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Although attention profoundly alters visual perception1, it is not
equally important to all aspects of vision. For example, attention
is of little or no help to many detection tasks (for example, detect-
ing a luminance increment2), and the degree to which it benefits
discrimination tasks varies widely with the discriminated attribute
(for example, discriminating color, orientation, form3,4). Here
we report how attention alters thresholds for discriminating con-
trast, orientation and spatial frequency of simple patterns. Based
on earlier work, we expected markedly different effects on dif-
ferent thresholds5. In addition, we describe how attention changes
thresholds for detecting one pattern in the presence of another,
superimposed pattern of different orientation or spatial fre-
quency. Together, these measurements characterize the visual
mechanisms that underlie basic pattern vision.

Perceptual thresholds for stimulus contrast, orientation and
spatial frequency have been studied for several decades6–8. Quan-
titative accounts of these thresholds have become increasingly
refined and usually involve a population of ‘noisy filters’ tuned
to different orientations and spatial frequencies. Although ear-
lier models postulated filters that are independent of each other,
there are serious shortcomings to this approach9,10. More recent
models postulate an interaction between filters with spatially
overlapping receptive fields11–13, specifically, the normalization
of individual filter responses relative to the total response of the
local filter population (‘divisive inhibition’14). This normaliza-
tion accounts naturally for several otherwise puzzling observa-
tions, among them the initial decrease and later increase of
contrast discrimination thresholds with increasing stimulus con-
trast12,13 (‘dipper function’6,8) and the relative constancy of ori-
entation and spatial frequency thresholds over a wide range of
stimulus contrasts9,15.

An intriguing parallel to these perceptual accounts can be
found in certain models of visual cortical responses to stimulus
contrast and orientation16,17. Despite marked differences in detail,
the models in question consider a population of neurons with
overlapping receptive fields, broadly tuned to a range of differ-
ent orientations, and normalize individual responses relative to
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the population response. The normalization, which in some cases
is implemented as a divisive inhibition, sharpens orientation tun-
ing16 and renders it less dependent on stimulus contrast17. Thus,
both perceptual and neuronal sensitivity to contrast and orien-
tation seem to involve response normalization.

Here we report that attention modulates the response nor-
malization that seems to underlie basic pattern vision. We reach
this conclusion by comparing attentional changes in human
thresholds to predictions of a computational model based on
response normalization. Our model is similar to several oth-
ers11–13,17 and comprises three stages: a population of overlap-
ping filters responsive to different orientations and spatial
frequencies at one visual location, non-linear interactions among
this population to carry out the normalization and an ‘ideal
observer’ decision that discriminates between stimulus alterna-
tives on the basis of the maximum likelihood and is limited only
by noise. Our observations are consistent with an attentional mod-
ulation of the second, but not the first or third, stage of the model.

RESULTS
Psychophysics
Although visual thresholds are usually measured when stimuli
are fully attended, here we use a concurrent task to establish
thresholds when stimuli are at best poorly attended4,18,19. The
concurrent task in question forces observers to withdraw atten-
tion from peripheral stimuli and to focus on stimuli near fixa-
tion (Fig. 1, Methods). This psychophysical manipulation is
highly effective and causes substantial perceptual deficits in the
periphery similar to the deficits obtained after a lesion in visual
cortical area V4 of the monkey19. However, the perception of
peripheral stimuli is not entirely abolished. Practiced observers
enjoy a significant residual vision outside the focus of attention
and render reliable threshold judgments about peripheral stim-
uli, especially when the display is uncluttered and contains only
a few salient stimuli4.

Observers discriminated contrast, orientation or spatial fre-
quency of a luminance-modulated pattern appearing at varying
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locations of 4° eccentricity (peripheral target; Fig. 1a). To draw
attention away from this pattern, we asked observers to discrim-
inate whether five shapes near fixation (central targets) were the
“same” or “different”. When observers carried out both tasks,
they concentrated attention on the central task, which they were
instructed to consider the primary task, and thus left the periph-
eral target poorly attended (double-task
thresholds). In contrast, when observers
viewed the same display but performed
only the peripheral task, they fully attended
to the peripheral target (single-task thresh-
olds). The comparison of single- and dou-
ble-task thresholds reveals if and how
attention alters visual perception.

