 0.10 0.04 0.02 0.06 0.49
Maximum 0.17 0.25 0.10 0.04 0.30 0.60

3) MRI vs. blurred displaced MRI Average 1.14 0.50 0.91 0.50 1.12 3.79
Maximum 2.39 1.26 1.66 2.14 2.75 5.84

4) MRI vs. blurred, noisy, displaced MRI Average 1.13 1.58 1.29 0.67 1.03 3.15
Maximum 2.47 2.67 2.87 2.38 2.67 5.56

5) MRI vs. blurred, noisy, truncated, Average 1.45 1.93 1.64 0.64 1.16 3.22
displaced MRI Maximum 3.91 3.81 3.44 2.57 3.04 5.66

6) Difference between parameters in Average 0.50 0.57 0.57 0.31 0.21 0.17
4) and 5) Maximum 1.44 2.46 1.39 0.83 0.47 0.84

* Anatomical-functional differences have been introduced (strong uncorrelated noise with variance equal to the mean of each SPECT voxel,
truncation of one frontal lobe by an ellipsoid with 10 3 20 3 3 40 mm diameter) in order to assess the accuracy of our surface extraction and
registration methods with difficult data sets.
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clinical results suggest that this method was also
appropriate for SPECT data sets despite their low
spatial resolution.
Our matching method addresses the two major

problems related to the registration of structural and
functional datasets. First, brain surfaces extracted from
functional and structural modalities do not represent
the same physical reality and exhibit anatomical-
functional shape differences (Fig. 5). We addressed this
problem during surface matching by allowing the
elimination of outliers on the SPECT surface. It proved
efficient in our simulations, and useful in most clinical
cases since even normal subjects do not show a
uniformly perfused cortical rim because of the pre-
sense of nonperfused sulci (see the HMPAO SPECT
image in Fig. 4). Our original generalized distance
definition solves the second most important problem
associated with multimodality registration, which is
the difference of scanning range between modalities.
With our distance definition, even registrations of
partial 6.6-cm-thick (11 6-mm slices; Fig. 5) sagittal
MRIs and partial axial SPECTs are routinely performed
in a fully automatic manner. The longitudinal fissure
yields a very specific surface shape which correctly
guides the matching algorithm. The use of a new and
efficient anisotrophic chamfer distance transform elimi-
nates the need to reslice the image sets into cubic
voxels, the associated loss of information, and the
dramatic increase in computation time.
The provided supervision tools (real-time 3D and

2D displays, and 2D sections of the distance hypersur-
face) proved efficient for the quick detection and
elimination of local minima of the distance function.
With our corresponding distance 2D section, very large
initial angles are immediately visible and can be easily
corrected before launching Powell’s algorithm. This
eliminates the usually tedious and nonintuitive interac-

tion needed to find correct numerical parameter values
for the initial positioning of partial brain scans. How-
ever, like more classical supervision methods such as
multiple starting points or simulated annealing, our
method gives no assurance of convergence towards
the global minimum in a finite amount of time. It is
important to note that this possible problem is not so
much related to how well the algorithms are tuned as
to the variability of the data sets, and the consequent
variability in the shape of the generalized distance
hypersurface. Our supervision scheme, however,
proved efficient in all registrations performed. Our
matching protocol proved automatic, reproducible,
and objective in most cases. In difficult cases involving
data sets of poor technical quality, however, expert subjec-
tivity and manual adjustments are preferable to a failure.
Our simulations were useful for evaluating the

algorithmic accuracy of our registration paradigm, and
our highly abnormal clinical populations demon-
strated the robustness of the method for routine use
with a realistic variety of data sets. ‘‘Residual’’ dis-
tances (i.e., generalized distances between two sur-
faces after surface matching) were not used for valida-
tion because they do not accurately reflect the quality
of a registration process [Hemler et al., 1995]. Our
clinical results suggest that the spatial discrimination
capability of SPECT with the Shimadzu camera was
better than 5 mm when drawing regions on registered
MRI. This combined the accuracy of the registration
method and of the drawing of regions of interest on
SPECT. The accuracy of the registration alone, as
evaluated by our simulations, was typically around
1–2 mm (around 3–4 mm in Z-translation). The simula-

