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Saliency and Gist Features for Target
Detection in Satellite Images

Zhicheng Li and Laurent Itti

Abstract—Reliably detecting objects in broad-area overhead
or satellite images has become an increasingly pressing need,
as the capabilities for image acquisition are growing rapidly.
The problem is particularly difficult in the presence of large in-
traclass variability, e.g., finding “boats” or “buildings,” where
model-based approaches tend to fail because no good model or
template can be defined for the highly variable targets. This
paper explores an automatic approach to detect and classify tar-
gets in high-resolution broad-area satellite images, which relies
on detecting statistical signatures of targets, in terms of a set of
biologically-inspired low-level visual features. Broad-area images
are cut into small image chips, analyzed in two complemen-
tary ways: “attention/saliency” analysis exploits local features
and their interactions across space, while “gist” analysis focuses
on global nonspatial features and their statistics. Both feature sets
are used to classify each chip as containing target(s) or not, using
a support vector machine. Four experiments were performed to
find “boats” (Experiments 1 and 2), “buildings” (Experiment 3)
and “airplanes” (Experiment 4). In experiment 1, 14 416 image
chips were randomly divided into training (300 boat, 300 non-
boat) and test sets (13 816), and classification was performed on
the test set (ROC area: ����� � �����). In experiment 2, clas-
sification was performed on another test set of 11 385 chips
from another broad-area image, keeping the same training set
as in experiment 1 (ROC area: ������ �����). In experiment 3,
600 training chips (300 for each type) were randomly selected
from 108 885 chips, and classification was conducted (ROC area:
����� � �����). In experiment 4, 20 training chips (10 for each
type) were randomly selected to classify the remaining 2581 chips
(ROC area: �����������). The proposed algorithm outperformed
the state-of-the-art SIFT, HMAX, and hidden-scale salient struc-
ture methods, and previous gist-only features in all four experi-
ments. This study shows that the proposed target search method
can reliably and effectively detect highly variable target objects
in large image datasets.

Index Terms—Gist features, saliency features, satellite images,
target detection.
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I. INTRODUCTION

O VERHEAD and satellite imagery have become ubiq-
uitous, with applications ranging from intelligence

gathering to consumer mapping and navigation assistance.
With the overwhelming amount of satellite imagery available
today, it has become impossible for human image analysts
to examine all of the imagery, in search of interesting in-
telligence information. Thus, there is a pressing need for
automatic algorithms to preprocess the data and to extract
actionable intelligence from raw imagery, thereby facilitating
and supporting human interpretation. This paper focuses on
automatically detecting diverse types of targets with large
intraclass variability in satellite images. This analysis is one of
the currently highly time-consuming tasks that image analysts
routinely perform manually. Providing new means to automate
this task is expected to facilitate and render more efficient the
interpretation of satellite image by human analysts.

The problem of target detection is a difficult challenge in
computer vision [1]–[3]. For a given scene (image), the target
detection task can be simply described as “where is the target?”
Considering the feature types used for detection in static images,
algorithms for target detection can be briefly summarized as
belonging to three broad categories: A first, relatively straight-
forward approach is to use a provided (or trained) target tem-
plate or model (hence, the feature is the image itself), to match
against targets in the image of interest, at different locations,
orientation and scales [4]–[6]. This type of method works well
when the variability of targets is small (for example, detecting
human faces [5], [6]). A second method for target detection is to
use a model to extract a spatially sparse collection of invariant
structural features (e.g., keypoint descriptors, bags of features)
of the target even when viewpoint, pose, and lighting condi-
tions vary [7]–[10]. In a third approach, using knowledge of
target shape and characteristic geometry, several studies have
proposed methods which learn and apply target geometric con-
straints on the keypoint feature locations [11], [12]. In practice,
the detection algorithms usually overlap these categories, and
some approaches are intermediate between the geometry-based
and “bag of features” approaches retaining only some coarsely-
coded location information or recording the locations of features
relative to the target’s center [3], [13]. In addition to these ma-
chine vision approaches, several biologically-inspired computa-
tional models have also started exploring target detection tasks
in imagery, usually based on our knowledge of visual cortex,
showing some promising experimental results [14]–[19]. Our
approach extends these biologically-inspired frameworks.