We compared five types of thresholds
under single- and double-task conditions
(Fig. 2a–e). When peripheral targets were
fully attended, contrast detection thresholds
(zero mask contrast) were about 20% lower,
and contrast discrimination thresholds
(mask contrast greater than zero) about
40–50% lower than when peripheral targets
were poorly attended (Fig. 2a). In addition,
the decrease of the discrimination threshold
as mask contrast increases from zero (dip-
per) was evident only when targets were
fully attended. Note that the target position
varied from trial to trial (to forestall eye
movements) and that positional uncertain-
ty of this kind is known to reduce the dip-
per20–22. Therefore, it is possible that our
data underestimate the depth of the dipper.

The effects of attention on spatial fre-
quency and orientation discrimination were
even more pronounced (Fig. 2b and c).
Spatial frequency thresholds were about
60% lower and orientation thresholds
about 70% lower when peripheral targets
were fully attended compared to when they
were poorly attended. Note that both types
of thresholds remained essentially constant
for contrast values above 20%.

Interactions between superimposed
stimuli of different orientation or spatial fre-

quency (target and mask; Fig. 2d and e) were also altered by atten-
tion. When target and mask had similar orientation or spatial fre-
quency, attention lowered the maximal threshold by about 50%
(consistent with Fig. 2a, mask contrast 0.5). As target and mask
became progressively more different, fully and poorly attended
thresholds decreased toward the same baseline level. The baseline
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Fig. 1. Measurement of visual thresholds with either full or poor atten-
tion. (a) Sequence of fixation, stimulus and mask displays (schematic).
Observers fixate the center of all displays. The stimulus comprises a
central and a peripheral component, which appear at varying locations
of constant eccentricity. The central component consists of 5 Ts and/or
Ls (central targets) and observers report “same” (that is, 5 Ts or 5 Ls)
or “different” (that is, 4 Ts + 1 L or 4 Ls + 1 T). The peripheral compo-
nent consists of the luminance-modulated patterns shown in Fig. 2a–e
(peripheral target). For example, the peripheral component might be a
grating pattern of vertical or tilted orientation, in which case observers
would report “vertical” or “tilted.” The mask display limits visual persis-
tence of central targets. (b) Single task (peripheral target ‘fully
attended’), observers fixate the center but respond only to the periph-
eral task (see Fig. 2). (c) Double task (peripheral target ‘poorly
attended’), observers fixate the center and respond first to the central
task and second to the peripheral task.

Fig. 2. Single- and double-task thresholds compared. Five types of thresholds were measured. In
each case, observers discriminate between two alternative forms of the peripheral (4° eccentric-
ity) target. Filled and open symbols represent fully attended (single-task) and poorly attended (dou-
ble-task) thresholds, respectively (mean and standard error of two observers). Solid and dashed
curves represent the corresponding model predictions. (a) Contrast detection and discrimination.
Observers report the presence (arrows) or absence of a vertical target stripe from a circular
masking pattern (contrast range 0.0–0.5). (b, c) Spatial frequency and orientation discrimination.
Observers report whether a circular target grating (contrast 0.02–0.8) exhibits higher or lower
spatial frequency (b) or whether its orientation is vertical or tilted clockwise (c). (*) indicates fur-
ther data points off scale. (d, e) Orientation and spatial frequency masking. Observers report the
presence (arrows) or absence of a vertical target stripe from circular masking patterns (contrast
0.5) of different orientation (difference range 0–90; d) or different spatial frequency (difference
range –1 to +1 oct; e). (f) Model parameters of plausible fits computed separately for single- and
double-task data. Although all 10 parameters are permitted to differ, most parameters do not dif-
fer significantly (n.s.). 
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was comparable to thresholds without mask (Fig. 2a, mask con-
trast 0), indicating minimal interactions between targets and
masks of very different orientation or spatial frequency.

