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Abstract— The U.S. Defense Advanced Research Projects 

Agency’s (DARPA) Neovision2 program aims to develop artificial 
vision systems based on the design principles employed by 
mammalian vision systems.  Three such algorithms are briefly 
described in this paper. These neuromorphic-vision systems’ 
performance in detecting objects in video was measured using a 
set of annotated clips.   This paper describes the results of these 
evaluations including the data domains, metrics, methodologies, 
performance over a range of operating points and a comparison 
with computer vision based baseline algorithms.  

Keywords—Neuromorphic vision, object detection, recognition, 
video analysis, performance evaluation 

I. INTRODUCTION 
DARPA’s Neovision2 program’s goal is to emulate the 

mammalian visual pathway by implementing advanced models 
and algorithmic emulations of the entire visual pathway - from 
retina to the visual cortex. The objective of the effort is to 
explore the potential for such neuromorphic systems to surpass 
regular engineering approaches by achieving significant 
improvements in size, weight, power, and performance.  Five 
neuromorphic vision algorithms were developed under this 
program with an objective of detecting a specified set of objects 
typically seen in aerial images and video in urban environments.  
Manually annotated video clips were used to train these systems 
and a separate test set was used to quantify their performance. 
Two baseline algorithms based on the Deformable Part Model 
algorithm by Felzenszwalb [1] representing typical computer 
vision methods were also implemented to serve as a benchmark 
for comparing the performance of neuromorphic methods.  In 
this short paper we provide a system-level description of three 

representative neuromorphic algorithms and a baseline 
algorithm, the datasets used for training and testing, 
performance measures, evaluation methodologies, and the 
results of these evaluations. 

II. NEUROMORPHIC ALGORITHMS 
We briefly describe three neuromorphic algorithms in this 

section.  

A. HRL’s Neuromorphic Image and Video Analysis (NIVA) 
A team led by HRL Laboratories, LLC (HRL) included 

participants from New York University, Johns Hopkins 
University, MIT, Brown University, Yale University, Argon ST 
and Imagize, LLC. Our team successfully developed a real-
time, accurate, and low-power neuromorphic solution for 
automated object recognition in images and videos [2,3].  Our 
system called NIVA (Neuromorphic Image and Video 
Analysis) is an autonomous object recognition system based on 
a visual cognition architecture (Fig. 1) that replicates the ventral 
(what) and dorsal (where) streams of the mammalian visual 
pathway by combining retinal processing (I), form- and motion-
based object detection (II, III, IV) and convolutional neural nets 
based object classification (V) for unprecedented fast and 
accurate object recognition. This architecture is fundamentally 
different from raster-scan-like processing and engineered 
feature extraction of traditional computer vision and Automatic 
Target recognition (ATR) methods.  

The front-end retinal-processing function (I) emulates the 
mammalian retina’s unique properties of adaptability to 
illumination variation. In this program, our team developed a 



hybrid EO/IR retinal camera (5.6Mpixel EO, 0.3Mpixel IR) that 
performs retina-like image enhancement of the incoming video 
in real time. The intermediate object detection module (II, III, 
IV) processes the output of the retinal stage to extract object 
regions. In its simplest form, this function computes tight 
bounding box regions around potential objects in the image via 
a fast, parallel, feed-forward step. It combines form-based 
detection that employs bio-inspired attention approaches to 
detect entities based on form (e.g., shape, color, intensity) and 
motion-based detection mediated by spatial attention. A typical 
example result of object detection is shown in Fig. 2. The final 
object classification module (V) then classifies the detected 
object regions into one of several pre-defined object class (e.g., 
car, person, and truck). The classification step uses a feed-
forward multi-layered convolutional neural net [4] approach that 
is fast, efficient and inherently parallel. These networks are 
inspired by the architecture of mammalian visual pathways, and 
consist of alternating stages of layers of simple cells followed by 
complex cells. As the visual information goes through the stages 
of processing, the extracted features become more global and 
invariant. Our team mapped the above neuromorphic 
architecture and algorithms to commercially available off-the-
shelf hardware. The dynamic power requirement for the 
complete NIVA system that includes retinal camera, object 
detection and classification was measured by DARPA at 21.7 
W. This corresponds to an equivalent energy consumption of 5.4 
nJ per bit. 

In summary, HRL’s NIVA is a real-time, accurate, and 
ultra-low power autonomous video object recognition system 
that is suitable for on-board and off-board processing of live or 
recorded images and videos. It is agnostic to both data 
resolution and type and can be hosted on off-the-shelf 
hardware, making it practical and applicable for mainstream 
use. 

