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ABSTRACT

We describe an integrated vision system which reliably detects persons in static color natural scenes, or other targets
among distracting objects. The system is built upon the biologically-inspired synergy between two processing stages:
A fast trainable visual attention front-end (\where"), which rapidly selects a restricted number of conspicuous image
locations, and a computationally expensive object recognition back-end (\what"), which determines whether the
selected locations are targets of interest. We experiment with two recognition back-ends: One uses a support vector
machine algorithm and achieves highly reliable recognition of pedestrians in natural scenes, but is not particularly
biologically plausible, while the other is directly inspired from the neurobiology of inferotemporal cortex, but is not
yet as robust with natural images. Integrating the attention and recognition algorithms yields substantial speedup
over exhaustive search, while preserving detection rate. The success of this approach demonstrates that using a
biological attention-based strategy to guide an object recognition system may represent an eÆcient strategy for
rapid scene analysis.
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1. INTRODUCTION

When we search for speci�c objects in visual scenes, we usually do not exhaustively scan the entire scene in an
ordered manner, and we do not attempt to recognize objects of interest at every spatial location. Rather, the study
of visual search over the past two decades,1{5 and in particular recent experiments measuring eye movements during
search,6 suggest that primates use non-sequential, yet non-random and, to some degree, reproducible7,8 scanning
strategies to rapidly explore a new scene. The selection of locations to be analyzed is determined by our focal
visual attention system, which rapidly scans \interesting" image regions under two guiding inuences: Bottom-up or
image-derived cues, and top-down or task-derived cues.9,5 The interaction between bottom-up and top-down cues
allows primates to analyze and comprehend complex visual scenes in a small fraction of the time which would be
required to exhaustively explore the entire scene. For example, in classical \pop-out" search tasks, an odd target
among an array of identical distractors is e�ortlessly found in 200-300 ms,1 while approximately as much time is
necessary for a single voluntary shift of our attentional focus (covert shift) or of our eyes (overt shift).10

Remarkably, however, psychophysical,1 electrophysiological11 and modeling2,12,9 evidence suggests that the
bottom-up guidance of focal attention relies on very simple visual cues, such as local intensity, color and orientation
contrasts. Hence, the remarkable performance of biological systems in target search tasks seems almost surprising:
One would expect, from a computational and machine vision viewpoint, much more complex cues to be required, for
example involving rotation- and scale-invariant template matching. For most machine vision problems, employing a
very crude front-end to determine a small set of candidate locations to be analyzed in detail indeed seems dangerous,
as one would expect such strategy to yield much higher miss rates than exhaustive search.

In the primate brain, anatomical and functional separation between localization and identi�cation of objects is
observed: cortical areas along the dorsal stream of visual processing (including posterior parietal cortex) are concerned
with spatially directing attention towards conspicuous image locations (\where"), while areas along the ventral stream
(including inferotemporal cortex) are concerned with localized identi�cation of attended objects (\what").13 In the
present study, we investigate whether combining computer vision models of both the where and what processing
streams may yield a faster and more powerful integrated system.

We approach the problem from two perspectives: First we evaluate the simple coupling between a biologically-
inspired visual attention front-end and one of the best-performing object recognition back-ends, using support vector
machine (SVM) classi�er to identify pedestrians in natural scenes. This �rst combined model is evaluated on a
database of outdoors color images, and yields a speedup greater than 3-fold with less than 5% degradation in



recognition performance, compared to an exhaustive search. Because in this �rst integrated system the attention and
recognition components do not share any of the low-level image processing, we then conduct preliminary investigations
with a more biologically-plausible model, in which the object recognition back-end is inspired from the properties
of neurons in inferotemporal cortex. The performance of this combined system, which is not yet as robust as the
SVM-based approach with natural scenes, is evaluated with simple synthetic stimuli (visual search arrays). We �nd
that using the attention front-end yields very substantial speedup, as computing where to attend takes less time
than attempting just 5 localized recognitions (out of 441 recognitions to be attempted on a 1280� 1280 image) but
typically cuts the number of locations to be examined by a factor 4 or more (depending on each speci�c stimulus
image).