Model
The visual thresholds measured here are thought to reflect the
activity of a population of ‘noisy filters’ selective for stimuli of
different orientations and spatial frequencies7,8. We define a fil-
ter tuned to orientation θ and spatial frequency ω by

where Eθ,ω is the linear response, cs, θs and ωs are the contrast,
orientation and spatial frequency of the stimulus, A is the con-
trast gain, B is the background activity, and σθ and σω are the
sharpness of tuning (for a sinusoidal grating stimulus). When
the properties of such filters are inferred from behavioral thresh-
old measurements, they tend to match the response properties
of neurons in visual cortical areas V1 and V2 (refs. 23–25).
Accordingly, each visual filter is thought to correspond to a pop-
ulation of visual cortical neurons tuned to a particular orientation
and spatial frequency.

Can the observed effects of attention be understood simply as
a change in the properties of individual visual filters? To answer
this question, we first examined the case in which filters are inde-
pendent, so that the output of each filter, Rθ,ω, is a monotonic (and
perhaps non-linear) function of its linear response, Eθ,ω. We also
assume that the variance of the filter output, V2

θ,ω, is given by

where β is the ‘light noise’ and ε is the ‘dark noise’. This approx-
imates the response variance of visual cortical neurons25. Given
these assumptions, the observed 20% difference between con-
trast detection thresholds with full and poor attention implies
(see Methods) that either the gain A decreases or the light noise
β increases by about 20%. The 60% to 70% difference in spatial
frequency and orientation thresholds, on the other hand, cannot
be explained by a 20% change in A and/or β. To account for all
observations, we must therefore assume that attention alters not
only the contrast gain or noise level of visual filters, but also their
tuning widths, σθ and σω, for orientation and spatial frequency.

Next we analyzed a more complex model, which also proves to
be consistent with attentional changes of both gain and tuning
(Fig. 3). The first stage of this model consists of a population of
overlapping linear filters responsive to different orientations and
spatial frequencies at one visual location (Eq. 1). The second stage
assumes that filters are not independent but interact so as to nor-

malize individual responses relative to the filter population.
Specifically, second-stage responses, Rθ,ω, are obtained by sub-
jecting first-stage responses, Eθ,ω, to a power law followed by divi-
sive inhibition:

The exponents of the power law, δ and γ, are of particular
consequence: their absolute values govern the strength of the
interaction between filters, and their difference determines the
saturation of responses at high contrast. The semi-saturation
constant, S, determines the response at low stimulus contrast.
The distribution of weight factors, W θθ′,ωω′,

whose Gaussian widths are given by Σθ and Σω, determines whether
the ‘inhibitory pool’ includes the entire filter population or only
filters tuned to similar orientations and spatial frequencies.

The third stage of the model discriminates between stimulus
alternatives based on the maximum likelihood of second-stage
responses. This corresponds to an ideal observer whose perfor-
mance is limited only by the variance (noise) of second-stage
responses (Eq. 2). Further details about the decision are given
elsewhere15 (also see Methods).

When we fit this model (10 free parameters: γ, δ, σ θ, σω, Σθ,
Σω, S, B, β, ε) separately to single- or double-task data, we
obtained good agreement between predicted and observed
thresholds with physiologically plausible parameter values (solid
curves in Fig. 2). Note in particular the realistic widths of filter
tuning, with half-widths at half-maximum between 12° and 15°
for orientation and 0.42 octaves (oct) and 0.52 oct for spatial fre-
quency, compared to 20 ± 9o and 0.76 ± 0.30 oct for neurons in
monkey visual cortex25. Note also that orientation and spatial
frequency thresholds remain constant for contrast values above
20% (Fig. 2b and c) and that the curves for full and poor atten-
tion appear displaced vertically rather than horizontally. This
shows clearly that attention changes more than contrast gain,
because a difference in gain of the linear filter stage would mere-
ly produce a horizontal displacement. The main discrepancy
between model and data is that the model predicts a more pro-
nounced dipper for contrast discrimination thresholds than is
actually observed (Fig. 2a). Because our data may underestimate
the dipper (see above), this prediction may be correct.

That a single set of parameter values accounts for all thresh-
olds observed with full attention is not a matter of course. One
might have expected that attending to stimulus orientation would
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Fig. 3. Three-stage model of visual filters and their interac-
tions (schematic). Each stimulus location is analyzed by lin-
ear filters sensitive to different orientations and spatial
frequencies (Eq. 1, first-stage responses, Eθ,ω). Filter
responses are subjected to excitatory and inhibitory inter-
actions in the form of amplification and divisive normaliza-
tion (Eqs. 3, 4, second-stage responses, Rθ,ω). The decision
stage assumes that first-stage responses show a variance
similar to that of cortical neurons (Eq. 2) and chooses
between stimulus alternatives on the basis of maximal likeli-
hood. See ref. 15 and Methods for details. Our results sug-
gest that attention strengthens non-linear interactions
between filters (gray box), but does not affect other parts of
the model.