 

 
Fig. 1.  HRL’s NIVA integrated visual cognition architecture that emulates 
mammalian dorsal and ventral visual functions. Five functional components I-
V unify the state of the art in retinal processing, object detection and 
classification. (LGN: Lateral Geniculate Nucleus,  V1-V4: Visual Cortex, MT: 
Middle Temporal, MST: Medial Superior Temporal, SC: Superior Colliculus, 
PPC: Posterior Parietal, IT: Infero-Temporal). 

 
Fig. 2.  HRL’s NIVA object detection (II, III, IV) example by fusion of form 
and motion pathways. Input image (top left) is processed by separate and 
parallel pathways for form (top right) and motion (bottom left). The detections 
for each pathway are fused (bottom right) and then subsequently classified.  

B. Neuromorphic Enhancement and Hierarchical 
Decomposition. 
Teledyne Scientific, with a team of academics (Duke, 

Georgia Tech,, Harvard, Penn State, Vanderbilt, University of 
Ljubjana and York University) and industry partners (Sarnoff 
and Markury Scientific), developed and demonstrated an object 
recognition solution that achieved real-time performance on 
complex object recognition tasks. Our approach to achieving 
this performance was the development of an architecture that 
emulates the neuromorphic and computational principles 
present in the mammalian visual pathway to support tactically 
relevant accuracy and unsurpassed robustness (see Fig. 3). 

Our model for early stages of processing in the retina and 
lateral geniculate nucleus (LGN) is based on the pioneering 
work of Stephen Grossberg [5,6]. The early vision system model 
conditions the image by discounting illumination effects, 
enhancing color contrast and mitigating imaging artifacts [7,8,9] 
such as atmospheric transmission/contrast loss. We model 
processing in the primary visual cortex (visual area V1) as a 
multi-scale, multi-orientation log Gabor filtering process that 
delineates object boundaries that serve as the foundation for 
shape-based recognition. Next, we utilize mechanisms of multi-
scale spatial facilitation, inspired by processes in V2, to enhance 
and complete edges, while minimizing the impact of noise. We 
employ a model of saliency proposed by [10] to allocate 
resources and processing in V2 and beyond (“Priming” box in 
Fig. 3).  This attention model selects image regions that are the 
most likely to contain objects of interest based on a self-
information metric and image statistics. Processing akin to that 
found in area V4 of the visual system is captured by the learned 
hierarchy of parts (LHoP) algorithm [11]. LHoP hierarchically 
decomposes objects into libraries of reusable parts.  At each 
level of the hierarchy, objects are described using combinations 
of parts from a previous level. Activations across the hierarchy 
of parts is used to define a rich feature set for attended objects 
which is analyzed at the IT stage by an ARTMAP-based pattern 
recognition stage. ARTMAP [12] is modeled after 
computational principles in cortical areas involved in learning 
and retrieval of patterns for stored memories and associations. 
In our system, ARTMAP serves as the final stage to assign 



object categories (labels) to the activated features in the 
hierarchy of parts stage (V4). 

We adopted a novel approach for training our system. 
Rather than using hand-labeled imagery, we learned part 
libraries from 2D projections of 3D models of figures and 
vehicles drawn in Google Sketchup. 

 
Fig. 4 shows intermediate results from our algorithm. First, 

our retinal and LGN algorithms work together to enhance scene 
contrast, level dynamic range and encode color contrast 
information across three color channels (left).  Next, we extract 
edges at multiple scales in each image and aggregate the results 
(middle left). For each patch identified by our attention 
algorithm, we use a hierarchical library of flexible parts (middle 
right) to encode each object (right).  Once the object is encoded 
using the part library, we use the vector of part activations with 
the ARTMAP classifier to classify the object.  

 
Fig. 3.  Teledyne’s  Neuromorphic  Enhancement  and  Hierarchical 
Decomposition object recognition architecture. 

 
Fig. 4. Processing pipeline for Teledyne's neuromorphic enhancement and 
hierarchical decomposition. 

C. USC’s Cognitive Scene Understanding System. 
The team led by The University of Southern California 

(USC) included participants from MIT, Brown University, 
Caltech, Penn State University, Duke University, UC Berkeley, 
Arizona State University, Queen’s University and Imagize. The 
developed algorithm implements many of the known 
components of human visual intelligence [13], including rapid 
processing of the gist of a scene, visual attention, object 
recognition, multiple-object tracking, and a spatial working 
memory (Fig. 5). 

 

 

 
Fig. 5. Flow diagram of the USC algorithm. 

