
Image and Vision Computing 29 (2011) 1–14

Contents lists available at ScienceDirect

Image and Vision Computing

j ourna l homepage: www.e lsev ie r.com/ locate / imav is
Visual attention guided bit allocation in video compression

Zhicheng Li a,b, Shiyin Qin a, Laurent Itti b,⁎
a School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
b Computer Science Department, University of Southern California, Los Angeles, CA, USA
⁎ Corresponding author. University of Southern Cali
Building, room HNB-07A - 3641 Watt Way, Loa Ang
Tel./fax: +1 (213) 740 3527/5687.

E-mail address: itti@pollux.usc.edu (L. Itti).

0262-8856/$ – see front matter © 2010 Elsevier B.V. Al
doi:10.1016/j.imavis.2010.07.001
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 2 November 2009
Received in revised form 13 May 2010
Accepted 12 July 2010

Keywords:
Visual attention
Video compression
Eye-tracking
Video subjective quality
A visual attention-based bit allocation strategy for video compression is proposed. Saliency-based attention
prediction is used to detect interesting regions in video. From the top salient locations from the computed
saliency map, a guidance map is generated to guide the bit allocation strategy through a new constrained
global optimization approach, which can be solved in a closed form and independently of video frame
content. Fifty video sequences (300 frames each) and eye-tracking data from 14 subjects were collected to
evaluate both the accuracy of the attention prediction model and the subjective quality of the encoded video.
Results show that the area under the curve of the guidance map is 0.773±0.002, significantly above chance
(0.500). Using a new eye-tracking-weighted PSNR (EWPSNR) measure of subjective quality, more than 90%
of the encoded video clips with the proposed method achieve better subjective quality compared to standard
encoding with matched bit rate. The improvement in EWPSNR is up to over 2 dB and on average 0.79 dB.
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1. Introduction

Significant improvements in video coding efficiency have been
achieved with modern hybrid video coding methods such as H.264/
AVC [1,2] in the last two decades. Spatial and temporal redundancy in
video sequences has been dramatically decreased by introducing
intensive spatial–temporal prediction, transform coding, and entropy
coding. However, to achieve better compression performance,
reducing such kind of so-called objective redundancy is limited and
highly complex in computation.

On the other hand, research on human visual characteristics shows
that people only perceive clearly a small region of 2–5° of visual angle.
The human retina possesses a non-uniform spatial resolution of
photoreceptors, with highest density on that part of the retina aligned
with the visual axis (the fovea), and the resolution around the fovea
decreases logarithmically with eccentricity [3]. What's more, research
results show that observers' scanpaths are similar, and predictable to
some extent [3]. These research results provide a new pathway to
compress images/videos based on human visual characteristics: only
encode a small number of well selected interesting regions (attention
regions) with high priority to keep a high subjective quality, while
treating less interesting regions with low priority to save bits.

Recently, many subjective quality-based video coding methods
have been developed. According to the way of obtaining attention
regions, they can be coarsely classified into four categories, as follows:
(1) In the first approach, considering that human attention prediction
is still an open problem, human–machine interaction methods are
adopted to obtain the attention regions. One example of online
human–machine interactive methods is gaze-contingent video trans-
mission, which uses an eye-tracking device to record eye position
from a human observer on the receiving end and applies in real-time a
foveation filter to the video contents at the source [4–8]. This
approach is particularly effective because observers usually do not
notice any degradation of the received frames, since high-quality
encoding continuously follows the high-acuity central region of the
observers' foveas. However, this application is restricted to specific
cases where an eye-tracking apparatus is available at the receiving
end. For general-purpose video compression, this approach faces
severe limitations if an eye-tracker is not available or several viewers
may watch a video stream simultaneously. To address this, offline
interactive methods are designed to obtain the interesting regions by
asking subjects to manually draw regions which are interesting, and
then applying this to the encoding procedure [9]. (2) The second class
of approaches uses machine vision algorithms to automatically detect
interesting regions. For instance, due to the importance of human
faces while people perceive the world [10,11], it is reasonable to
consider that human facesmay likely constitute interesting regions. In
[12–14], face regions are thus defined as the regions-of-interest. Face
detection and tracking methods are explored to keep the interesting
regions focused onto human faces, and more resources are allocated
during encoding to these face regions, to keep these regions in high
quality.With the development of face detection algorithms and object
tracking methods in machine vision, this kind of video compression is
very effective in the occasions where human faces indeed are central
to the visual understanding of a video sequence, such as for video
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telephone or video conference. However, this type of approach is
obviously only workable when human faces are present. For
unconstrained video compression where there may or may not be
faces in the streams to be encoded, this method will fail to find
interesting regions. (3) The third class of approaches uses knowledge
about human psychophysics to guide the encoding process. For
example, research results show that the human visual system (HVS)
can tolerate certain amounts of noise (distortion) depending on its
sensitivity to the source and type of noise for a given region in a given
frame. Under certain conditions, the HVS can tolerate more distortion
than the objective distortion measurements such as mean square
error (MSE) would predict; on the other hand, there are some types of
distortions which, despite low MSE, are vividly perceived and impair
the viewing experience [15–17]. Based on this theory, many image/
video encoding techniques have sought to optimize perceptual rather
than objective (MSE) quality: these techniques allocate more bits to
the image areas where human can easily see coding distortions, and
allocate fewer bits to the areas where coding distortions are less
noticeable. Experimental subjective quality assessment results show
that visual artifacts can be reduced through this approach; however,
there are two problems: one is that the mechanisms of human
perceptual sensitivity are still not fully understood, especially as
captured by computational models; the other is that perceptual
sensitivity may not necessarily explain people's attention. For
example, smoothly textured regions and objects with regular motions
often belong to the background of a scene and do not necessarily catch
people's attention, but these types of regions are highly perceptually
sensitive if attended to. (4) The fourth class of approaches exploits
recent computational neuroscience models to predict which regions
in video streams are more likely to attract human attention and to be
gazed at. With the development of brain and human vision science,
progress has been made in understanding visual selective attention in
a plausible biological way, and several computational attention
models have been proposed [18–20]. In these models, low-level
features such as orientation, intensity, motion, etc. are first extracted,
and then through nonlinear biologically inspired combination of these
features, an attention map (usually called saliency map) can be
generated. In this map, the interesting locations are highlighted and
the intensity value of the map represents the attention importance.
Under the guidance of the attention map, resource can be allocated
non-uniformly to improve the subjective quality or save the
bandwidth [21–24]. Although such research shows promising results,
it is still not a completely resolved problem.