Based on the special properties of satellite image, several
algorithms have been proposed to detect the targets in such kind
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of images. For example, for hyper-spectral satellite images, the
features applied usually take advantage of the reflection charac-
teristics of different materials [20]–[22] while for multispectral
images, the features are usually extracted from fused spectra
[23], [24]. However, the images discussed in this paper focus on
the visible spectrum and, thus, the detection methods discussed
in the previous paragraph are usually adopted. Despite all the
recent advances in computer vision technologies, humans still
perform orders of magnitude better than the best available vision
systems in object and target detection, and for many target search
applications humans remain the gold standard. As such, it is
reasonable to examine the low-level mechanisms as well as the
system-level computational architecture of human vision for in-
spiration. Early on, the human visual processing system already
makes decisions to focus attention and processing resources onto
those small regions within the field of view which look more
interesting or visually “salient” [25]–[27]. When no specific
search target, no search task, and no particular time or other con-
straint are specified to an observer, bottom-up (image-derived)
information may play a predominant role in guiding attention
toward potential generically interesting targets [28]. The mech-
anism of selecting a small set of candidate salient locations in a
scene has recently been the subject of comprehensive research
efforts and several computational models have been proposed
[29]–[34]. One can make use of these models to predict possible
target locations and target distributions. In this paper, saliency
maps from several feature channels (intensity contrast, local
edge orientation, etc.) are computed from a modified Itti-Koch
saliency model [25], [31], [35]. Given a static or dynamic visual
scene, this model creates a number of multiscale topographic
feature maps which analyze the visual inputs along visual feature
channels known to be represented in the primate brain [31]
and thought to guide visual attention and search [36] (lumi-
nance contrast, color-opponent contrast, oriented edges, etc.).
Center-surround mechanisms and long-range competition for
salience operate separately within each feature channel, coarsely
reproducing neuronal interactions within and beyond the clas-
sical receptive field of early sensory neurons [37], [38]. These
interactions are critical in transforming raw feature responses
(e.g., an edge map computed over the input scene) into salient
feature responses, as they emphasize locations which are locally
outliers to the global statistics of the scene. As a result, local
feature responses (e.g., a color contrast response to a small red
object in an image) are modulated globally depending on the
entire scene’s content (e.g., the response to the small red object
might be inhibited if many other red objects are present in the
scene, or might be amplified if all other objects in the scene are
blue). After these interactions, the feature maps from all feature
channels are combined into a single scalar topographic saliency
map. Locations of high activity in the saliency map are more
likely to attract attention and gaze [28], [29].

Thus far, saliency-based analysis of scenes has been pre-
dominantly applied to relatively small images, typically on the
order of 1 megapixel (MP), with at least one study pushing to
24 MP [40]. Such smaller images are coarsely matching the
amount of information which might arise from a primate retina
(about 1 million distinct nerve fibers in each of the human optic
nerves). With larger broad-area-search images, for example

400 MP–1000 MP satellite images, it becomes an interesting
research question whether the mechanisms developed by the
primate brain might scale up. Here, we address this question
by developing a new algorithm, which analyzes large images
in small chips, thus, mimicking the processing which human
image analysts might operate when they deploy multiple eye
fixations on an image, analyzing each fixated location in turn.
A second important research question is whether saliency maps
might be useful at all for object classification, as opposed to
being limited to just attention guidance as described previously.
Here we hypothesize that, within each chip, the chip’s saliency
map may provide a coarse indication of the structure of the
visual contents of the chip. Hence, rather than attempting to
shift an attention spotlight to different salient locations within
the chip, the hypothesis underlying the proposed algorithm
is that a coarse analysis of the statistics of a chip’s saliency
map may provide sufficient clues for classifying the chip as
containing or not a target. For example, target chips might
have more numerous and sharper saliency peaks than nontarget
chips. Our experiments and results test whether this approach
is viable for complex target classification tasks where the intr-
aclass heterogeneity is significant (e.g., find “boats,” ranging
from small pleasure craft to larger commercial or military
ships). For each saliency map, mean, variance, number of local
maxima, and average distance between the locations of local
maxima are adopted to summarize saliency maps. These values
to some extent represent the saliency intensity and the salient
objects’ spatial distribution. In the full algorithm described
in the following, all of these values from different feature
channels’ saliency maps are combined together to form the
“saliency features” part of the proposed algorithm.

Parallel with attention guidance and mechanisms for saliency
computation, studies of scene perception have shown that ob-
servers can recognize the “gist” of a real-world scene from a
single, possibly very brief glance. For example, following pre-
sentation of a photograph for just a fraction of a second, a human
observer may report that it is an indoor meeting room or an out-
door scene of a beach [41]–[45]. Such a report from the first
glance onto an image is remarkable considering that it summa-
rizes the quintessential characteristics of an image, a process
previously thought to require deep visual and cognitive analysis.
With very brief exposures (100 ms or below), reports are typi-
cally limited to a few general semantic attributes (e.g., indoors,
outdoors, playground, mountain) and a coarse evaluation of the
distributions of visual features (e.g., grayscale, colorful, large
masses, many small objects) [46]–[48]. Gist may be computed
in brain areas which have been shown to preferentially respond
to “places,” that is, visual scene types with a restricted spatial
layout [49]. Like Siagian-Itti’s gist formulation in computer vi-
sion [50], here we use the term “gist” to represent a low-dimen-
sional (compared with the raw image pixel array) scene repre-
sentation feature vector which is acquired over very short time.
In our target detection scenario, this feature vector is computed
for every image chip, and we explore how well it may represent
the overall information of the chip so as to support classification
(e.g., chips containing boats might have significantly different
gist signatures than chips which do not). Saliency and gist fea-
tures appear to be complementary opposites [50]: saliency fea-
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Fig. 1. Diagram of the image classification system applied to every image chip.

tures tend to capture and summarize the intensity and spatial dis-
tribution of those objects within a chip which stand out by being
significantly different from their neighbors, while gist features
capture and summarize the overall statistics and contextual in-
formation over the entire chip.