+

Stimulus

Noise

Noise

Noise

Statistically
efficient
decision

+

-

+
-

-
-

Linear filters  Non-linear
interactions

E
θ, ω

R θ, ω

Decision

V 2
θ,ω = β(Rθ,ω + ε) (2)

Rθ,ω = (3)
(Eθ,ω)γ

Sδ + ∑
θ′,ω′

Wθθ′,ωω′(Eθ′,ω′)
δ

Wθθ′,ωω′= e e (4)
–(θ – θ′)2

2∑2
θ

–(ω – ω′)2

2∑2
ω

Eθ,ω= Acse e + B (1)
–(θs – θ)2

2σ2
θ

–(ωs – ω)2

2σ2
ω

© 1999 Nature America Inc. • http://neurosci.nature.com
©

 1
99

9 
N

at
u

re
 A

m
er

ic
a 

In
c.

 • 
h

tt
p

:/
/n

eu
ro

sc
i.n

at
u

re
.c

o
m



378 nature neuroscience  •  volume 2  no 4  •  april 1999

affect visual processing differently than, say, attending to spatial
frequency. Instead, our results are consistent with the possibility
that attention alters visual processing in the same way for all exam-
ined tasks. However, a strict test of task independence would
require that model parameters be determined independently for
different tasks. Unfortunately, such a test is not feasible because
the data from any one task do not constrain all model parameters.

Although there are several differences between the parame-
ters obtained with full and poor attention, the change in the expo-
nents of the power law, γand δ, is particularly significant (Fig. 2f).
We assess the significance of a difference in the values of a given
parameter by determining how rapidly the quality of fit deteri-
orates when this value is changed (see Methods). To study the
role of γ and δ, we fit the model simultaneously to both single-
and double-task data, while allowing only γ and δ to take differ-
ent values depending on attention. In other words, γ and δ take
two values, whereas all other parameters take a single value (12
free parameters total). Once again, we obtained acceptable fits
with physiologically plausible parameter values (‘12-dimension-
al joint fits’, solid curves in Fig. 4a–e, left columns in Fig. 4f).

In contrast, when we allow all parameters except γ and δ to
take different values depending on attention (18 free parameters,
total), there are no acceptable fits with plausible parameter values.
The optimal fit under these assumptions predicts neither the dip-
per in the contrast discrimination thresholds (Fig. 4a) nor the
maximal extent of contrast masking (Fig. 4d and e). To obtain
this poor fit, the tuning widths for orientation and spatial fre-
quency and the size of the inhibitory pool have to change dra-
matically (σθ from 17o to 5o, σω from 0.7 oct to 0.3 oct, and Σ θ
from 0.6 σ θ to 5 σω). It seems unlikely that attention would alter
cortical interactions so profoundly.

DISCUSSION
We measured thresholds for discriminating the contrast, orienta-
tion and spatial frequency of simple patterns that are either fully or
poorly attended. We observed differences of 20% in contrast detec-

tion thresholds, 40–50% in contrast discrimination thresholds (and
appearance of the dipper), 60–70% in orientation and spatial fre-
quency discrimination thresholds, and up to 50% in contrast mask-
ing thresholds. These observations tightly constrain any effect
attention may have on the visual filters that are thought to underlie
basic pattern vision. Comparison with a computational model shows
that the observed effects of attention are consistent with stronger
interactions among filters, but not with a change in noise parameters
without change in interactions, as is sometimes thought26,27. Essen-
tially, the effects of attention on different thresholds are too disparate
to be accommodated by a single change in noise parameters.