Once interesting regions are extracted, a number of strategies have
been proposed to modulate compression and encoding quality of
interesting vs. uninteresting regions [21,25–29]. One straightforward
approach is to reduce the information in the input frames. In [4,21,22],
the frames to be encoded are first blurred (foveated) according to the
attentionmap. The foveated image only keeps the attention regions in
high quality while the other regions are all blurred. Through the
blurring, redundancy is reduced significantly, and the compression
ratio can be several times higher than the normal encoding method.
However, blurring yields obvious degradation of subjective quality in
the low saliency regions. In [23], a bit allocation scheme through
tuning the quantization parameter is proposed with a constrained
global optimization approach. Results show that 60% of the test video
sequences encoded by this approach have better subjective visual
quality compared to the video encoded by the normal method under
the same bandwidth. In rate-distortion optimization, different mode
may get different video quality and bit rate. The mode decision is
usually determined by minimize the cost function which is the sum of
encode error and bit rate multiple by a parameter (called Lagrange
multiplier). Considering that the Lagrange multiplier will affect the
mode decision in rate-distortion optimization, a Lagrange multiplier
adjustment method is explored in [25]. An optimized rate control
algorithm with foveated video is proposed in [26], and foveal peak
signal-to-noise ratio (FPSNR) is introduced as subjective quality
assessment. In [28], a region-of-interest based resource allocation
method is proposed, in which the quantization parameter, mode
decision, number of referenced frames, accuracy of motion vectors,
and search range of motion estimation are adaptively adjusted at the
macroblock (MB) level according to the relative importance (obtained
from the attention map) of each MB.

How to evaluate the quality of a compressed image/video is still an
open problem.Many quality assessment metrics have been developed
to evaluate the objective or subjective quality of video. Among them,
MSE and PSNR are two widely adopted objective quality measure-
ments, even though they often are not consistent with human
perception. Many additional types of objective (including human
vision-based objective) quality assessment methods have been
proposed [26,30–32]. However, the research results of the video
quality experts group (VQEG) show that there is no objective
measurement which can reflect the subjective quality in all condi-
tions [33]. The suggested subjective quality from VQEG was obtained
by using the mean opinion score (MOS) from pool of human subjects.
Specifically, subjective quality scales ranging between excellent, good,
fair, poor and bad (weight values are 5, 4, 3, 2, and 1, respectively) can
be obtained from naive observers, and the weighted mean MOS score
can be used as the subjective quality.

In this paper, we use a neurobiological model of visual attention,
which automatically selects (predicts) high saliency regions in
unconstrained input frames to generate a saliency map (SM).
Considering the human's foveated retina characteristic, a guidance
map (GM) is generated by finding the top salient locations in the
saliency map. The GM is then used to guide the bit allocation in video
coding through tuning the quantization parameters in a constrained
optimization method. The overview of the proposed method can be
seen in Fig. 1. For experimental validation, 50 high-definition
(1920×1080) video sequences were captured using a raw uncom-
pressed video camera, which include scenes at a library, pool, road
traffic, gardens, a dinner hall, lab rooms, etc. Instead of using a
subjective rating method, an eye-tracking experiment which records
human subjects' eye fixation positions over the video frames was
conducted to validate both the attention prediction model and the
compressed video subjective quality. The focus of this paper is to
combine the attention model with the latest video compression
framework, and to validate the result in a quantitative way through an
eye-tracking approach. The experiment results showthat the proposed
method is effective in both predicting human attention regions and
improving subjective video quality while keeping the same bit rate.

The present paper complements our previous work [21], in which
we showed that a saliency map model can predict human gaze well
above chance, and can be used to guide video compression through
selective blurring of low-salience image regions. The key innovation
in the present work is to replace the selective blurring step, which
yields quite obvious distortions in low-salience video regions, with a
more sophisticated and more subtle localized modulation of the
H.264 encoding parameters. Our new algorithm employs a con-
strained global optimization approach to derive the encoding
parameters at every location in every video frame. We find that
the optimization can be solved in closed form, which gives rise to an
efficient implementation. This new optimization approach is an
important step as it yields encoded videos that subjectively look very
natural and are not degraded by blurring. Further, we develop and
test a new eye-tracking weighted PSNR (EWPSNR) measure of
subjective quality. Using this measure, we find that videos
compressed with the proposed technique have better EWPSNR on
our test video clips. Because our proposed method is purely
algorithmic, requires no human intervention or parameter tuning,
is applicable to a wide variety of video scenes, and yields improved
EWPSNR, we suggest that it could be integrated to future genera-
tions of general-purpose video codecs.



Fig. 1. Overview of the model. For the attention model path, the current input frame is first decomposed into multi-scale analysis with channels sensitive to low-level visual features
(two color contrasts: blue–yellow, red–green; temporal flicker; intensity contrast; four orientations, 0°, 45°, 90°, and 135°; and for directional motion energies, up, right, down, and
left). The saliency map is obtained after within-channel within-scales and cross-scales nonlinear competition. Assuming that the top salient locations in the saliency map are likely to
attract attention and gaze of viewers, a guidance map is generated by foveating these positions. On the compression path, the current macroblocks (MBs) are predicted by previous
encoded frame MBs through intra (which means the prediction result is generated from the current frame) or inter (which means the prediction result is generated from the
previous frame) mode. The prediction error (difference) is then passed through transform and quantization; here the generated guidance map is used to adjust the quantization
parameters to realize the non-uniform bit allocation. An encoded frame is complete after quantization and entropy encoding.
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2. Method

