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Abstract: We propose a model of primate vision that
integrates both an attentional orienting (\where") path-
way and an object recognition (\what") pathway. The
fast visual attention front-end rapidly selects the few most
conspicuous image locations, and the slower object recog-
nition back-end identi�es objects at the selected loca-
tions. The model is applied to classical visual search
tasks, consisting of �nding a speci�c target among an array
of distracting visual patterns (e.g., a circle among many
squares). The encouraging results obtained, in which sub-
stantial speedup is achieved by the combined attention-
recognition model while maintaining good recognition per-
formance compared to an exhaustive search, suggest that
the biologically-inspired architecture proposed represents
an eÆcient solution to the diÆcult problem of rapid scene
analysis. Keywords: Visual attention, object recognition,
scene analysis, bottom-up, top-down.

I. Introduction

When we search for speci�c objects in visual scenes,
we do not exhaustively scan the entire scene in an or-
derly manner, nor do we attempt to recognize objects at
every spatial location. The selection of locations to be
analyzed is determined by our focal visual attention sys-
tem, which rapidly focuses onto \interesting" image re-
gions under two types of guiding in
uences: Bottom-up
or image-derived cues, and top-down or task-derived cues
[3], [2]. The interaction between bottom-up and top-down
cues allows primates to analyze complex visual scenes in
a small fraction of the time which would be required to
exhaustively scan the entire scene. In the primate brain,
anatomical and functional separation between localiza-
tion and identi�cation of objects is observed: cortical ar-
eas along the dorsal stream of visual processing (includ-
ing posterior parietal cortex) are concerned with spatially
directing attention towards conspicuous image locations
(\where"), while areas along the ventral stream (includ-
ing inferotemporal cortex) are concerned with localized
identi�cation of attended objects (\what") [11].
We present a neuromorphic model combining both the

where and what processing streams. The model is built
upon the synergy between two biological models: a rapid,
massively parallel model for the bottom-up control of vi-
sual attention extracts the few most salient locations from
an incoming visual scene, and a computationally expen-
sive model of object recognition identi�es objects at at-
tended locations. In the following sections, we describe
the combined attention-recognition model, and present
results obtained with simple search arrays (�nd a circle
among rectangles).
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Fig. 1. Overview of the bottom-up attention front-end [5].

II. Vision Algorithms used in this Study

The present work studies the integration of two very
di�erent types of vision algorithms: First, a fast bottom-
up attention front-end eliminates as many obviously ir-
relevant locations as possible, while maintaining a low
rate of target misses. At each selected location, an ob-
ject recognition back-end attempts to identify attended
objects, while minimizing both target misses and false
alarms, at the cost of much greater computational com-
plexity. In this section, both components are presented,
followed by a description of their integration into a com-
plete target detection system.

A. Bottom-up Visual Attention Front-End

The front-end is derived from our saliency-based,
bottom-up model for the control of covert visual attention
in primates [5], [2], [4]. It employs a biologically-plausible
architecture to rapidly select the few most conspicuous
locations in any given scene. The input image is decom-
posed into seven channels (intensity contrast, red/green
and blue/yellow double color opponencies, and 0Æ, 45Æ,
90Æ and 135Æ orientation contrast) at six spatial scales,
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yielding a total of 42 feature maps. The six intensity
maps, twelve color maps, and 24 orientation maps are
combined into the three summary maps shown in Fig. 1.
After iterative spatial competition for saliency within
each map [2], [4], which allows only a sparse number of
locations to remain active, all maps are combined into the
unique saliency map [7], that is, a scalar topographic neu-
ronal map which encodes for stimulus saliency irrespec-
tively of the visual modality by which a given stimulus is
salient. The saliency map is scanned by the focus of at-
tention in order of decreasing saliency, through the inter-
action between a winner-take-all neural network (which
selects the most salient location at any given time) and an
inhibition-or-return mechanism (which transiently sup-
presses the currently attended location from the saliency
map) [5], [6]. In Fig. 1, the system selected the two iso-
lated pedestrians as being the two most salient locations
in the image, mostly because of their strong responses in
the orientation channel.
The system performs remarkably well at picking out

salient targets from cluttered environments. Experimen-
tal results include the reproduction by the model of hu-
man behavior in classical visual search tasks (pop-out
versus conjunctive search, and search asymmetries; see
[10], [2]); a demonstration of very strong robustness of
the saliency computation with respect to image noise [5];
and the automatic detection of traÆc signs, pedestrians,
military vehicles and other salient objects in natural en-
vironments [2], [4] (see http://iLab.usc.edu). What is
remarkable in those results is not only the wide range of
applications, all using color images in which high amounts
of noise, clutter, variations in illumination conditions,
shadows and occlusions were always present. Even more
interesting is that the same model is able, with no tuning
or modi�cation, to detect salient traÆc signs in roadside
images taken from a low-resolution camera (512�384) on
a vehicle, pedestrians in urban settings, various salient
objects in indoor scenes, military vehicles in very large
(6144� 4096) and highly cluttered color images of rural
scenery, or salient ads in screen grabs of web pages.