Briefly, the algorithm operates as follows: Input video is first 
subjected to a coarse but rapid feature extraction stage that 
operates over the entire visual field in parallel. Features 
extracted include gist features (which provide a prior as to where 
and which objects of interest might appear based on global 
statistical analysis of the image) [14], visual saliency features 
[15], motion features, early-stage HMAX features [16], and fast 
but crude object recognition features [17]. These features all 
combine into guiding an attention spotlight towards the image 
locations more likely to contain objects of interest. As the 
spotlight shifts over these locations in turn, each is coarsely 
segmented and sent to the central working memory. This 
memory maintains a list of known (and tracked) entities (Fig. 6). 
It implements a probabilistic Bayes filter, such that, on every 
new video frame, it guesses where each tracked entity might 
have moved, and then confirms or corrects these guesses using 
the new incoming data. The filter also builds over time a belief 
distribution over object categories for each tracked entity. A 
parallelized object recognition pipeline based on the HMAX 
algorithm [16] attempts to recognize each of the known entities, 
augmenting their representation with a probabilistic class label 
as soon as sufficient confidence has built up about this label. 
Finally, confidently attended to, recognized, and tracked objects 
in the 2D images are further validated against an incrementally 
built 3D world model in working memory.  

The component algorithms can be composed in different 
arrangements thanks the development of the Neuromorphic 
Robotics Toolkit, a Blackboard-based message passing 
framework that operates on clusters of CPU, GPU, and FPGA 
hardware. Source code is freely available from the authors.  



 

 
Fig. 6. Examples of detections with the USC algorithm on Heli clips. Black 
boxes have been attended to but classified as background and are eliminated 
from final output. Blue: cars; Yellow: humans; Pink: bicycles. 

III. BASELINE COMPUTER VISION ALGORITHM 
The neuromorphic vision algorithms’ performance in 

recognizing several object classes in video were compared 
against a baseline computer vision object recognition algorithm.  
The baseline algorithm is based on deformable part models [1].  
The algorithm is implemented on a CUDA (Compute Unified 
Device Architecture) platform for GPUs trained to recognize 
objects.  Each object class for each data domain (described in the 
next section) was trained using hundreds of positive and 
negative examples.  By focusing on foreground objects after 
background subtraction, substantial speedup and power savings 
were achieved.  Results are presented in Section V. 

IV. DATA DOMAINS AND ANNOTATION METHODOLOGY 
To evaluate the performance of these algorithms, video from 

three data domains were captured.  Two datasets of 100 video 
clips each were captured from two data domains which are 
labeled as Tower and Helicopter. The tower dataset is filmed 
from a fixed camera on top of the Stanford University Hoover 
tower and the Helicopter dataset is filmed from a helicopter 
flying over Los Angeles. In both cases, the 1080p video imagery 
is converted to 8 bit PNG frames for analysis. A third dataset 
from DARPA TAILWIND (Tactical Aircraft to Increase Long 
Wave Infrared Nighttime Detection) program is captured from 
an airplane operating at two different altitudes. Characteristics 
of these datasets are summarized in Fig. 7.  Human annotators at 
VideoMining Corporation labeled ten object classes (Boat, Car, 
Container, Cyclist, Helicopter, Person, Plane, Tractor-Trailer, 
Bus, and Truck) in these datasets. Each object is enclosed in an 
oriented rectangle that best encompasses the object.  Ten percent 

of the datasets are annotated by two independent annotators and 
their outputs are compared to assess quality and consistency of 
annotations; significant differences between the two sets trigger 
a review of the annotation process to assure annotation quality.  
Each annotated dataset is divided into training and test sets.  The 
Tower and Helicopter training sets are available for download 
from http://ilab.usc.edu/neo2/dataset/. The test datasets are also 
available upon request.  Additional details of the imagery, the 
platforms used to collect them, and the annotation guidelines are 
also available at the same site. 

 
Fig. 7. Representative images from the three data domains and their 
characteristics. 

V. PERFORMANCE EVALUATION 
Since the data source characteristics and perhaps the 

corresponding Neovision2 systems are different for the three 
data domains, the performance of the systems are evaluated and 
reported separately for each domain. The evaluation 
methodology is based on the VACE (Video Analysis for Content 
Extraction) performance evaluation described in [18].  The 
performance of the system in detecting each of the object classes 
is evaluated independent of other classes using Normalized 
Multiple Object Thresholded Detection Accuracy (NMOTDA, 
defined later in this section), missed detects and false positives.  

A Neovision2 object is denoted by a class ID and a bounding 
box (4 corners in (x, y) pixels in a frame, where (0,0) is the top 
left corner of the frame.). The following notations are used:  

• Gi
(t) denotes the ith ground-truth object in frame t. 

• Di
(t) denotes the ith detected object in frame t. 

• NG
(t) and ND

(t) denote the number of ground-truth 
objects and the number of detected objects in frame t, 
respectively. 

• Nframes is the number of frames in the video sequence. 

A. Spatial Overlap Threshold for Scoring Object Detection  
We use the spatial overlap between a pair of ground-truth 

object and a system output object for detection scoring. For a 
pair of Gi

(t) and Di
(t) , the overlap ratio is calculated as: 

 
)()(

)()(

tioOverlap_Ra
t

i
t

i

t
i

t
i

DG

DG




=                     (1) 

An oriented ground truth box is converted to a corresponding 
vertical box (minimal vertical rectangular envelope) before it is 

http://ilab.usc.edu/neo2/dataset/


compared with the system output using Eq. 1. An object 
instance is considered as detected if the Overlap_Ratio is 
greater than or equal to a preset value of 0.2. 
 