2.1. Attention model

The model computes a topographic saliency map which indicates
how conspicuous every location in the input image is. We used the
freely available implementation of the Itti–Koch saliency model
[34]. In this model, an image is analyzed along multiple low-level
feature channels to give rise to multi-scale feature maps, which
detect potentially interesting local spatial discontinuities using
simulated center-surround neurons. Twelve feature channels are
used to simulate the neural features which is sensitive to color
contrasts (red/green and blue/yellow), temporal intensity flicker,
intensity contrast, four orientations (0°, 45°, 90°, and 135°) and four
oriented motion energies (up, down, left, and right). The particular
low-level features extracted here have been shown to attract
attention in humans and monkeys, as had been previously inves-
tigated in details [19,35,36]. Center-surround scales are obtained
from dyadic pyramids with 9 scales, from scale 0 (the original
image) to scale 8 (the image reduced by factor to 28=256 in both
the horizontal and vertical dimensions). Six center-surround
difference maps are then computed as point-to-point difference
across pyramid scales, for combination of three center scales
c = f2;3;4gð Þ and two center-surround scale differences
δ = f3;4gð Þ. Thus, six feature maps are computed for each of the
12 features, yielding a total of 72 feature maps. Each feature map is
additionally endowed with internal dynamics that provide a strong
spatial within-feature and within-scale competition for activity,
followed by within-feature, across-scale competition [37]. In this
way, initially possibly very noisy feature maps are reduced to sparse
representations of only those locations which strongly stand out
from their surroundings. All feature maps finally contribute to the
unique scalar saliency map, which represents visual conspicuity of
each location in the visual field.

After the saliency map is computed, a small number of discrete
virtual foveas endowed with mass/spring/friction dynamics attempt
to track a collection of most salient objects, using proximity as well
as feature similarity to establish association between n salient
locations and p fovea centers (similar to the approach described in
our previous work [21,22]). The association is established through
an exhaustive scoring of all n×p possible parings between a new
salient location Xt

A(i)=(xtA(i), ytA(i)), i∈ {1...n} and an old foveation
center Xt( j)=(xt( j), yt( j)), j∈ {1...p} at time t. (Typically, p is fixed
and n=p+4 to ensure robustness against varying saliency ordering
from frame to frame, p=10 in the present implementation). Four
criteria are included to determine the correspondence: (1) Euclid-
ean spatial distance between the locations of i and j; (2) Euclidean
distance between feature vectors extracted at the locations of i and j
which coarsely capture the visual appearance of each of the two
locations; (3) a penalty term ji−jj that discourages permuting
previous pairings by encouraging a fixed ordered pairing; and (4)
a tracking priority that increases with salience, enforcing strong
tracking of only very salient objects. Combining these criteria tends
to assign the most salient object to the first fovea, the second most
salient object to the second fovea, etc. Video compression priority at
every location is then related to the distance to the closest fovea
center (using a 2D chamfer distance transform). For implementation
details, please refer to [21] and [34]. It is important to note that the
dynamics of the virtual foveas do not attempt to emulate human
saccadic eye movement but track salient objects in a smooth and
damped manner. The adopted correspondence and tracking algo-
rithm compromises between reliably tracking the few most salient
objects, and time-sharing remaining foveas among a larger set of less
salient objects.

2.2. Bit allocation strategy

Assume that the rate-distortion (R-D) function is as follows [23,38]
for a given region (typically, macroblock) i in an image:

DiðRiÞ = σ2
i
�e−γRi ð1Þ

in which Di denotes the mean square error, Ri stands for the bit rate,
and σi

2 is a measurement of the variance of the encoding signal (both
spatial and temporal) and describes the complexity of the video
content, γ is a constant coefficient. This approach assumes that the
distortion is to be computed in a uniform manner, i.e., distortion in
different areas of an image is equally important. However, if we take
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the human's visual spatial resolution into consideration, then the
encoding distortion in area i can be written as follows:

D′
i = wi

�Di ð2Þ

here wi is the weight coefficient, it stands for the human's spatial
resolution in area i. In the area around the center of gaze (the fovea),
wi should be higher than in areas far from the gaze position, because
even small distortions in the foveal region can cause people's
awareness while in peripheral regions relatively larger distortions
may not catch people's attention.

According to this non-uniform distribution of human eye resolu-
tion, there are two ways to optimize the bit allocation in encoding.
One is as proposed in [23]: keep the sum of bit rate as a constant value
andmaximize the subjective quality. Under the hypothesis that σi

2 are
equal at every location, the conclusion is then that the quantization
parameter QPi is inverse exponentially with the optimized bit rate:

Ri = R +
1

γNS
∑
j≠i

Sj⋅ log
wi

wj
ði = 1;2:::NÞ ð3Þ

QPi = e
α−Ri

β ð4Þ

where S is the area size of the entire frame, Si is the area of region i,N is
the region number in one frame. α accounts for overhead bits and β is
the adjustment parameter. However, in reality, σi

2are quite different
over space within one frame and it is hard to determine the para-
meters correctly. In [23], the parameters are calculated from training
videos that are similar to those to be encoded by the system, which is
time consuming and may be unreliable if the test set differs
substantially from the training set. To avoid this, we take a different
approach: preserve the subjective quality while minimizing the bit
rate. With this method, we find that the optimized distortion
distribution is independent of the video frame contents and only
depends on theweight coefficients. The details of this newmethod are
described as follows:

To minimize the bit rate while keeping the subjective quality the
same, we can write this global optimization problem as follows:

Min∑
i

Si �Ri = S

s:t:∑
i

wi
�Di =W = D

8<
: ð5Þ

hereW is the sum of all of the weight coefficients in different areas, D
is the target distortion. With the Lagrange multiplier method we can
solve this equation in closed form:

f ðD1;D2;…DNÞ = ∑
i

si �Ri = S + λð∑
i

wi
�Di =W−DÞ

Ri =
1
γ
ðlog σ 2

i − log DiÞ

8>><
>>: ð6Þ

in which N is the number of areas in the encoded image. To obtain the
minimum value, we pose that, at the minimum:

∂f
∂D1

=
∂f
∂D2

= … =
∂f
∂DN

= 0 ð7Þ

Solving these equations above, we obtain:

Di =
W �si
wi

�S
�D ði = 1;2;…;NÞ ð8Þ

We can see from this equation that the optimum Di is independent
of the video characteristic related parameters γ and σi. Hence the
optimum process can be applied to any video no matter what the
content of the video is, and we need not train on any sample videos to
compute the optimum parameters. Furthermore, from the Eq. (8) we
can see that the optimized distortion should be inversely proportional
to theweight coefficient. One special condition is when all weights are
equal over all locations, in which case the distortion should be equally
distributed.