Given the proposed chip-based analysis approach, the task
of answering “where is the target?” is equivalent to answering
“does this image chip include the target?” for every chip in
a large image. To achieve this decision making task, a Sup-
port Vector Machine (SVM) [51], [52] is adopted as the clas-
sifier, while the biologically inspired saliency-gist features are
explored to form the feature vector in the feature space. The
system overview diagram can be seen in Fig. 1.

II. DESIGN AND IMPLEMENTATION

Here we first describe the two computational models pro-
posed to compute the saliency features and gist features
separately.

A. Saliency Feature Computation

We compute saliency maps using several variants of the
general Itti-Koch [31] architecture, and we then compute
basic saliency map statistics for each variant. While in the
original model only simple biological features (color, intensity,
orientation) were employed, we here develop several new
features which might be more effective in supporting the
target/non-target classification task. The block diagram of the
proposed model is shown in Fig. 2. In this model, an image is
analyzed along multiple low-level feature channels to give rise
to multiscale feature maps, which, as in the original Itti-Koch
model, detect potentially interesting local spatial outliers. Ten
feature channels are adopted in this paper: intensity, orienta-
tion (0 , 45 , 90 and 135 , combined into one “orientation”
channel), local variance, entropy, spatial correlation, T-junc-
tions, L-junctions, X-junctions, endpoints and surprise. Note
that color information is not used since the images often are
greyscale. Some of these feature channels (variance, entropy,
spatial correlation) are computed by analyzing 16 16 image
patches, giving rise to a map that is 16 times smaller than
the original image horizontally and vertically (one map pixel
per 16 16 image patch). The remaining feature channels are
computed using image pyramids and center-surround differ-
ences, as in the original Itti-Koch algorithm: for each of these
feature channels, center-surround scales are obtained from
dyadic pyramids with nine scales, from scale 0 (the original

Fig. 2. Block diagram of the saliency features computation model applied to
every image chip.

image) to scale 8 (the image reduced by factor to
in both the horizontal and vertical dimensions). Six center
surround difference maps are then computed as point-to-point
difference across pyramid scales, for combination of three
center scales and two center-surround scale
differences . Each feature map is additionally
endowed with internal dynamics that provide a strong spatial
within-scale competition for activity, followed by within-fea-
ture, across-scale competition. In this way, initially possibly
very noisy feature maps are reduced to sparse representations
of only those locations which strongly stand out from their
surroundings. Feature maps then contribute additively to the
corresponding saliency maps (SMs) that represent the con-
spicuity of each location in their channel. Finally, a saliency
map feature extractor is applied to summarize each saliency
map into a 4D vector with mean, variance, number of local
maxima and average distance between locations of local
maxima. All those feature vectors from the ten model variants
are combined into a 40D vector referred to as the “saliency
features.” More information about the model is described in
details in the following.
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Intensity Channel: With the image chip as input, nine spa-
tial scales are created using a dyadic Gaussian pyramid [25],
which progressively low-pass filters and subsamples the input
image, yielding horizontal and vertical image-resolution factors
ranging from 1:1 (scale zeros) to 1:256 (scale nine).

Intensity represents the amount of light reflected by the cor-
responding point on the object in the direction of the camera
view and multiplied by some constant factor that depends on
the parameters of the imaging system. In our experiments, the
range of the intensity value is from 0 to 65 535 (16-bit image) or
from 0 to 255 (8-bit image) for all images
at every spatial scale. This channel is essentially as previously
described [25].

Orientation Channel: Orientation features are generally very
effective feature in identifying objects, as demonstrated for ex-
ample by humans’ ability to understand line drawings. Here we
adopt Gabor filters to extract the ori-
entation feature. For each image I in the image pyramid, the
orientation feature maps can be obtained as follows [25]:

(1)

Local Variance Channel: Local variance channel is used
to capture local pixel intensity variance over 16 16 image
patches of the image chip of interest. This feature is of interest
here as it has previously been shown to attract human attention
[53], [54]. For each 16 16 image patch, the local variance
feature map can be computed as follows:

(2)

here is the total pixel number of pixel ’s neighborhood
with size of in our implementation).

Entropy Channel: Entropy as implemented here also pro-
vides a simple measure of information content in small 16 16
image patches. We follow the definition proposed by Privitera
and Stark [54] who showed that such measure of entropy also
correlates with human eye fixations. Note that many more so-
phisticated measures of entropy could be computed at the chip,
image, or image sequence level, but this one has the advan-
tage of being simple and motivated by previous human gaze
tracking experiments. In image processing, entropy always in-
dicates the probability distribution of the image intensity. The
entropy value can be computed with the formula described in
the following:

(3)

where means the neighborhood of the pixel at loca-
tion, stands for the probability of possible intensity in its
neighborhood.