In each frame there can be multiple instances of the same 
object class, for example, N cars represented by N ground truth 
boxes.  A Neovision2 car detection system may output M boxes 
for this image.  Ideally M is equal to N but in general it may be 
less or more than N.  We must first assign the system output 
boxes to the corresponding ground truth boxes in a one-to-one 
fashion. Even when N=M there are N! possible combinations of 
such assignments. When N is not equal to M we have unmatched 
boxes.  Our assignment algorithm finds the matching pairs that 
maximize the detection performance measure using a numerical 
search algorithm that guarantees arriving at one optimal solution 
[19].  Once these unique assignments are made we apply the 
Overlap_Ratio threshold for each matched pair. If the ratio is 
greater than the threshold the object is considered detected and 
a score of 1 is assigned.  Each ground truth box that has no 
matching pair or a match with a spatial overlap of less than 20% 
is a Missed Detect. Similarly, each system output box which has 
no matching pair or a match with a spatial overlap of less than 
20% is a False Positive.  

B. Performance Measure for Sequence 
Performance measure for a sequence is obtained by 

matching the ground truth and system output at each frame from 
that sequence. Aggregating these overall images in the entire 
sequence, we get the Normalized Multiple Object Thresholded 
Detection Accuracy, NMOTDA given by  
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where cm and cf are the cost functions for missed detects and 
false positives, m(t) and f(t) are the number of missed detects and 
false positives in frame t in the sequence. The summations are 
carried out over all evaluated frames.  In Neovision2 
evaluations, the cost functions cm and cf are set equal to 1.  This 
is a sequence-based measure which penalizes false detections, 
missed detections and object fragmentation. Note that 
maximizing NMOTDA for the sequence is the same as finding 
the optimal assignment of ground truth boxes to system output 
boxes at each frame image.  NMOTDA has a range of 1 (best) 
to -∞. 

C. Performance Measure for Domain 
In each data domain, multiple sequences are used for 

evaluation. The summary of the performance over the entire 
dataset, i.e., over all the video clips, is calculated using Weighted 
NMOTDA (WNMOTDA). WNMOTDA is calculated for each 
class separately and is given by, 
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where WNMOTDAi is the NMOTDA for class i (boat, car etc.) 

calculated over all the video clips, NMOTDAij is the NMOTDA 
measure calculated for class i in video clip j, NVC is the number 
of video clips, and NGTij is the number of ground truth objects 
of class i in video clip j. 

Finally an Average WNMOTDA score is generated for all 
object classes for each domain using Eq. (3) by ignoring the 
class labels.  However, before scoring identical boxes are 
merged into one. Overlapped boxes (if Overlap_Ratio is over 
20%) are merged into one and their union is used instead. 

VI. RESULTS OF PERFORMANCE EVALUATION 
The results of formal performance evaluation using the test 

set are shown in Figs. 8 and 9.  The three neuromorphic systems 
are labeled as Team A (HRL), Team B (USC), and Team C 
(Teledyne) in these figures.  These results are summarized as 
WNMOTDA scores for each domain in Fig. 8.  Each symbol 
represents the WNMOTDA value of an object class, e.g., Truck.  
These results show that neuromorphic vision systems’ 
performance is on par with the baseline computer vision 
algorithm.  In addition to these software performance 
evaluations, neuromorphic systems’ energy consumption was 
measured during live processing. These results are summarized 
in Fig. 9 using Average WNMOTDA scores.  These results show 
that neuromorphic systems’ energy consumption is four orders 
of magnitude lower than conventional systems. 

This research has demonstrated that neuromorphic 
computing has the potential to enable autonomous and low-
power capability on board a UAV such that only relevant results 
of interest need to be transmitted to the ground station, thereby 
reducing both the requirements for data bandwidth and analyst 
man power. 

VII. SUMMARY AND CONCLUSIONS 
In this paper, we presented three neuromorphic object 

recognition algorithms built to emulate the mammalian visual 
pathways.  The performance of each algorithm was evaluated 
using annotated test sets from three domains.  The results were 
compared with the baseline computer vision algorithm.  These 
demonstrate that neuromorphic systems perform on par with 
baseline computer vision algorithms in object recognition tasks.  
Energy consumption tests confirmed their substantial advantage 
over traditional approaches.  

  



 

 

 
Fig. 8. Results of performance evaluation of neuromorphic and computer 
vision baseline algorithms on Helicopter, Tower and TAILWIND datasets. 
Each symbol represents the WNMOTDA value of an object class, e.g., Truck. 
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