2. VISION ALGORITHMS USED IN THIS STUDY

The present work studies the integration of two very di�erent types of computer vision algorithms: First, a fast
bottom-up attention front-end eliminates as many obviously irrelevant locations as possible, while maintaining a low
rate of target misses. At each selected location, one of our two detailed back-ends performs object recognition, and
attempts to minimize both target misses and false alarms, at the cost of much greater computational complexity. In
this section, the three components are presented, followed by a description of their integration into a complete target
detection system.

2.1. Bottom-up Visual Attention Front-End

The front-end is derived from our saliency-based, bottom-up model for the control of covert visual attention in
primates.14,9 It employs a biologically-plausible architecture to rapidly select the most conspicuous locations in any
given scene. The �rst stage of the model analyzes the input image in a massively parallel manner, by extracting
simple biological vision features (intensity contrast, color double-opponencies, and orientation contrast) at multiple
spatial scales. Within each of the resulting topographic feature maps, a spatial competition for salience is applied,
which enhances locally unique responses while suppressing extended areas of uniform activity. After within-feature
competition, the feature maps are combined into a single scalar \saliency map," which topographically encodes for
local conspicuity independently of particular features dimensions. In the second stage of the model, the location of
maximum activity in the saliency map, that is, the most conspicuous image location, is detected by a winner-take-all
(WTA) neural network, and a �xed-size, circular \focus of attention" is directed towards it. In order to allow the
WTA to subsequently detect the next most salient location, a localized inhibitory feedback mechanism transiently
suppresses the currently attended location from the saliency map (hence implementing a so-called \inhibition of
return" (IOR) mechanism15). The interaction between the WTA and IOR yields an attentional \scanpath", which
explores the most active locations in the saliency map in order of decreasing saliency (Fig. 1).

When attempting to detect pedestrians in natural scenes, we compared the baseline performance of the attention
front-end (which does not know anything about pedestrians), to a trained version in which the weights by which
various visual features contribute to the saliency map are learned from example images. We used a simple supervised
learning technique to bias the model towards more strongly considering features which are characteristic of pedes-
trians. Training consists of determining a set of non-topographic, global weights applied to each feature map before
addition to the saliency map. Feature weights are adjusted by comparing each map's response inside and outside
manually outlined image regions containing targets.16 This procedure promotes, through an increase in weights,
the participation to the saliency map of those feature maps which show higher activity inside targets than outside.
It may correspond in biological systems to a simple change in the gain associated with a given feature type, as has
been demonstrated, for example, under volitional top-down attentional control.17

2.2. Two Alternative Object Recognition Back-Ends

The goal of the back-end is to determine whether or not a target of interest is present at a given image location.
In this study, we use two alternative back-ends: First, the support vector machine (SVM)-based trainable object
recognition system developed at MIT,18,19 which has been shown to be among the best available algorithms for
object recognition in cluttered natural scenes, although its relevance to biological systems is not evident. Using
this very powerful back-end, the resulting attention-recognition system is applied to the detection of pedestrians in
color outdoors scenes. Second, a biological object recognition model developed at MIT, HMAX model,20 is also
tested. Although this more recent model does not yet achieve recognition rates which can compete with the �rst
back-end in the presence of noise and clutter, it is of particular interest because of its biological relevance and of the
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Figure 1. Overview of the bottom-up attentional selection front-end9;14. The input image is decomposed into
seven channels (intensity contrast, red/green and blue/yellow double color opponencies, and 0Æ, 45Æ, 90Æ and 135Æ

orientation contrast) at six spatial scales, yielding a total of 42 feature maps. Here the six intensity maps, twelve color
maps, and 24 orientation maps are combined into the three summary maps shown. After iterative spatial competition
for salience within each map, which allows only a sparse number of locations to remain active, all maps are combined
into the unique saliency map. The saliency map is scanned by the focus of attention in order of decreasing saliency,
through the interaction between a winner-take-all neural network (which selects the most salient location at any
given time) and an inhibition-or-return mechanism (which transiently suppresses the currently attended location
from the saliency map, as shown on the four bottom frames). In the example shown, the system selected the two
isolated pedestrians as being the two most salient locations in the image, mostly because of their strong responses
in the orientation channel.



similarity between its early processing stages and those of the attention model. Using this model, performance of
the full system is evaluated using simpler stimuli, consisting of search arrays in which a single target circular shape
is embedded among many distracting rectangular shapes.