Spatial Correlation Channel: For two random variables X
and Y, their correlation can be formulated as

(4)

Here, spatial correlation is computed at every location between
a local 16 16 patch and other patches at a given radius from the
local patch. It represents the similarity between the local patch
and its neighbors. In the spatial correlation saliency map, low
spatial correlation is a simple measure of high salience, i.e., low
similarity.

Junction Channels: In addition to the Orientation channel
described previously, several “junction” channels are created to
further characterize the edge contents of image chips. Taking
the local edge responses in different directions over small
image patches into consideration, four different kinds of junc-
tion channels are created, all included in the junction saliency
map: L-junction, T-junction, X-junction and endpoint. The
L-junction channel is sensitive to “corner” features: it responds
at locations where two edges meet perpendicularly and end at
the intersection point. The T-junction channel responds when
two edges are perpendicular and only one of them ends at the
intersection point. Likewise, the difference of X-junction from
T-junction is that in X-junction both edges do not end at the
intersection point. Finally, the Endpoint channel responds when
an extended edge ends. All junction channels are computed
using a common framework which considers the collection of
edge responses from the four maps in the Orientation channel,
at points neighboring the point of interest.

We consider the 8-neighborhood of a given point of interest
(at a given scale between 0 and 8 in our pyramid framework),
and the one of the four orientation responses at each of the
eight neighbors which is along the line segment from the cen-
tral point to the neighbor (e.g., at the neighbor above the cen-
tral point, the vertical orientation response is considered; at the
neighbor to the left of the central point, the horizontal orien-
tation response is considered). The response characteristics of
a given junction channel is then given by a disjunction (sum)
of binary response patterns (binary filter masks) applied to the
neighbors’ responses. For example, the T-junction detector will
respond to 1) for an upright T, responses to the left (and from
the orientation channel for horizontal orientation), right (hori-
zontal orientation), and below (vertical orientation) the point of
interest, plus 2) for a T rotated 90 clockwise, responses above,
below, and to the left, plus 3) for an upside-down T, responses
above, left and right, plus 4) for a T rotated 90 counter-clock-
wise, responses above, below and to the right. The L-junction
and X-junction channels are defined likewise, and the mask pat-
tern for the endpoint channel is simpler, as it will simply require
that an orientation response exists on one side of the point of in-
terest but not on the other (for example, some vertical response
above but none below).

Surprise Channel: We recently proposed an enhanced
saliency model, which exploits a new Bayesian definition of
surprise to predict human perceptual salience in space and
time [55]–[57]. Very briefly, surprise quantifies the difference
between prior and posterior beliefs of an observer as new
data is observed. If observing new data causes the observer to
significantly reevaluate his/her/its beliefs about the world, that
observation will cause high surprise. Surprise complements
Shannon’s definition of information by emphasizing the effect
of data observations onto the internal subjective beliefs of an
observer, while Shannon information objectively characterizes
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the data itself (in terms of, e.g., how costly it would be to
transmit from one point to another). Here, we use this new
model as well, though we only consider the spatial domain
since all images are static. Surprise is then computed for each
16 16 image patch by establishing prior beliefs from a large
neighborhood of image patches, and computing the extent
to which such beliefs are adjusted into posterior beliefs after
information about the central patch of interest is observed.
The surprise map computed under these conditions is similar
to a regular saliency map, except that the Bayesian surprise
computations are used for competition across space instead
of the mechanism described in the following. The surprise
map is, thus, an optimized weighted combination of intensity,
orientation and junction features, to which a spatial surprise
detector is applied.

Feature Maps Competition: In all maps except surprise
(which has its own internal competition dynamics), a feature
map competition mechanism tends to globally promote maps in
which a small number of strong peaks of conspicuous locations
is present, while globally suppressing maps which contain
numerous comparable peak responses. To implement this, first
normalize the feature map to a fixed range , and then
find the global maximum value and the average value of
other local maximums, finally globally multiplying the map by

, as was previously described in detail [25].
Saliency Map Feature Extractor: For each of the ten variants

of the model, the obtained saliency map is relatively high-di-
mensional data (for example, a 512 512 image chip’s saliency
map size is ), and this becomes especially true
when all ten channels’ saliency maps are combined. To reduce
the data dimensionality while keeping the most important infor-
mation, we compute four summary statistic values to represent
each saliency map: mean value , standard deviation over
the saliency map’s pixels, number of local maxima (peaks) in
the map, and the average Euclidean distance between the local
maximum points . The computation formulas are described
as

(5)

(6)

(7)

where and are the saliency map size, and is the saliency
map’s area, and are local maximum points in
saliency map, subscript indicates the saliency map type (in-
tensity, orientation, ). A rational explanation of this is that
the saliency map describes the conspicuity of the image and
only the most salient points or regions will show on the saliency
map, therefore, we can use these four values to represent the
most important information of the saliency map. We may lose
the salient objects’ position information, however, we hypoth-
esize that it might not affect the performance of the detection
task greatly: the four statistics should capture some information
about the distribution of salient objects in the image chip, no

Fig. 3. Block diagram of gist features computation model applied to every
image chip.

matter where they are, and may serve as a useful position-in-
variant (and somewhat rotation- and scale-invariant) descriptor
of the image chip. Our experiments shown in the following will
directly test this hypothesis. According to the previously shown
analysis, the dimension of the combined saliency feature vector
is: .