articles

Fig. 4. Predicted thresholds when atten-
tion changes some model parameters
but not others. Format and experimental
data are identical to Fig. 2. The thick
curves represent a simultaneous fit to
both single- and double-task data (solid
and dashed, respectively), in which only
the exponents δ and γ take different val-
ues depending on attention (12 free
parameters). Observed and predicted
thresholds agree reasonably well, and
parameter values are physiologically
plausible (two leftmost columns in f).
The thin curves represent the optimal
joint fit to single- and double-task data
(solid and dashed, respectively) when all
parameters except the exponents take
different values depending on attention
(18 free parameters). Neither the dipper
(a) nor the maximal extent of contrast
masking (d, e) are predicted, and para-
meter values are biologically implausible
(two rightmost columns in f).
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gain (3.3-fold, a), causes the contrast response to assume sigmoidal
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and spatial-frequency tuning by 30% (d). To the extent that the visual fil-
ters of our model reflect individual neurons in visual cortex, this pre-
dicts that attention both increases the gain and sharpens the tuning of
such neurons.

a b c

d e f

Ta
rg

et
 c

o
n

tr
as

t
Ta

rg
et

 c
o

n
tr

as
t

Ta
rg

et
 c

o
n

tr
as

t
∆ω

(o
ct

av
es

)

∆θ
(°

)

ContrastContrastMask contrast

Mask θ – Target θ (°) Mask ω/Target ω

b

Stimulus contrast Stimulus contrast

Stimulus orientation Spatial frequency ratio

R
es

p
o

n
se

dc

R
es

p
o

n
se

a

R
es

p
o

n
se

R
es

p
o

n
se

© 1999 Nature America Inc. • http://neurosci.nature.com
©

 1
99

9 
N

at
u

re
 A

m
er

ic
a 

In
c.

 • 
h

tt
p

:/
/n

eu
ro

sc
i.n

at
u

re
.c

o
m



nature neuroscience  •  volume 2  no 4  •  april 1999 379

In the framework of our model, the strength of interactions
among filters is controlled by the exponents of a power law, γand
δ. The immediate reasons why larger exponents account for the
observed effects of attention are as follows: for small stimulus
contrasts, higher exponents reduce background firing and the
sigmoidal shape of the contrast response (Fig. 5a and b), which
explains the improved contrast detection thresholds and the
enhanced dipper of the contrast discrimination curve. For larg-
er stimulus contrasts, higher exponents entail a 3.3-fold increase
in contrast gain (Fig. 5b), which accounts for lower contrast dis-
crimination and contrast-masking thresholds. Additionally, high-
er exponents sharpen the tuning for orientation by 40%, and for
spatial frequency by 30% (Fig. 5c and d), lowering thresholds for
discriminating orientation and spatial frequency still further. To
the extent that visual filters can be identified with individual neu-
rons in visual cortex, our model thus predicts that attention
changes both the gain and tuning of such neurons.

The more fundamental reason, however, is that larger expo-
nents activate what is best described as a winner-take-all com-
petition among visual filters. Attention (larger exponents) shifts
the distribution of responses across the population of filters
(Fig. 6). Attention accentuates existing differences between filter
responses, boosting filters that respond relatively well to a given
stimulus, while suppressing filters that respond relatively poorly.
This explains the perceptual advantage conferred by attention:
attention enhances the sensory representation by restricting
responses to the filters that are tuned best to the stimulus at hand.

Previous studies of attentional changes in visual thresholds are
broadly consistent with our results, even though our effects are
larger. This includes reports that attention reduces contrast thresh-
olds by 17% (ref. 27), orientation acuity by 15% (for an individual
target without distractors)28, and size acuity by 20% (ref. 29). How-
ever, these studies manipulated attention with a spatial cue rather
than with a concurrent task, which complicates quantitative com-
parison. We believe that a concurrent task detains attention more
consistently than spatial cueing; certainly concurrent tasks induce
substantially larger changes in thresholds. An effect we have not
considered here is that attention is able to improve perceptual deci-

sions in the face of positional uncertainty20–22. We estimate that
eliminating spatial uncertainty about the target location would
improve contrast detection thresholds by 19%, but would have no
appreciable effect on any thresholds at stimulus contrasts higher
than 10% (see Methods). Thus, reduced uncertainty cannot
explain the pattern of attentional effects we have observed.