Now we can determine the bit allocation strategy with the
calculated distortion distribution. In mainstream video compression
schemes developed so far, the distortion stems only from quantiza-
tion. The basic quantization operation is as follows:

Y = round X =Q step

� �
ð9Þ

where X usually is the coefficient after the transform (DCT, DWT, etc.),
Q step is the quantization step and Y is the quantized result. The
Q step-distortion mapping is linear and we can simply write the
Q step-distortion (Q-D) model as follows:

D = k�Q step ð10Þ

where k is a constant coefficient related to the video content. Then the
optimized distortion for each area transformed to the optimized
quantization step is, at every location i:

Q istep =
W �si
wi

�S Q step ð11Þ

The formula above shows that in the human visual characteristic
based video coding, the quantization step should be inversely
proportional to the subjective quality weight coefficient.

According to the analysis above, we can apply the GM to guide the
quantization parameter adjustment to conduct the optimized bit
allocation. The GM values can be seen as the subjective weight
coefficients and the quantization parameters then can be computed
from above formula.

3. Video acquisition

Fifty video clips (1920×1080) were collected for this experiment
and each of them was cut to 300 frames (Fig. 2). All these clips were
captured by a Silicon Imaging SI-1920HD camera with an EPIX E4
frame grabber card at frame rate of 30±0.2 fps. The original frames
were captured as Bayer format without any compression and saved in
round-robin onto 4 separate hard drives to avoid limitations in frame
rate due to limited disk bandwidth. The clips were captured around
the USC campus and include both outdoor and indoor scenes at
daytime. The outdoor scenes include library, pool, traffic road,
gardens, museum, park, gates, fountains, square, lawn, track & field,
and the indoor scenes include dinner hall, lab rooms, etc. After video
capture, all the frames were converted to RGB color images through
linear interpolation [39] and enhanced by gamma correction. Finally
the frames were assembled into video clips in the YUV (4:2:0) format
for further processing.

To facilitate future research, this raw uncompressed video dataset,
as well as all the eye-tracking data described below, are made freely
available on the Internet (http://iLab.usc.edu/vagba/). We hope that
this comprehensive dataset and the associated human eye move-
ments can benefit a number of research projects aiming at improving
video compression quality, and beyond.

4. Human eye-tracking

The collected 50 uncompressed YUV format video clips were
presented to 14 subjects and their eye fixation points were recorded
over frames from each clip by an eye-tracker machine. The recorded
eye traces represent the subjects' shifting overt attention, thus the



Fig. 2. Example of captured frames, first row: dance01, seagull01, and garden09, second row: road02, fountain01 and robarm01, third row: park01, gate03 and lot01, fourth row:
foutain05, room02 and field06.
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eye-tracking data are qualified to validate the performance of the
attention prediction model and the visual subjective quality.

Subjects were naïve to the purpose of the experiment and had
never seen these video clips before. They were also naïve to attention
theory, saliency theory, and video compression theory. Theywere USC
students and staff (7 males, 7 females, mixed ethnicities, ages 22–32,
normal or corrected-to-normal vision). Theywere instructed to watch
the video clips without any specific task, and to attempt to follow
Fig. 3. Eye fixation distribution examples. The maps are histogrammed over 10×10 image til
toward the center of the display. (b) Eye fixation distribution from one of the subjects over
whatever interesting things they might like. Later they were asked
some general questions about what they hadwatched. Themotivation
of these instructions was to try to make the experiment similar to
ordinary video watching. We believe that our instructions did not bias
subjects toward low-level salient frame locations as defined by the
Itti–Koch Model [18].

Stimuli were presented on a Sony Bravia XBR-III 46″ 60 Hz 1080 p
LCD-TV display connected to a Linux computer. Subjects were seated
es and normalized to 1. (a) The overall distribution for all subjects and clips shows a bias
all the clips.

image of Fig.�2
image of Fig.�3


Fig. 5. Ordinal dominance analysis, there are 1,455,279 fixation points in total.
(a) Histogram of guidance map values at eye positions and random locations.
(b) Ordinal dominance curve, the dashed line is the chance level.
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on an adjustable chair at a viewing distance of 97.8 cm, which
responded to a field of view of 54.8×32.7°, and rested on a chin-rest. A
nine-point eye-tracker calibration was performed every ten clips.
Each calibration point consisted of fixating first a central cross, then a
blinking dot at a random point on a 3×3 matrix covering the screen
area. For each clip, subjects first fixated a central cross, pressed a key
to start, at which point the eye-tracker was triggered, the cross
blinked for 1066 ms, and the clip started. After each clip, the display
became grey and the eye-tracker was disabled. The experiment was
self-paced: the next clip was shown when the subject pressed the
space button. Every ten clips, subjects could stretch before the nine-
point calibration. Stimuli were presented on a Linux computer, under
SCHED_FIFO scheduling (process would keep 100% of the CPU as long
as needed) to guarantee timing. Each uncompressed clip
(1920×1080, YUV 4:2:0 format)was entirely preloaded intomemory.
Frame displays were hardware-locked to the vertical retrace of the
monitor (one movie frame was shown for two screen retraces,
yielding a playback rate of 30.00 fps). Microsecond-accurate time-
stampswere stored inmemory as each framewas presented, and later
saved to disk to check for dropped frames. No frame drop ever
occurred and all timestamps were spaced by 33.333±0.001 ms. Eye
position was tracked using a 240-Hz infrared-video-based eye-tracker
(ISCAN, Inc., model RK-464). Methods were similar to previously
described [21]. In brief, this machine estimates point of regard (POR)
in real-time from comparative tracking of both the center of the pupil
and the specular reflection of the infrared light source on the cornea.
This technique renders POR measurements immune to small head
translations (tested up to 10 mm in our laboratory). All analysis was
performed offline. Linearity of the machine's POR-to-stimulus
coordinate mapping was excellent, as previously tested using a 7×5
calibration matrix in our laboratory, justifying a 3×3 here. The eye-
tracker calibration traces were filtered for blinks and segmented into
two fixation periods (the central cross, then the flashing point), or
discarded if that segmentation failed a number of quality control
criteria. An affine POR-to-stimulus transform was computed in the
least-square sense, outlier calibration points were eliminated, and the
affine transform was recomputed. If fewer than six points remained
after outlier elimination, recordings were discarded until the next
calibration. Otherwise, a thin-plate-spline nonlinear warping was
then applied to account for any small residual nonlinearity. Data was
discarded until the next calibration if residual errors greater than
34 pixels (about 1° field of view) on any calibration point or 17 pixels
(about 0.5° field of view) overall remained. Eye traces for the ten clips
following a calibration were remapped to screen coordinates, or
discarded if they failed some quality control criteria (excessive eye-
blinks, motion, eye wetting, or squinting). Calibrated eye traces were
visually inspected when superimposed with the clips.
Fig. 4. Examples of eye fixation distribution map at different clips, the maps are histogram
(d) seagull01.
Eye fixation distribution examples can be seen in Figs. 3 and 4.
We can see from Fig. 3 that the overall distribution of eye fixations is
quite strongly center-biased on average, however, for different
content clips, the eye fixation distributions are totally different and
not necessarily center-biased (Fig. 4). This is important as it
suggests that a simplistic saliency map – which would simply
mark central screen regions as more salient – may work well on
average but not necessarily for individual video clips (see [21] for
med over 16×16 image tiles and normalized to 1. (a) gate03, (b) park01, (c) room02,