B. Gist Feature Computation

The gist feature computation model [50] is related to the
saliency computation model, except that it embodies concepts
of feature cooperation across space rather than competition.
The gist computation model architecture used in the present
paper is shown in Fig. 3 and the low-level features channels
include intensity, four orientations (0 , 45 , 90 , and 135 ),
and four L-junctions (0 , 45 , 90 , and 135 ), four T-junctions
(0 , 45 , 90 , and 135 ), four endpoints (0 , 45 , 90 , and
135 ) and X-junction, therefore, 18 different feature channels
are adopted.

Unlike the saliency feature extraction model, both center-sur-
round and raw (before center-surround) pyramid levels are
exploited. For the center-surround operation, six center sur-
round difference maps are then computed within each pyramid
as point-to-point difference across pyramid scales, for com-
bination of three center scales and two
center-surround scale differences . For the raw
operation, the adopted raw pyramid scales range from 0 to 4.

Since gist features describe an image chip’s overall informa-
tion, we only use mean value to represent each of the gist feature
maps

(8)

where and are the gist feature map size, indices k,
s, c denote feature map type, scale, center-surround type,
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Fig. 4. Example of complete saliency-gist feature extraction for an image chip. Note that the saliency maps shown already have been subjected to spatial com-
petition; hence, for example, out of the initially many responses in the T-junction channel at various locations and for various spatial scales, one ends up winning
the competition strongly and dominating the other ones in the particular example image chip shown. The gist feature map examples shown in this figure are pre-
sented in pairs, for the center-surround and raw no-center-surround computations. In each pair, the left map is the center-surround result while the right map is the
no-center-surround result. There are four pairs shown in this figure: intensity, 45 orientation, 135 L-junction and endpoint. The scales of center surround are 2
(center) and 5 (surround) while the scale of no center-surround is 2.

respectively. Therefore, the gist feature vector dimen-
sions are

.
We simply combine the saliency features and gist features to-

gether to form the final saliency-gist feature vector, which is a
dimensions vector. One example of the com-

plete process for one input image is illustrated in Fig. 4. Before
using these feature vectors to detect targets, it is necessary to
normalize the feature values alone feature types. The normal-
ized feature then can be sent to the classifier to implement detec-
tion task. Considering the high nonlinearity of the feature vec-
tors’ distribution, RBF (radial basic function) based SVM were
adopted to complete the classification task. In this paper, SVM
provided by [52] were adopted for its easy to use. Furthermore,

for the normalized input, the parameters of SVM can be opti-
mized automatically and no tuning is needed.

III. EXPERIMENTS AND RESULTS

We test the proposed model with four experiments of chal-
lenging broad area search in satellite images. Mainly, the search
tasks are challenging because of high intraclass variability in the
target category: boats in experiments 1 and 2 (from small ves-
sels to large ships), buildings in experiment 3, and airplanes in
experiment 4. To compare our algorithm to the state of the art,
we decided to employ the HMAX [14], [18], SIFT [7], and the
hidden scale salient structure object detection algorithm [16] as
references. We opted for HMAX and SIFT because of their pop-
ularity in target detection and in generalization over object cate-
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Fig. 5. Examples of target image chip and no target image chip for experiment 1, detecting image chips which contain one or more boat(s) of any size and type.
The top-row image chips include one or more target boat, while the bottom-row images do not include any target.

gories from limited training data. The hidden scale salient struc-
ture method is similar to our research and performs very well in
target detection for satellite images. All these references’ source
code is available and, thus, easy to implement for our experi-
ments. To complement our analysis, we also compare our algo-
rithm to Siagian-Itti’s gist features proposed in [50] to show how
much is gained from our very simple 4D summaries of saliency
maps and from the new gist features used here.

A. Experiment 1

The first dataset (dataset 1) used to test the proposed model
includes 14 416 image chips (500 500) which were cut out of
one large broad-area satellite image (size 21 500 27 500) with
a slide window step size of 200 pixels (hence, two successive
chips overlap by 300 pixels). All target centers in the broad-area
image were manually labeled as ground truth (if several boats
were connected together, then we treated them as one target);
the boats’ sizes ranged from tens of pixels to hundreds of pixels.
Among these image chips, 705 included targets (various boats).
Examples of target image chips and nontarget image chips can
be seen in Fig. 5. To compare the effectiveness of the proposed
saliency-gist approach to the state of the art, we compare it with
the gist feature proposed in [50] (here we call it standard gist
feature), the HMAX feature [14], [18], the SIFT feature [7] and
the hidden scale salient structure feature [16].