Our model is also consistent with recent findings in the visu-
al cortex of humans and monkeys. Attentional changes in neu-
ronal activity have been reported in several early visual cortical
areas, including areas V1, V2, V4 and MT/MST30–35 (see also
S.P. Gandhi, D.J. Heeger & G.M. Boynton, Inv. Ophth. Vis. Sci.
(Suppl.) 39, 5194, 1998). Furthermore, the notion that attention
modulates a local competition in visual cortex has been proposed
independently based on theoretical36,37 and single-neuron stud-
ies38. In the macaque, attentional modulation of responses in the
visual cortex is weak or absent if only a single stimulus is present
in the receptive field, suggesting that attention modulates inter-
actions between neurons with overlapping receptive fields30,33.
Finally, our model is consistent with reports that attention
increases contrast gain in areas V2 and V4 of the macaque39 (see
also J. Reynolds, T. Pasternak & R. Desimone, Inv. Ophth. Vis.
Sci. (Suppl.) 38, 3206, 1997). Whether attention sharpens the ori-
entation tuning of visual cortical neurons remains controver-
sial39,40. Our model predicts that fully focused attention sharpens
orientation tuning in the parts of visual cortex that mediate basic
pattern vision (presumably areas V1 and/or V2). In area V4,
increased competition would presumably sharpen tuning along
other, more complex, stimulus dimensions.

Finally, we do not wish to claim that attention is restricted to
local interactions at one particular level of visual cortex. More
than likely, attention has additional effects on long-range inter-
actions at the same level and, indeed, at all levels of visual cor-
tex. Nevertheless, our results show that the activation of a
winner-take-all competition among overlapping visual filters
explains many basic perceptual consequences of attention.

METHODS
Psychophysics. Stimuli were displayed on an SGI Indigo (1024 × 1286
pixels RGB). Viewing was binocular at 120 cm distance (1° corre-
sponds to 80 pixels). Mean luminance was 30 cd/m2, with linear incre-
ments of 0.07 cd/m2 (obtained by gamma correction and ‘color bit
stealing’41), and room luminance was 3 cd/m2. Central targets
appeared at 0–0.8° eccentricity and measured 0.4° across. Peripheral
targets appeared at 4°eccentricity, in a circular aperture of 1.5° (tim-
ing as shown in Fig. 1). They were either sinusoidal gratings (Fig. 2b
and c) or vertical stripes whose luminance profile was given by the
6th derivative of a Gaussian (Fig. 2a, d and e). Mask patterns were
generated by superimposing 100 Gabor filters, positioned randomly
within the circular aperture (Fig. 2a, d and e). The spatial frequency
was 4 cpd (vertical stripes in Fig. 2a, d and e; sinusoidal gratings in
Fig. 2b; superimposed Gabors in Fig. 2a and d), and the mask con-
trast was 0.5 (Fig. 2d and e). All thresholds were established with stan-
dard adaptive staircase methods (80 trials per block). The values given
are averages from between 12 and 20 blocks of trials and 2 naive
observers. Standard deviations were computed separately for each
observer, and error bars represent the average value. In the double-
task situation, observers were required to match or exceed a certain
level of central performance. Approximately 15% of double-task
blocks were discarded because of poor central performance. In both
single- and double-task situations, observers fixated the display cen-
ter, ensuring identical visual stimulation. The brief presentation effec-
tively precludes saccades toward the peripheral target.

Concurrent-task method. An important concern in concurrent-task
experiments is the level of processing at which the two tasks interfere.
In general, interference can reflect limitations of attention, memory

articles

Fig. 6. Attentional change in the response distribution. Predictions
based on 12-dimensional joint fit in Fig. 4f. Responses Rθ,ω of filters
tuned to orientations between –20o to +20o, to a grating stimulus of
orientation 0o and contrasts between 0 and 5% (threshold regime).
Responses to fully and poorly attended stimuli are represented by the
red and blue surfaces, respectively (shown interleaved for clarity). By
strengthening a winner-take-all competition among visual filters, atten-
tion restricts responses to the filters tuned best to the stimulus at hand.
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and/or response generation42–44. In the present experiments, observers
have ample time to respond to each task in turn, so that limitations of
response generation are not likely. Because interference disappears when
central and peripheral targets are presented successively (for example,
with an onset asynchrony of 200 ms or more)4,45,46, a limitation of
memory is also unlikely. Further evidence that the critical factor is atten-
tion is that interference does not depend on the nature of the central
task (as long as it poses a sufficient demand on attention). For example,
central tasks based on form, color or motion discrimination47, as well
as on an ‘attentional blink’48, produce comparable interference.

