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Abstract — We investigate how a simple, physiologically motivated
three-stage neuronal model can establish a quantitative relation-
ship between activities in small populations of simulated early vi-
sual neurons and human psychophysical thresholds. The model
consists of: First, a bank of linear filters tuned for orientation
and spatial period; second, mon-linear interactions between fil-
ters; and, third, a statistically efficient decision stage. The model
quantitatively reproduces human thresholds for five classical pat-
tern discrimination tasks, using a unique set of automatically
determined parameters. The resulting model components are all

plausible in terms of putative neuronal correlates.

1 INTRODUCTION

We propose a framework which tries to draw a consistent con-
nection between neural responses and psychophysical thresholds.
To this end, we have developed a simple computational model,
many components of which are based on what we consider is the
emerging consensus from both the psychophysical and physio-
logical modeling literature [9,10,1,5,11]. Success in reproducing a
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wide range of human thresholds with such a model would provide
evidence for the hypothesis that psychophysical performance for
simple pattern discrimination tasks mainly reflects early neuronal

processing.

All the parameters in the model (11 total) are left freely ad-
justable. Five classical psychophysical experiments [9] — which
investigate largely unrelated tasks such as increment contrast,
orientation and spatial period discriminations — are then used to
automatically constrain all model parameters. This approach has
two goals: First, it will determine which of the model character-
istics are necessary and sufficient to explain the psychophysical
data. For example, is it necessary to assume non-linear process-
ing, or will linear interactions between filters suffice? Second, it
will allow us to study whether the model components inferred
from human psychophysics are plausible in neuronal terms, such
that a close correspondence between early visual neuronal pro-
cessing and psychophysical thresholds can be established. For
example, are the tuning bandwidths of the filters derived from
psychophysical data in agreement with those measured electro-

physiologically?

2 MODEL

The general architecture of the model is presented in Figure 1. In
the first stage, a bank of Gabor-like linear filters analyzes a fixed
location of the visual scene. Thus, the equivalent of one complete
set of orientation columns in V1 is modeled (60 filters total, tuned
for 12 orientations # € © spanning 180 deg and 5 spatial periods

A € A spanning two octaves, and all with overlapping receptive
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Fig. 1. General architecture of the model.

fields). Filters have Gaussian tuning for orientation and log spa-
tial period, such that the linear response )y of a unit tuned to
(A, 6) to a stimulus of contrast Cg, period Ag and orientation fg

is given by:
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where A is a constant gain coefficient, and € a small constant to

account for background activity.

In the second stage, filters non-linearly interact as follows: (1)
Each unit receives non-linear self-excitation, and (2) each unit
receives non-linear divisive inhibition from a pool of similarly-
tuned units: With E) g given above for a unit tuned to (), §), the
pooled response is given by:
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is a 2D Gaussian weighting function centered around (A, ), and
n a positive constant to account for background activity in the

pooling stage.

This stage is inspired from Heeger’s popular model of gain con-
trol in cat V1 [3,10,1]. Our formulation, in which none of the
parameters is given a particular value, however allows for mul-
tiple outcomes, to be determined by fitting the model to our
psychophysical data: A sigmoidal (S > 0,7 > 4) as well as sim-
ple power-law (S = 0,7 > §) or even linear (S = 0,7 = § + 1)
response characteristic could emerge, the responses could be sat-
urating (v = 4) or not (y > §), and the inhibitory pool size
(X, %) could be broad or narrow. Because striate neurons are
noisy, physiological noise is assumed in the model at the outputs
of the second stage. The noise level is chosen close to what is
typically observed in cortical pyramidal cells, i.e., with variance
equal to the mean taken to some power « =~ 1 [8] determined by
fitting.