In the classification step, N positive image chips (which in-
clude one or more targets) and N negative image chips (which
do not include any target) are randomly selected from the dataset
and used as the training samples, while all remaining image
chips are treated as test data. The commonly used measurement
to evaluate the precision of classification are percentage of true
positive (TP) and true negative (TN) which are defined as

% (9)

% (10)

Fig. 6. Classification results for experiment 1 (detecting boats), for different
numbers of training images from the pool of 705 total available chips containing
one or more targets (error bars are computed from 100 runs for each number of
training examples, selecting the examples randomly for each run).

where TPR and TNR stands for true positive ratio and true
negative ratio. The classification results with different numbers
of training samples are shown in Fig. 6. It is easy to see that
when we increase the number of training samples, the classifi-
cation rate improves. It is worth noting how, even with a small
number of training samples, the results do not catastrophically
degrade but rather remain quite high (above 80% hits and
correct rejections).

For a classification system, pursuing higher TPR and lower
false positive ratio (FPR) usually contradict each other: a higher
TPR often causes higher FPR. With different decision criteria,
the classification results may vary. For example, in a warning
system, pursuing higher TPR is preferred to pursuing lower
FPR. Since the receiver operating characteristic (ROC) curve
has the ability to show the comparison of TPR and FPR as the
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Fig. 7. ROC curve for the proposed system (zoomed-in on the horizontal axis)
for different numbers of training samples, for experiment 1 (detecting boats).
The corresponding ROC area values and standard deviations are labeled in the
legend. (Standard deviations are computed from 100 runs for each number of
training examples, selecting the examples randomly for each run).

Fig. 8. ROC curve comparison among different feature types in experiment
1, detecting boats. 300 training samples were used for both the positive and
negative target categories. The mean ROC area values (corresponding to the
thick curves) and standard deviations are labeled in the legend. (Standard
deviations are computed from 100 runs for saliency-gist feature, standard gist
feature, SIFT feature and hidden scale salient structure feature, and from a
smaller number of ten runs for HMAX feature because of the high run-time of
HMAX). The shadow envelopes and ten thin curves for each model show the
ROC curves which reach the maximum and minimum ROC area in the multiple
runs of the experiment (using different randomly-chosen training samples from
the training set). ROC performance for the proposed Sal-Gist algorithm is
significantly better than for all other methods.

classification decision criterion changes, it is widely adopted
to compare performance of two different classification systems.
A higher TPR while low FPR stands for a better classification
system, and usually this can be described by the area under the
ROC curve. An ROC area equals to 1 means a system that can
perfectly classify the categories without any error, an ROC area

Fig. 9. ROC curve (zoomed-in on the horizontal axis) for different numbers
of training samples, for experiment 2 (detecting boats, with training set from
experiment 1). The corresponding ROC area values and standard deviations are
labeled in the legend. (Standard deviations are computed from 100 runs for each
number of training examples, selecting the examples randomly for each run).

Fig. 10. ROC curve comparison among different feature types in experiment 2,
detecting boats. 300 training samples were used for both the positive and neg-
ative target categories (from experiment 1’s dataset). The corresponding mean
ROC area values and standard deviations are labeled in the legend (100 runs
for saliency-gist feature, standard gist feature and SIFT feature, ten runs for
HMAX feature because of the high complexity). The shadow contours stand for
the ROC curves which reach the maximum and minimum ROC area in multiple
experiment runs.

equals to 0.5 stands for a random classification system, and, the
bigger ROC area, the better classification performance. To com-
pute ROC curves with our algorithm, we systematically vary
distance to the decision boundary as the criterion parameter.
Fig. 7 shows ROC curves for the proposed saliency-gist algo-
rithm, as a function of the number of training examples. We
can see that performance degrades gracefully as the number of
training examples is decreased. The corresponding ROC curves
and the ROC areas of classification with saliency-gist feature,
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Fig. 11. Examples of target image and no target image for experiment 3, finding buildings of any type, size, and style. Top-row images include one or more
target(s) while the bottom row images do not include any target.

HMAX feature, SIFT feature, hidden scale salient structure fea-
ture and standard gist features are shown in Fig. 8. (marked as
sal-gist, HMAX, SIFT, sal-structure, and gist-std in the figure,
respectively). It is clear from the figure that the saliency-gist fea-
ture outperforms the other features greatly (t-tests on the 100
ROC values obtained with each of the 100 randomly selected
training sets, or better), hence, demonstrating ap-
peal of the proposed approach. Also, from the figure we can see
that the hidden scale salient structure method almost failed in
this experiment. This is mainly because the targets (boats) are
not salient compared with many inland buildings when using
the salient structure algorithm in [16] and, thus, the algorithm
misclassified many buildings as boat targets.

B. Experiment 2

This experiment tests how training on one broad-area image
taken at one given time and location may generalize to testing
on another broad-area image taken at another time and location.
The second dataset (dataset 2) includes 11 385 image chips
(500 500) which were cut out of another large broad-area
satellite image (size 23 300 20 100, taken from the same
country but on a different date and at a different place than the
broad-area image of experiment 1), with the same slide window
size as in dataset 1. We labeled the targets manually as ground
truth like in experiment 1 and there are 1 049 image chips which
include one or more target(s). In this experiment, training
samples for the classifier are randomly selected from dataset 1,
while all the image chips in dataset 2 are used as test set.