image of Fig.�4
image of Fig.�5
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further discussion). In our results below we not only report average
performance but also performance on individual clips and worst-
case performance.

5. Experiment result

Uncompressed videos were shown to the subjects and the eye-
tracking data was used to validate both the attention prediction
model and the attention-based bit allocation scheme.

Considering that a good attention prediction model should
output a model map which highlights the eye's fixation point,
differences between guidance map values at subjects' gaze targets
and at randomly selected locations were quantified, to evaluate
performance, using ordinal dominance analysis [40]. Model map
values at subjects' fixation points and at randomly selected
locations were first normalized by the maximum value in the map
when the eye fixation occurred (100 random locations are se-
lected in this paper). Then, histograms of values at eye positions
and random locations were created. Fig. 5(a) shows the results of
the histograms over all video clip types and subjects. It is easy to
see from the figure that many more human fixations were to high
model salience values than expected by chance, which means the
proposed model performs better than the random model at
predicting human gaze. The mean observer value at the guidance
map is 0.778 while the median value is 0.922, compared to
mean 0.435 and median 0.400 obtained with random fixations
(both model values are significantly higher than random value,
pb10–20, considering both t-tests for mean value comparisons
and sign tests for median value comparisons). Fig. 6 shows the
example of frames and their corresponding guidance maps. The
subjects' eye fixation points are marked as small color patch in
the frames.

To further measure the difference between the observer and
random histograms, a threshold was decremented from 1 to 0, and
at each threshold the percentage of eye positions and of random
Fig. 6. Example of video frames (top) and the corresponding guidance maps (bottom). Su
patches in (b) means a saccade. (a) Frame from park03, (b) frame from room02.
positions that were to a map value larger than the threshold
(“hits”) were computed. An ordinal dominance curve (similar to a
receiver operating characteristic curve) was created with “observ-
er-hits” versus “random-hits”. The curve summarizes how well a
binary decision rule based on thresholding the map values could
discriminate signal (map values at observer eye positions) from
noise (map values at random locations). The overall performance
can be summarized by the area under the curve (AUC). An AUC
area of 0.5 stands for a model which is at chance at predicting
human gaze, while larger AUC values indicate better prediction
performance. In our experiment, the ordinal dominance curve is
plotted in Fig. 5(b), and the AUC value is 0.773±0.002. As an upper
bound, inter-observer correlations among humans yield an AUC
of 0.854±0.001.

As to the attention-based bit allocation in video compression, the
latest video compression standard H.264/AVC and its reference
software JM9.8 are adopted to implement the experiment. In H.264,
a total of 52 different values of Q step are supported and they are
indexed by a Quantization Parameter (QP). Q step increases by 12.5%
for each increment of 1 in QP. In this paper, QPs are adjusted at the
MB level, which means different QPs are computed for each MB.
There are two reasons for this: first, in H.264 frames are encoded at
the MB level, second, the generated guidance map has the same size
as the frame size in MBs. QPs are computed according to Eq. (11)
where wi are replaced by the corresponding GM values and Q step are
taken from the baseline QP value. Furthermore, in order to keep the
smoothness of perceptual quality, the biggest Q step is constrained to
equal or less than 2 times of the smallest Q step, this means the
difference between QPs in one frame is constrained into 6. In the
implementation, the smallest QP is set to QPbaseline−2 while the
biggest QP is set to QPbaseline+3.

To measure the subjective quality of encoded frames, eye-tracking
data are applied to compute theweighted distortion. Here we propose
to use a new eye-tracking weighted mean square error (EWMSE) and
eye-tracking weighted peak signal-to-noise ratio (EWPSNR) metrics
bjects' eye fixations are marked as small square color patches in the frame, the white

image of Fig.�6


8 Z. Li et al. / Image and Vision Computing 29 (2011) 1–14
to measure subjective quality. The corresponding computation
formulas are as follows:

EWMSE =
1

MN ∑
M

x=1
∑
N

y=1
wx;y

∑
M

x=1
∑
N

y=1
wx;y• Ix;y

′ −Ix;y
� �2� �

ð12Þ

EWPSNR = 10� log ð2n−1Þ2
EWMSE

 !
ð13Þ

wx;y =
1

2πσxσy
e
− ðx−xe Þ2

2σ2x
+ ðy−ye Þ2

2σ2y

� �
ð14Þ
Table 1
Comparison of EWPSNR results between JM9.8 and the proposed model (VAGBA — visual a
baseline quantization parameter. Gain (in dB) is the improvement of EWPSNR compared
subjective quality encoded by the proposed method is better than the one encoded by JM9