Because the decision stage — which quantitatively relates the ac-
tivity in the population of noisy units in the second stage to be-
havioral discrimination performance — is not fully characterized
in humans, we are not in a position to model it in any detail. In-
stead, we trained our subjects (for 2-3 hours on each task), and
assume that they perform close to an “optimal detector”. Such
optimal detector may be characterized in a theoretical manner,

using the framework of Statistical Estimation Theory (see ref. [4]



for theoretical details). Let’s assume that a brain mechanism ex-
ists, which, for a given stimulus presentation, builds an inter-
nal estimate of some stimulus attribute { (e.g., contrast, orienta-
tion, period). The central assumption of our decision stage is that
this brain mechanism will perform close to an “unbiased efficient
statistic T”, which is the best possible estimator of { given the
noisy population response from the second stage. The accuracy
with which 7" estimates ( can be computed formally. Simply put,
this means that, from the first two stages of the model alone, we
have a means of computing the best possible estimation perfor-
mance for ¢, and consequently [2], the best possible discrimina-
tion performance between two stimuli with parameters (; and (s.

T is readily implementable as a neural network [6].

3 RESULTS and CONCLUSION

The 11 model parameters (the gain A of the linear stage, both
tuning widths o), gg, both pooling widths X3y, >4, excitatory and
inhibitory exponents -, §, background activities €, n of the linear
and of the pooling stage, activity-independent inhibition S, and
noise exponent «) were automatically adjusted — using a 11-D
downbhill simplex [7] with simulated annealing overhead — such as
to find the best fit of the model to the data (in the root-mean-

square sense).

Remarkably, the model was able to simultaneously reproduce all
the data, using a unique set of parameters (Figure 2). All pa-
rameters were constrained by the data and converged to rea-
sonable values: The neuronal response as a function of contrast

had the classical non-saturating sigmoidal shape; the orienta-
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Fig. 2. Results of the automatic fitting of model parameters to human psychophys-
ical data (two-alternative forced-choice paradigm, 2AFC) for five classical pattern
discrimination tasks (one subject). For each experiment, both stimulus alternatives
are shown (e.g., in Exp. 1, observers discriminate between a Gabor patch with fixed
“pedestal” contrast and a second patch with slightly higher “pedestal+increment”
contrast. Threshold is the value of the increment contrast yielding 75% correct dis-
crimination). In Exps. 1-3, stimulus period is 2.8 cycles-per-degree (cpd). In Exp. 4
the mask is a Gabor patch with 50% contrast, 2.8 cpd period and variable orienta-
tion, and in Exp. 5, it has 50% contrast, variable period and 15 deg from vertical
orientation. The shaded areas represent envelopes of all of the model predictions,
when the model parameters were allowed to vary around their best-fit point such as
to yield fitting errors lesser than 110% (narrow envelopes) or 150% (wider envelopes)
the best-fit residual error. The regions of the datasets in which the envelopes are
narrower around the best-fit curve more strongly constrain the model.

tion tuning full-width at half-maximum (FWHM) was 37deg for
the linear units, yielding an FWHM of 24deg after pooling; spa-
tial period tuning was 1.15 octaves before and 0.7 octaves af-

ter pooling; a narrow inhibitory pool was found for orientation



(FWHM=29deg), probably because no cross-orientation inhibi-
tion was observed in our data (Exp. 4), and a broad pool was
found for spatial period (FWHM=5 octaves); finally, the noise

level was slightly supra-Poisson (variance=mean'‘!).

Our success in reproducing a broad range of apparently unre-
lated human thresholds reinforces the idea that these thresholds
result mainly from the earliest stages of visual processing. While
our model was general enough to yield many functionally differ-
ent outcomes, we found that one outcome — in good agreement
with previous psychophysical and electrophysiological studies —
emerged from an automatic best-fit of the model to our psy-
chophysical data. In addition, our statistically efficient decision
stage appeared as a particularly well suited tool for quantita-
tively relating neuronal population responses to psychophysical
thresholds, using exactly the same theoretical assumptions for a

potentially unlimited number of tasks.
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