Fig. 9 shows that ROC performance improves with the
number of training samples, as in experiment 1. With 300
training samples, ROC area was 0.952 here, as compared to
0.977 in experiment 1 (Fig. 8), suggesting good generalization
capability to new, never seen images. Like in experiment 1, the
comparison of detection results with the saliency-gist feature,
standard gist features, HMAX features, and SIFT features
(the hidden scale salient structure feature is not adopted to
do the comparison in this experiment due to its poor perfor-
mance in experiment 1) shows that the saliency-gist feature
performs much better than other three features (Fig. 10, t-tests,

or better).

Fig. 12. ROC cures (zoomed in on the horizontal axis) for different numbers
of training samples in experiment 3 (detecting buildings). The corresponding
ROC area values and standard deviations are labeled in the legend. (Standard
deviations are computed from 100 runs for each number of training examples,
selecting the examples randomly for each run).

C. Experiment 3

In this experiment, targets are simply defined as “buildings”
in satellite images. This experiment, thus, tests the ability of our
same algorithm to classify very different types of targets; the in-
traclass variability here is also arguably even larger than in ex-
periments 1 and 2 (see Fig. 11). The dataset (dataset 3) used here
includes 108 885 image chips (this experiment used a smaller
chip size of 256 256 because the targets were also smaller
than in experiments 1 and 2) with 6 323 of them being posi-
tive examples. Fig. 11 shows examples of buildings and neg-
ative examples. Like in experiments 1 and 2, the image chips
were cut from a broad-area satellite image (size 16 512 27
520, taken from a different country and a different year than
the images of experiments 1 and 2). The slide window size here
was 64 pixels. Ground-truth information for this dataset (loca-
tions of buildings) was provided to us by an outside corporation.
The ROC curves for different numbers of training samples are
plotted in Fig. 12. As we can see, performance again improves
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Fig. 13. ROC curve comparison among different feature types in experiment 3,
detecting buildings. 300 positive and 300 negative training examples were used.
The experiment parameters are the same as in experiments 1 and 2. The shadow
contours of SIFT and hidden scale salient structure feature are quite small and
can not seen in this figure.

with the size of the training set. Again, we compare the detec-
tion results with the standard gist features, the HMAX features,
the SIFT features and the hidden scale salient structure features.
The corresponding ROC curves of classification with these fea-
ture types are shown in Fig. 13. It is clear from the figure that
the saliency-gist features again outperform the other two fea-
tures greatly (t-tests, or better).

To illustrate the detection result in a more straightforward and
global way, we adopt a probability map representation (PM) to
show the results. A probability map is a matrix which depicts
the probability value for each image chip to contain a target.
The rescaled broad-area satellite image and some example target
buildings are shown in Fig. 14(a), and the corresponding prob-
ability map is shown in Fig. 14(b), the red points in the images
stand for the labeled targets’ center location. This simple repre-
sentation reinforces the ROC results and suggests a high perfor-
mance of the algorithm, as shown by the overlap between red
ground truth locations and brighter locations in the PM (higher
probability of target according to our algorithm). During search
for buildings, exploring the image in decreasing order of target
probability per our algorithm would isolate more targets faster
than a naïve scan from left to right and top to bottom.

D. Experiment 4

An aerial image of an airport is adopted in this experiment
to detect the “airplanes” (see Fig. 15). The dataset (dataset 4)
used here include 2 601 image chips, of which 1 382 of them in-
clude a target. For each chip, the size is 64 64 due to the small
target size. Compared to the previous experiments, the target
is relatively easier to detect because intra class variances (both
in shape and area) are small. Here we compared the detection
performance among saliency-gist feature, hidden scale salient
structure feature and SIFT. Ten positive and ten negative exam-
ples were randomly selected as training data while the rest were
taken as test data. The detection results from different methods
are plotted in Fig. 16 (100 runs for each). From the figure we

can see that all three methods perform very well while the pro-
posed method performs even better than the others (no shadow
contours plotted here because the difference of results from dif-
ferent method is small while the variance of result from SIFT is
relatively big which may cause the whole figure not clear).

E. Saliency Versus Gist

As saliency-gist features yield great classification results, it
is interesting to see the separate contributions of the saliency
features and gist features. The ROC area of using saliency fea-
tures only, gist features only (in our new implementation, which
includes more feature channels than the older Gist-Std model),
and combined saliency-gist features in all four experiments are
shown in Table I. It can be seen from the table that the com-
bined saliency-gist features outperforms both saliency features
and gist features in all experiments. Hence, these results show
that the saliency features and gist features are not fully redun-
dant, even though they are computed using similar low-level
feature detectors. In addition, the table shows that saliency fea-
tures perform better in experiments 1, 2 and 4, while gist fea-
tures perform better in experiment 3. Thus, in different cases, the
classification results depends more on different types of infor-
mation (saliency information and gist information), which again
reinforces the benefits of using both types of features.