TABLE III. Registration accuracy with MIBI SPECT
images and MRI images from patients with brain tumors

Distances between landmarks in MRI and SPECT

Patient
Left eye
(mm)

Right eye
(mm)

Choroid plexus
vs. ventricles (mm)

1 2.97 3.59 2.70
2 8.74 5.29 1.05
3 1.96 3.54 2.27
4 6.45 4.76 5.17
5 4.36 6.23 3.47
6 7.09 5.93 9.24
Average 5.26 4.89 3.98

TABLE IV. Registration accuracy for HMPAO SPECT
and MRI, using objective anatomical landmarks

Distances between landmarks in
MRI and SPECT

Right eye
(mm)

Sinus
(mm)

Left eye
(mm)

Centroid
triangle (mm)

Normal controls
Minimum 0.94 0.94 0.94 0.70
Maximum 3.87 4.69 4.69 3.80
Average 2.27 2.99 2.65 1.49
SD 0.96 1.07 1.12 0.93

Fronto-temporal dementia (FTD)
Minimum 2.10 0.94 1.33 1.56
Maximum 10.69 10.69 9.65 6.16
Average 6.11 4.84 4.34 2.63
SD 3.34 2.64 2.66 1.26
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tion results were satisying when considering that only
11 slices extracted from a data set with 12.4 3 12.4 3 20
mm3 resolutions were used for mobile surface extrac-
tion, and registered to an MRI with 5-mm slice thick-
ness. The method proved adequately insensitive to the
addition of noise (the noise added in our simulations
yielded images apparently much more degraded than
real SPECT) and to the introduction of a large anatomi-
cal-functional brain shape difference. In this respect, it
would be interesting to compare our method to that of
Friston et al. [1995], using our technically imperfect,
low-resolution data sets. Despite the accurate results
obtained with our simulations, we do not recommend
drawing regions of interest smaller than at least twice
the imaging resolution. Also, the high resolution of
MRI should not camouflage the low resolution of the
original SPECT when interpreting quantitative local-
ized measures. Finally, Strother et al. [1994] argued
that multimodality registration methods based on
comparisons of image intensities would be more accu-
rate than surface-based methods. However, they only
presented registrations of MRI with MRI, MRI with a
displaced simulated PET obtained from the same MRI
without introducing any focal anatomical-functional
dissimilarity, and simulated PET with a displaced
version of itself. Our results, however, suggest that our
new surface-based method is capable of performing
accurate anatomical-functional registrations with real
data sets, in which structure and function may be
significantly uncorrelated (see bottom row of Fig. 4).

CONCLUSIONS

Our method proved robust for mono- and multimo-
dality registration, and addresses some of the prohibi-
tive problems classically associated with registrations
of highly variable populations and imaging tech-
niques. These results were obtained by using several
new and powerful image-processing techniques, in-
cluding truly isotropic 3D morphological operations,
dedicated contour interpolations, dedicated general-
ized distance calculation, anisotropic distance maps,
and new supervisionmethods. Virtually any pair of 3D
images could be registered, despite gross pathological
or technical abnormalities. User interactionswere some-
times required for images of poor quality, but these
corrections were made quickly and easily. No exten-
sive interaction, such as manual (or semiautomated)
drawing of brain contours, manual outlining and
pairing of landmarks, or manual editing of numerical
registration parameter values, was required. Our
method enables a wide range of neuroimaging correla-
tion studies by allowing the combination of structure

(MRI), perfusion (133Xe-calibrated HMPAO SPECT,
and pMRI), focal activation (fMRI, and HMPAO
SPECT), focal functional defects (99Tc MIBI, 201TI and
HMPAO SPECT, and gadolinium MRI), and brain
chemistry (MRS). Correlation of these studies will
enable a better understanding of how all these proper-
ties relate and interact in the normal and pathologic
human brain.
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