Clip index QP=24 QP=28

JM VAGBA Gain JM VAGBA Gain

1 41.15 42.89 1.75 38.66 40.16 1.50
2 41.36 42.02 0.66 38.48 39.27 0.79
3 43.18 42.99 −0.19 40.56 40.56 0.00
4 42.67 42.83 0.16 40.47 40.52 0.05
5 41.77 43.08 1.31 38.93 40.34 1.41
6 41.95 42.47 0.52 39.25 39.74 0.49
7 42.76 42.69 −0.07 40.06 40.08 0.02
8 43.35 43.74 0.39 40.71 41.20 0.49
9 42.07 42.58 0.50 39.29 39.91 0.61
10 41.51 42.00 0.49 38.79 39.24 0.45
11 41.89 42.50 0.61 39.34 39.82 0.48
12 41.30 41.66 0.36 38.57 38.88 0.31
13 42.15 42.76 0.61 38.98 40.12 1.14
14 40.22 41.14 0.92 37.38 38.23 0.85
15 41.84 42.57 0.73 39.14 40.01 0.87
16 41.22 42.39 1.17 38.15 39.56 1.41
17 43.07 43.45 0.38 40.44 40.93 0.49
18 41.29 42.13 0.84 38.32 39.48 1.16
19 41.68 42.67 0.98 38.72 39.98 1.26
20 42.73 42.64 −0.09 40.20 39.99 −0.20
21 42.87 43.39 0.52 40.25 40.81 0.56
22 42.99 42.50 −0.48 40.48 39.92 −0.55
23 44.76 45.70 0.94 42.57 43.49 0.92
24 41.69 42.48 0.79 39.09 39.83 0.73
25 43.12 43.55 0.43 40.61 41.02 0.41
26 42.68 42.84 0.16 39.99 40.12 0.13
27 44.82 45.50 0.67 42.75 43.47 0.72
28 42.45 43.25 0.81 39.55 40.76 1.20
29 42.05 43.10 1.05 39.05 40.38 1.33
30 42.18 42.34 0.16 39.52 39.58 0.06
31 43.66 45.95 2.29 41.72 43.94 2.22
32 41.15 42.55 1.40 38.38 39.77 1.39
33 42.22 43.04 0.83 39.48 40.39 0.91
34 42.69 43.36 0.67 40.21 40.79 0.58
35 44.65 45.38 0.74 43.08 43.61 0.54
36 42.15 42.68 0.53 39.17 40.01 0.84
37 42.49 42.84 0.35 39.73 40.13 0.40
38 42.56 43.37 0.81 40.08 40.82 0.74
39 42.00 42.04 0.03 39.49 39.36 −0.13
40 41.77 42.79 1.02 38.74 40.08 1.35
41 42.73 43.17 0.44 39.79 40.48 0.69
42 41.86 42.62 0.76 39.29 39.98 0.69
43 43.61 44.05 0.44 40.82 41.54 0.72
44 42.79 43.67 0.88 40.46 41.12 0.65
45 42.79 42.84 0.05 40.22 40.24 0.02
46 41.63 42.74 1.10 38.97 39.97 1.00
47 42.14 43.64 1.50 39.23 41.05 1.81
48 42.51 42.74 0.23 39.89 40.14 0.25
49 41.54 43.07 1.53 38.65 40.31 1.66
50 42.48 43.81 1.33 40.16 41.31 1.15
Average 42.36 43.04 0.68 39.71 40.44 0.73
where I and I′ are the original frame and the encoded frame,
respectively, M and N are the frame's height and width in pixels, n
is the bit depth of the color component. wx, y is the weight for
distortion at position (x, y) and normalized to ∑

x;y
wx;y = MN. wx, y is

computed based on the subjects' eye fixation position (xe, ye) from
eye-tracking experiment, σxand σyare two parameters related to the
distance and view angle, usually taken from fovea size. Here we use 2°
(64 pixels) of view field as σx and σy. The rationale for this weighting
formula is that the photoreceptors in the human retina are in a highly
non-uniform distribution: only a small region of 2–5° of visual angle
(the fovea) around the center of gaze is captured at high resolution
and the resolution falls off quickly around the fovea [3]. In our
experiment, the eye fixations are recorded with a 240 Hz eye-tracker,
considering that the video frame rate is 30 Hz, for each subject, 8 eye
ttention guided bit allocation) for different clips. Units in the table are in dB. QP means
with the standard JM9.8 method. GainN0 means that, for the current clip, the video
.8.

QP=32 QP=36

JM VAGBA Gain JM VAGBA Gain

35.67 37.49 1.82 32.77 34.74 1.97
35.41 36.59 1.18 32.93 33.93 1.00
38.08 38.17 0.09 35.77 35.85 0.08
38.03 38.29 0.27 34.92 36.08 1.16
36.03 37.58 1.56 33.21 34.84 1.64
36.54 37.06 0.51 33.78 34.46 0.69
37.14 37.49 0.35 34.32 34.96 0.65
38.35 38.69 0.34 35.67 36.18 0.51
36.56 37.30 0.74 33.97 34.59 0.62
36.06 36.52 0.46 33.38 33.84 0.45
36.74 37.23 0.49 34.04 34.59 0.56
35.73 36.18 0.45 33.00 33.51 0.51
36.83 37.50 0.67 33.68 34.84 1.16
34.57 35.39 0.82 31.92 32.66 0.73
36.54 37.42 0.88 33.92 34.83 0.91
35.48 36.83 1.36 32.70 34.11 1.41
37.64 38.45 0.82 35.24 35.95 0.71
35.64 36.91 1.27 33.15 34.40 1.25
36.27 37.32 1.05 33.49 34.66 1.17
37.55 37.37 −0.18 34.98 34.75 −0.24
37.51 38.23 0.72 34.91 35.66 0.75
37.90 37.34 −0.56 35.28 34.81 −0.46
40.09 41.09 1.01 37.65 38.55 0.90
36.44 37.17 0.72 33.77 34.51 0.73
38.10 38.47 0.37 35.49 35.85 0.36
37.18 37.36 0.18 34.32 34.62 0.31
40.43 41.20 0.77 37.94 38.73 0.79