IV. DISCUSSION

Our results show that the proposed algorithm performs better
than the state-of-the-art (HMAX algorithm, SIFT algorithm,
hidden scale salient structure algorithm and previously pro-
posed gist algorithm alone) in difficult target search scenarios.
This was achieved in situations where targets can vary greatly
in their size, shape, and number of targets per chip. Overall,
the proposed algorithm is conceptually very simple and at the
same time very general, since the feature extraction stages
were not designed or tuned for the specific types of images
and targets tested here. Taking all results together suggests that
the proposed system may be further applicable to a wide range
of images and target types. Indeed, nothing in the proposed
algorithm has been specifically developed or tuned for the boat
or building or airplane targets tested here, or for the type of
images processed in our experiments.

The success of the proposed approach may be due to our
use of two complementary sets of biologically-inspired features:
gist features largely discard spatial information, while saliency
features summarize it. In the human brain, it is clear that object
recognition relies on being able to compute invariants, but at the
same time pose parameters are not lost: although one recognizes
an upside-down face as being a face, one is also aware that it is
upside-down. Our approach here seems to benefit from this dual
view of the image data. Recently, some other biologically-in-
spired feature extraction methods [19] have started to use the
“gestalt” information (continuity, symmetry, closure, repetition,
etc.) to conduct object detection and have shown promising re-
sults. It is likely that combining these feature types will get
even better detection performance. There are many other fea-
ture types which could be also added to our approach, including
for example locally-binary pattern (LBP) features which have
been particularly successful in texture segmentation [58].
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Fig. 14. Illustration of “building” detection in experiment 3. (a) Rescaled broad-area satellite image (16 512� 27 520 pixels) and some target examples. (b) Prob-
ability map of (a) computed by our algorithm. The red points are the true target center locations. In the probability map, lighter areas indicate higher probability of
targets, while darker areas denote lower probability of targets according to the algorithm.

TABLE I
COMPARISON OF ROC AREAS OF DIFFERENT TYPES OF FEATURES IN FOUR EXPERIMENTS

The proposed algorithm does not take any complex proce-
dure to combine the features extracted, although many research
studies have proposed feature combination algorithms to im-
prove classification performance [59], [60]. Here we only show
that the combination of gist feature and salient feature are com-
plementary and can achieve good performance in target detec-
tion. It is interesting that saliency and gist features both con-

tribute significantly to performance, and are not fully redundant
(Table I). This suggests a new use of saliency algorithms, for
classification of images based on their saliency maps, as op-
posed to using the saliency maps to generate shifts of attention.
It is interesting to think whether humans and other animals may
use this as well. It is possible that human saliency maps in pos-
terior parietal cortex, the pulvinar nucleus, the frontal eye fields,
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Fig. 15. Image used to detect the airplanes in experiment 4.

Fig. 16. ROC curve comparison among different feature types in experiment 4,
detecting airplanes. Ten positive and ten negative training examples were used.
* indicate statistically different ROC performance (t-test, � � �� or better).

or the superior colliculus [31] may also be analyzed in a holistic
fashion and may contribute to the very rapid understanding of
the rough layout of the scene. That is, the coarse structure of
saliency maps may combine with the broad semantic informa-
tion provided by the gist features to yield a coarse and rapid
understanding of both a scene’s gist and layout [61].

Our approach reinforces the idea, as shown by recent suc-
cesses in the domains of statistical machine translation of text
into foreign languages or of speech analysis [62], that relatively
shallow statistical analysis of large datasets can yield surpris-
ingly good classification and recognition results. Indeed, our
algorithm does not try to understand the geometric structure
or other specific high-level or cognitive feature of targets (e.g.,
buildings should have walls, tend to be rectangular, etc) and is not

attempting recognition by components (breaking down target
objects into elementary parts and their spatial arrangements [63].

The proposed algorithm is mostly intended as a front-end, to
be used to perform coarse preliminary analysis of large complex
scenes. The data returned certainly is still far from representing
a complete understanding of the scene’s contents. However, our
algorithm’s output can be used in at least two practical ways: first,
to compute statistics at the region level, like, e.g., finding areas
in the world with high concentrations of boats, or determining
which regions in a country have more buildings and, hence,
may be more densely populated. Such basic statistics may be of
great use on their own, for example when planning rescue efforts
following a natural disaster, or may assist a human image analyst
in performing deeper and more cognitively-driven surveys of
imagery. Second, our algorithm can be used to rank image chips
by interest (using the probability maps of Fig. 14), so as to focus
limited resources onto the most promising image locations.
Resources may be limited because of limited human personnel,
human viewing time (e.g., when using rapid serial visual presen-
tationof imagechips [64],orcomputation time(e.g., usingamore
sophisticated and time-consuming object recognition back-end
to validate high-probability chips). It is likely that our system
could perform even better if one was to apply some of the recog-
nition-by-components principles or other recognition back-end
to the high-probability target chips returned by our algorithm.

Thus far, our algorithm has only been applied to greyscale vis-
ible imagery. With the increasing popularity of color and multi-
spectral imagery, it remains to be tested in future work whether
our simple approach will scale up to a larger number of spectral
bands. All C++ source code for our algorithms is available on
the authors’ web site (http://iLab.usc.edu).
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