Independent-filter model. If the ‘transducer’ function Rθ,ω= t(Eθ,ω) is linear
over small ranges of contrast, and if the decision between stimulus alterna-
tives is based on maximum likelihood, one can derive simple proportional-
ity relationships for the contrast detection threshold, ∆cdet, and the
orientation and spatial frequency discrimination thresholds, ∆θdis and ∆ωdis:

These relations indicate how thresholds depend on filter parameters such
as β/Α,  σθ and σω. Note that not all thresholds depend on all parameters.

Interacting-filter model. The first stage of the model comprises 150 filters
with Fourier representations in the shape of a 2-dimensional Gaussian
centered on 30 orientations (0 ≤ θi < π) and 5 spatial frequencies (2 cpd
≤ ωi < 8 cpd; Eq. 1). Increasing the number of filters does not alter model
predictions substantially. From each Fourier representation, a filter pair
in quadrature phase is reconstructed, and linear responses Eθ,ωare com-
puted numerically. The effective tuning widths are σθ and σθ for sinu-
soidal gratings, 1.1 σθ and 1.3 σω for vertical stripes, and 1.7 σθ and 1.3
σω for mask patterns. The second stage of the model is given by Eqs. 3
and 4. For γ, δ >>1, only the largest first-stage responses produce sig-
nificant second-stage responses. For γ, δ = 1, first- and second-stage
responses are proportional. At high stimulus contrast, second-stage
responses follow a power law with exponent γ – δ. The transducer func-
tion becomes increasingly sigmoidal with higher exponents γ, δ. The
third stage of the model assumes that second-stage filter responses exhib-
it Gaussian-distributed noise (Eq. 2), and uses maximum-likelihood
principles to predict ideal observer thresholds from the means and vari-
ances of these responses. Specifically, the Fisher information for each fil-
ter and for the entire population provides a lower limit for the variance of
any unbiased estimate of a stimulus parameter such as contrast, orien-
tation or spatial frequency15,48,49.

Model fits. Fits involve downhill simplex error minimization50, with
simulated annealing overhead. For ‘separate fits’, the 10 free model
parameters were fit either to single- or double-task data (each data
set comprised 32 values from 5 experiments). Fig. 2 shows a plausible
fit, whose fit error is 8% larger than the optimal fit. For the ‘12-dimen-
sional joint fit’ in Fig. 4, two parameters take different values for sin-
gle- and double-task data. Thus, 12 free parameters are fit to 64 data
values. Fig. 4 shows a plausible fit, whose fit error is 12% larger than
the optimal fit. For the ‘18-dimensional joint fit’ in Fig. 4, eight para-
meters assume different values for single- and double-task data. Thus,
18 free parameters are fit to 64 data values. Fig. 4 shows the optimal
fit, in which attention has a number of physiologically implausible
effects, among them a 6-fold increase in contrast gain, 70% sharper
orientation tuning and 60% sharper spatial frequency tuning.

To assess the significance of different parameter values, a ‘tolerance
range’ was computed for each parameter, within which the error of fit
increases by no more than 10% (a small but noticeable degradation of
the quality of fit). The difference between single- and double-task val-
ues of a given parameter was considered significant if it fell outside this
tolerance range (Figs. 2f and 4f).

Positional uncertainty. As an alternative to the present model, we con-
sidered the possibility that attention lowers thresholds by reducing posi-

tional uncertainty. We used the formalism of ref. 22 and chose a noise
level that reproduced ‘fully attended’ thresholds without positional
uncertainty. Then we introduced positional uncertainty among the eight
possible target locations to predict the ‘poorly attended’ thresholds. Posi-
tional uncertainty increased contrast detection thresholds by 19%, but
left all other thresholds almost unchanged. For example, contrast dis-
crimination thresholds at 10% pedestal contrast increased only by 1.5%.
Thus, positional uncertainty cannot explain the pattern of attentional
effects we have observed.
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