4 37.17 38.29 1.12 35.05 35.79 0.75
36.16 37.68 1.52 33.41 34.98 1.57
36.93 36.96 0.03 34.18 34.38 0.21
38.84 41.61 2.77 36.34 39.12 2.77
35.28 37.02 1.74 32.25 34.28 2.03
36.40 37.79 1.39 33.86 35.23 1.37
37.72 38.27 0.55 34.95 35.84 0.88
41.01 41.48 0.47 38.75 39.21 0.46
36.35 37.38 1.03 33.33 34.79 1.46
36.97 37.50 0.53 34.26 34.90 0.64
37.54 38.27 0.73 34.85 35.71 0.87
36.92 36.77 −0.15 34.42 34.22 −0.20
35.74 37.46 1.72 32.95 34.84 1.89
37.00 37.88 0.88 34.43 35.30 0.87
36.74 37.40 0.66 34.23 34.91 0.68
38.22 39.02 0.79 35.64 36.56 0.93
38.59 38.53 −0.06 35.80 36.03 0.23
37.41 37.63 0.223 34.51 35.08 0.56
36.26 37.26 1.01 33.37 34.59 1.22
36.74 38.47 1.73 34.17 35.95 1.79
37.15 37.50 0.36 34.27 34.90 0.62
35.58 37.58 2.01 32.57 34.83 2.26
37.02 38.77 1.75 34.42 36.22 1.79
37.03 37.85 0.82 34.35 35.27 0.92



Fig. 8. Comparison of histograms of PSNR results at eye fixation regions with standard
JM9.8 method and the proposed VAGBA method (initial QP=28). The fixation regions
are used 2° of view.
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fixation points need to be taken into account for each frame.
Therefore, the weight wx, y in reality is a combination of all 8 different
eye fixation points. Furthermore, the saccade data are not considered
in computing the EWPNSR and only the fixation points are taken into
account. We did this because human take saccade very quickly and do
not pay much attention to the saccade regions. The mean EWPSNR
from all the subjects is adopted as the measurement to evaluate the
video subjective quality: the higher EWPNSR value, the better
subjective quality.

To show the effectiveness of the proposed visual attention guided
bit allocation method in improving the video subjective quality, we
compare the encoded video EWPSNR from the proposed method and
the standard method in JM9.8 with matched bit rate through the
frame-level rate control algorithm. The configuration of the encoder is
as follows: intra period=30, Hadamard transform, UVLC, no fast
motion estimation, no B frame, high complexity RDO mode, no
restriction in search range. We test 4 baseline QPs (initial QP): 24, 28,
32 and 36, and the bit rates range from 260 Kbps to 10 Mbps. The rate-
controlled bit rates with the standard encoder precisely match the bit
rate with the proposed new encoder (within 1% difference). Table 1
lists all the EWPSNR results from proposed method, the results from
the JM9.8 standard method, and the subjective quality improvement
(gain). Better EWMSE and EWPSNR is expected to be obtained for our
method vs. JM only if, on average, the predictions of the saliency
model agree with where humans look, and, when they disagree, the
higher distortions that our system will introduce at the locations
looked at by humans do not outweigh the lower distortions obtained
when the model is correct. In addition, Fig. 7 plots the results at
different baseline QP, and sorts the results according to improvement.
It is easy to see that only for a few (3–4) clips the subjective quality is
worse with our proposed method than with the standard method,
while most of the clips achieve a better subjective quality, with
Fig. 7. EWPSNR results comparison between our proposed VAGBA model and JM9.8 at the s
quality improvement (the red bars shown in each plot).
improvement for some of them up to about 2 dB EWPSNR. Thus, the
proposed scheme can significantly (pb0.002, t-test) achieve better
subjective quality (as defined by our EWPSNR measure) while
keeping the same bit rate. Furthermore, the comparison of histograms
of PSNR results at eye fixation regions (2° of visual field) with different
methods is plotted in Fig. 8, from the figure it is easy to see that more
encoded frames have higher PSNR in the fixation region with the
proposed method compared with the standard JM9.8 method. Fig. 9
shows two examples of EWPSNR over the clip frames. We can see
ame bit rate, the horizontal axis represent the clip index, after sorting by the subjective

image of Fig.�7
image of Fig.�8


Fig. 9. Two examples of EWPSNR over the clip frames. (a) garden09 from subject KC, initial QP=28; (b) park03 from subject SH, initial QP=28. Dashed grey lines indicate intra-
coded frames (every 30 frames with our codec settings).
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from the figure that for most frames, the subjective quality of the
proposed method is better than the standard JM9.8 encoded result.
However, for some frames, the standard method achieves better
subjective quality. There are mainly two reasons for this: first, if the
current frame is an intra refresh frame, the rate control algorithm in
H.264 usually assigns a relatively smaller QP to such intra frame to
achieve better prediction results for later P frames. In these cases, the
current frame's quality could be better than with the proposed
method. Second, the attention prediction model is not guaranteed to
always accurately predict human's attention regions for all the frames,
such that if the prediction failed for the current frame, then due to the
bit allocation strategy, the true attention region will receive fewer bits
to encode thus will make the subjective quality worse.

Furthermore, the comparison between the proposed method and
our previousmethod proposed in [21] which guide video compression
through selective blurring (foveation) of low-salience image regions
is conducted. The foveated clips are encoded by JM9.8 with matched
bit rate through the frame-level rate control algorithm (within 1%
difference). Fig. 10 shows the comparison results at different baseline
QP, and sorts the results according to improvement of EWPSNR. From
the figure we can see that for all clips the subjective quality is
significantly better with the proposedmethod thanwith the foveation
method (pb10−10, t-test). The average improvement in EWPNSR is
2.533 dB. Also we can see from the figure that the improvement is
higher when the baseline QP is lower, this is because the foveation
degrade the video quality more than the encode error when the
quantization step is small. As another example, Fig. 11 compares the
visual qualities of three partially reconstructed frames among the
standard rate control method, the foveationmethod and the proposed
bit allocation method. The difference frames (encoding error) are also
plotted to make the comparison clearer. As shown in the figure, the
encoded frame by the proposed method has better visual quality than
the frame encoded by standard method in the interesting region.

6. Discussion

The proposed attention model predicts human attention accurate-
ly in most cases, and based on this, the bit allocation algorithm can
improve the subjective visual quality significantly while keeping the
same bit rate. The contributions in this paper include several aspects:

image of Fig.�9


Fig. 10. EWPSNR results comparison between our proposed VAGBAmodel and the foveationmethod (mark as FOV in the figure) at the same bit rate, the horizontal axis represent the
clip index, after sorting by the subjective quality improvement (the green bars shown in each plot).
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(1) Combining the attention prediction model with state-of-the-art
video compression method, the proposed method is fully automatic
and can be applied to any kind of video categories without any
restriction. In addition to combining with the H.264 codec, the
proposed method can be applied to any kind of codec proposed so far.
(2) A new bit allocation strategy was proposed through solving in
closed form the constrained global optimization problem. (3) Using
eye-tracking data to evaluate compressed video frame quality in a
quantitativeway (instead of subjective rating or binary selection). The
new proposed EWPSNR subjective quality measurement is based on
the human vision's characteristic and can represent the non-uniform
subjective distortion in a reasonable way. (4) Collecting a high-
definition video sequence database with eye-tracking data and
distributing them on the Internet. This dataset can be used for video
compression purposes as well as attention prediction purposes. Also,
the raw captured frames are in Bayer format, which means this
dataset can be used for Bayer format related image processing
research.

