Contrast Discrimination Can Explain Orientation Discrimination

Laurent Itti, Christof Koch and Jochen Braun
California Institute of Technology
Computation and Neural Systems Program
Supported by NSF (Caltech ERC), ONR and NIMH

The Problem

Relative increment contrast discrimination thresholds improve with contrast:
- Weber’s (or Guilford’s) law:
 \[\Delta C \propto C^{0.7} \]
 \[\Delta C / C \propto C^{0.3} \]

But orientation discrimination thresholds do not change:
- \[\Delta \theta \propto C^{-0.1} \approx \text{const.} \]

Typical Model of Early Vision

Stimulus \rightarrow Linear filters \rightarrow Non-linearity \rightarrow Peripheral noise \rightarrow Decision of an ideal observer

\[\lambda_i \theta \rightarrow R \lambda_i \theta \]
Psychophysical Decision

Discriminate between stimulus A and B by comparing the filter responses:
\[R^A \text{ and } R^B \]
i.e., thresholds are functions of response differences:
\[\Delta C \propto f_C(\Delta R) \quad \Delta \theta \propto f_\theta(\Delta R) \]

Hence:
\[\Delta \theta \propto C^0 \Rightarrow \Delta R \propto C^0 \]
\[\Delta C \propto C^{0.7} \Rightarrow \Delta R \propto C^{0.7} \]

Consequence for Vision Models

They don’t work!

The Solution?

Discriminate between stimulus A and B by comparing the filter responses:
\[R^A \text{ and } R^B \]
i.e., thresholds are functions of response differences:
\[\Delta C \propto f_C(\Delta R) \quad \Delta \theta \propto f_\theta(\Delta R) \]

But:
\[f_\theta \text{ depends on } C! \]

Slope of orientation tuning curve becomes shallower with C
And the region where f_θ depends most on C is the most informative.

Fisher Information: $J_{\lambda,\theta} = \left(\frac{\partial R_{\lambda,\theta}}{\partial \theta} \right)^2 / R_{\lambda,\theta}$

Model Simultaneously Fits Contrast and Orientation data

Summary

Improvement in $\Delta C/C$ with C suggests that neuronal responses increase with C, but lack of improvement in $\Delta \theta$ suggests they do not.

However, when response is sigmoidal in C, effective tuning curves become shallower with C.

This reduces Fisher information because it reduces $\partial R / \partial \theta$.

Most affected are the neurons which are most informative about stimulus orientation.

Net effect: contrast-dependent change of tuning counteracts increase in response.