B. Object recognition back-end

Some hallmarks of the human visual system are in-
variance to image transformations (for example, we can
recognize a speci�c face among many, while being rather
tolerant to changes in viewpoint, scale, illumination and
expression), robustness to clutter (target objects can be
detected in complex real world scenes), and speed. A re-
cent model of object recognition in visual cortex, HMAX
from MIT [9], has suggested computational mechanisms
key to biological object recognition that di�er substan-
tially from current computer vision approaches. The
model is consistent with a number of physiological and
psychophysical data and leads to a comprehensive per-
spective on the biological basis of object identi�cation
and classi�cation.

C1 cells:
multiscale, translation-invariant features

S1 cells:
low-level oriented features

C2 cells:
complex invariant features

Input image

Fig. 2. The HMAX architecture for object recognition [9].

The model (Fig. 2) is based on a hierarchical feedfor-
ward architecture that starts out from units tuned to bar-
like stimuli with small receptive �elds, similar to \simple
cells" in primary visual cortex. At the top of the hierar-
chy are view-tuned units, as found in inferotemporal cor-
tex, one of the highest areas in the ventral visual stream.
These view-tuned units respond speci�cally to a view
of a complex object while showing tolerance to changes
in stimulus scale and position. Feature complexity and
transformation invariance are built up through a succes-
sion of feature complexity-increasing 'C' layers. While
feature complexity is increased by a template match op-
eration, HMAX uses a new pooling mechanism, a max
operation, to increase invariance in the C layers by pool-
ing over units tuned to the same feature but at di�erent
scales and positions [9].

C. Integrating Attention and Object Recognition

In our �rst attempt to combine target detection and
identi�cation into a single computational framework, here
we simply crop a 128 � 128 sub-image from the input
scene, at each attended location, and feed that sub-image
to the recognition module. The recognition back-end is
trained to di�erentiate between several possible objects.

III. Results

We present simple results using synthetic search array
stimuli [10]: a single circular shape (target) is embedded
in an array of randomly rotated and jittered rectangular
shapes (distractors). The circle is not particularly salient
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among the rectangles (because it contains no unique low-
level feature, such as a di�erent color or a unique ori-
entation), and does not immediately \pop-out" from the
surrounding rectangles. Thus, the attentional front-end
successively selects various shapes in the array, and the
recognition back-end is used to determine when the se-
lected shape is the target circle.

A. Learning and Simulation Results

In order to recognize various shapes, we build one view-
tuned unit in HMAX for each shape to be recognized.
Each such unit receives weighted inputs from 256 C2
cells (Fig. 2). The corresponding 256 synaptic weights
are trained using two sample images (one containing the
target circle and another containing the distractor rect-
angle). An additive learning rule is iteratively applied,
which increases the weights associated to C2 cells re-
sponding strongly to the target, and decreases the weights
associated to the C2 cells responding strongly to the dis-
tractor. For each C2 cell i:

wi  wi � (1� �C2i) [+ if target, - if distractor]

After each update, the vector of weights w is nor-
malized to unit norm. The update is iterated with
� 2 f0:2; 0:3; 0:4g, over 9 possible numbers of repetitions
between 240 and 1,200. The output of the view-tuned cell
is �nally obtained by taking the di�erence between the
sum of the C2 responses with weights all equal to 1=256
and the sum of the C2 responses with trained weights; a
positive response means that the target was found.
For �ve di�erent pairs of circles and rectangles (128�

128), we train and evaluate the performance of our system
using arrays made of the shapes used for training. Arrays
contain one target (circle) among many randomly jittered
and oriented distractors (rectangles). Speckle color noise
is added to each array with uniform density of 0.1. For
each target/distractor pair, we use six array sizes (2� 2,
3 � 3, 4 � 4, 5 � 5, 6 � 6, 7 � 7) and ten randomized
instantiations of the arrays for each size.
Depending on the pair, we obtain overall good discrim-

ination, as shown in the receiver operating characteristic
(ROC) curves of Fig. 3. Pair No. 2 yields best discrim-
ination, because of the strong orientation di�erence be-
tween both shapes. Hence, it is possible to obtain excel-
lent recognition performance with HMAX if the patterns
to be discriminated reasonably di�er. The worst results
are obtained for pair 4, in which target and distractors
are very similar in size, position and overall shape.
On our computer systems (800MHz Pentium-III Linux

machines), each 128� 128 HMAX evaluation is achieved
in 6.75s. For a 1280� 1280 array, attempting recognition
at every location on a grid with 64� 64 pixel spacing (to
ensure suÆcient overlap between adjacent locations to be
analyzed) would hence require � 2; 977s � 50min. The
computation of the saliency map, however, only takes 32s
for the same 1280�1280 array, which is equivalent to the
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Fig. 3. ROC curve for �ve di�erent pairs of shapes.

time required for � 4:75 recognitions. Thus, our imple-
mentation results indicate that if the attention front-end
can eliminate just �ve recognitions of the 441 done in
an exhaustive search, the combined model will perform
faster than the exhaustive search.

B. Generalization

One important test to evaluate the usability of our
combined model in practice regards the robustness of the
recognition process with respect to the exact coordinates
of the focus of attention. Indeed, attention is directed to
objects based on the activity in the saliency map, which
has a coarse scale compared to the original image (16
times smaller horizontally and vertically). Thus, it can-
not be guaranteed that attention will always exactly be
centered onto the object, but variations of �16 pixels in
the coordinates of the focus of attention can reasonably
be expected, due to noise or sampling artifacts.
We train the HMAX model using pair No. 2, and eval-

uate how the system can recognize translated and ro-
tated versions of the images in pair No. 2. Translations
of -70 to 70 pixels are systematically applied to the rect-
angular shape (Fig. 4), as well as rotations of 0 to 180Æ

(Fig. 5), in a manner similar to that previously described
with HMAX [9]. Overall, we observe good invariance of
recognition with respect to translation and rotation. This
result indicates that our combined approach, in which the
exact positioning of the focus of attention onto an object
to be recognized may be subject to small variations, is
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Fig. 4. Responses of HMAX model when the input is translated.
Recognition is robust (VTC2 response > 0) for almost the whole
range of �70 pixels of horizontal and vertical translation studied.

overall robust thanks to the small-scale translation and
rotation invariance built into the HMAX model. This
systematic analysis directly consolidates the very good
ROC results obtained with search arrays (Fig. 3).

IV. Discussion and Conclusion

Our results indicate that much computation time can
be gained by the use of a fast visual attention front-end
to guide a more expensive object recognition back-end.
This approach substantially di�ers from traditional tar-
get detection and recognition approaches, for example
using template matching. Here indeed, the main char-
acteristic of our bottom-up attention model is its non-
speci�city, which allows it to attend to a wide range of
salient objects (traÆc signs, pedestrians, military vehi-
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Fig. 5. Dependence of the HMAX response on stimulus rotation.

cles, etc.) under a wide variety of imaging conditions
(indoors, outdoors, in color or grayscale, and in low or
high resolution), in a manner similar to what humans do
when exploring new scenes [12]. Although more eÆcient
dedicated computer vision algorithms exist for, e.g., the
detection of traÆc signs [1], those cannot pick up tanks
hidden in an aerial view of a forest (in [1], for example,
includes segmentation of speci�c colors, and a speci�c al-
gorithm to detect triangular signs).
A challenge for future research will be to extend

HMAX to natural color images. Preliminary testing with
grayscale images containing pedestrians suggested that
the current HMAX has diÆculty discriminating between
pedestrians and the wide variety of other salient locations
selected by the attention model. In order to allow HMAX
to perform as well as the best available computer vision
techniques [8] when background clutter is present, we will
need to both increase the number of low-level features and
the number of layers in the HMAX architecture.
In conclusion, we have demonstrated a full implemen-

tation of a complete target detection system inspired from
biology. The success of this approach shows that using a
relatively crude and non-speci�c attention focusing sys-
tem, based on a small set of simple early vision features,
can substantially accelerate a search for targets. Our re-
sults hence suggest that even sophisticated pattern recog-
nition algorithms can bene�t from a spatial reduction in
their search space based on simple image cues.
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