The target in this paper is to validate the effectiveness in
improving the subjective quality while keeping the same bit rate
and employing a purely algorithmic method which does not require
manual parameter tuning. Thus far, the bit allocation strategy is an
open-loop algorithm, which means that it only adjusts the bit
allocation according to the guidance map and takes no constrain to
keep any presumed bit rate. In our implementation, we first compress
the video sequences with the proposed method, after that, we use the
available rate control algorithm in JM9.8 to match the bit rate and use
this result to compare with our proposed method. The comparison is
reasonable because there is no scene change in the test sequences and
thus both bit rate and visual quality should not fluctuate too much
over video frames. Although the proposed method is not bit rate
constrained, it can be used in many applications such as video storage,
band-free video stream transmission, etc. However, it remains a great
task to develop a bit rate constrained bit allocation strategy based on
the visual attention model. Another point which is not addressed by
an open-loop algorithm but could be studied more closely in the
future is how the algorithm itself may introduce artifacts in the low-
bit rate regions of the compressed video, which may themselves be
salient and attract human attention (see [21] for more detailed
discussion). This could be addressed in future versions of our
algorithm where the saliency map may be computed on the
compressed video clips as well, to check for the introduction of
possibly salient artifacts during compression.

Eye-tracking data recorded from subjects viewing the uncom-
pressed video clips are applied in evaluating the subjective quality.
The rationale for viewing uncompressed video lies in two aspects:
first, the eye-tracking traces from the uncompressed videos show
the real attention regions of the original clips. Second, the ideal
subjective quality measurement should use eye-tracking data
from both the proposed method encoded video and standard rate-
controlled video. However, it is impossible to obtain these two kinds
of eye-tracking data from the same subject without affecting a priori
knowledge: no matter which kind of encoded video is presented to
subjects first, the eye-tracking data from the second presentation
would likely be affected by the fact that subjects have already seen
essentially the same clips before. Considering that artifacts might
attract attention, two steps are adopted to reduce the quality
fluctuation: first, both temporal and spatial smooth operation are
conducted in computing the guidance map; Second, the biggest Q step

is constrained to equal or less than 2 times of the smallest Qstep in
one frame to keep the perceptual quality, in the implementation, the
smallest QP is set to QPbaseline−2 while the biggest QP is set to

image of Fig.�10
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QPbaseline+3. In our experiment, we check the compressed videos
and found there is no big quality fluctuation in both spatial and
temporal.

EWPSNR is proposed in computing the subjective quality. Here, we
wanted to investigate whether we could test our algorithm in a more
objective and more informative way than using subjective quality
ratings, where observers may not always be able to rationalize or
explain their ratings. Many existing computational subjective quality
measurements [26,41,42] often tend to rely on some knowledge about
the human visual system to decide what may be more visible or
important to a human observer. For example, see the measures of
FPNSR (Foveated PSNR, [26]), SSIM (structural similarity, [41]), and
DVQ (Digital Video Quality, [42]). Thus we have been concerned that
using these measures may be somewhat circular: (1) process video
images with some saliency algorithm and allocate more bits (lower
distortion) to more salient regions; (2) measure subjective quality
with an algorithm that is very similar to our saliency computation and
hence may be quite strongly correlated with it. We would quite
naturally expect good subjective quality. This is what prompted us to
develop the EWPSNR metric. We believe that it is an objective way to
measure subjective quality, and it has the advantage of not relying on
any algorithmic assumptions regarding how subjective qualitymay be
defined. Here we just assume that the locations which people look at
are the oneswhichwill matter in terms of subjective quality. Note that
this assumption is itself an imperfect one (subjective quality seems to
be influenced not only by foveal vision but also by peripheral vision).
But we believe that it at least avoids circularity in our testing, and it
also provides a very informative assessment of where the algorithm is
working (good agreement between the algorithm and human gaze) or
failing.

Over the 50 tested video clips, there are 3–4 cases in which the
subjective quality of clips encoded by our proposed method is
worse than the clips encoded by the standard H.264 method. The
worst two clips are gate03 and seagull01, example frames from
these two clips can be seen in Figs. 2 and 4. The reason of the failure
mainly is that, for these clips, the attention prediction model results
do not match well the subjects' attention. In the proposed attention
prediction model, high motion regions take higher saliency value,
however, in the gate03 clip, the high speed cars were less
interesting to our human observers than the jogging girl and the
flags. In seagull01 clip, the seagulls fly everywhere and the video is
less meaningful in content, the subjects' eye-tracking traces are
highly divergent, thus the proposed attention prediction model
cannot predict the attention for all the subjects accurately.

The proposed attention prediction model in this paper purely
depends on the bottom-up low-level features. These features are
independent of the video contents and can be applied to any kind of
conditions. However, in many specific cases, top-down influences can
be taken into consideration to improve the attention prediction
performance. For example, in teleconference videos or face-oriented
conditions, face information (using, e.g., face detection algorithms)
can be added as an important factor in predicting the attention [11].
In a specific search task (person detection), the saliency, target
features, and scene context combined models can predict 94% of
human agreement [43]. Also, considering the layout information, the
“gist” of scenes can be applied to improve the prediction by learning
broad scene categories [44,45]. All these top-down factors may
combine with the bottom-up model to improve the attention
prediction performance and thus improve the subjective quality of
compression in specific corresponding conditions.
Fig. 11. Example of visual quality comparison between encoded frame (partially) by propose
original 230th frame from field03 clip. From row 2 to row 4 are the results from JM9.8 rate c
method (PSNR=39.37 dB), respectively. For each row from row 2 to row 4, left side shows
shown only partially to the interesting region.
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