2.2.1. The trainable SVM-based object recognition system

This model uses an object representation which maximizes inter-class variability while keeping intra-class variability
low, based on multiscale intensity di�erences detected by Haar wavelets.21 This representation yields more robust
recognition than pixel-based, region-based, or traditional �ne-scale edge-based representations when images present
a high degree of variability in the shapes, textures, illumination conditions and color of the pedestrian patterns.

In the �rst stage of the model, a Haar wavelet transform is run over the input image and yields a set of coeÆcients
at two spatial scales, which contains the responses of the wavelets over the entire image. Three types of wavelets are
used, responding to vertical, horizontal, and diagonally oriented intensity di�erences. Color information is used by
applying the Haar transform to each color channel separately, and by selecting, at each location, as the �nal wavelet
coeÆcient the one from the three color channels which gives the maximal response.

Feature selection is derived from a training database consisting of 1,848 frontal and rear color views of pedestrians
(924 originals, plus their mirror images), scaled to 128� 64 pixels, and centered at the pedestrian. Using the Haar
wavelet representation, both coarse-scale (32� 32 pixels) and �ne-scale (16� 16 pixels) features are computed. At
these scales of wavelets, there are 1,326 total features for the 128�64 pattern. The system hence uses a 1,326-element
vector which describes these features for each pattern being processed.

Using the 1,848 pedestrian patterns and a set of 7,189 negative patterns gathered from images of outdoor scenes
not containing pedestrians, a Support Vector Machine (SVM-based system) classi�er is trained to di�erentiate
between pedestrian and non-pedestrian patterns. Support Vector Machines is a training technique which, instead of
minimizing the training error of a classi�er, minimizes an upper bound on its generalization error. This technique
has recently received much attention and has been applied to areas such as handwritten character recognition,22

3D object recognition,23 text categorization,24 and object detection.18,19 Some appealing characteristics of SVM-
based system rely in that, �rst, by choosing di�erent kernel functions, one can implement various classi�ers (e.g.,
polynomial classi�ers, multilayer perceptrons, or radial basis functions), second, in that the only tunable parameter
is a penalty term for misclassi�cations, and, third, in that the algorithm �nds the separating decision surface which
should provide the best out-of-sample performance. The SVM-based system decision surface is obtained by solving
a quadratic programming problem; for more details on the algorithm, see refs.25,26

2.2.2. The HMAX biological object recognition model

Some hallmarks of the human visual system are invariance to image transformations (for example, we can recognize
a speci�c face among many, while being rather tolerant to changes in viewpoint, scale, illumination and expression),
robustness to clutter (target objects can be detected in complex real world scenes), and speed. A recent model of
object recognition in visual cortex, the HMAX model from MIT,20 has suggested computational mechanisms key
to biological object recognition that di�er substantially from current computer vision approaches. The model is
consistent with a number of physiological and psychophysical data and leads to a comprehensive perspective on the
biological basis of object identi�cation and classi�cation.

The model (Fig. 2) is based on a hierarchical feedforward architecture that starts out from units tuned to bar-like
stimuli with small receptive �elds, similar to \simple cells" in primary visual cortex. At the top of the hierarchy are
view-tuned units, as found in inferotemporal cortex, one of the highest areas in the ventral visual stream. These
view-tuned units respond speci�cally to a view of a complex object while showing tolerance to changes in stimulus
scale and position. Feature complexity and transformation invariance are built up through a succession of feature
complexity-increasing 'C' layers. While feature complexity is increased by a template match operation, the HMAX
model uses a new pooling mechanism, a max operation, to increase invariance in the C layers by pooling over units
tuned to the same feature but at di�erent scales and positions.20

2.3. Integration of detection and recognition Models

Using only the object recognition component of the system in a baseline approach, to detect targets in a new image
we sequentially shift a detection window over the entire image. In addition, to achieve multi-scale detection in the
case of pedestrians with the SVM-based back-end system, we incrementally resize the image and slide the detection



C1 cells:
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Figure 2. The HMAX model architecture for object recognition20

window over each resized image. In the Results Section, we will use this exhaustive approach as a baseline for
comparison with the combined attention-recognition system.



False Alarms

Generic Model First target 1:36 � 2:35 (72 images)
All targets 4:16 � 3:70 (58 images)

Trained Model, Training Set First target 1:27 � 2:55 (36 images)
All targets 5:30 � 5:70 (30 images)

Trained Model, Test Set First target 1:06 � 2:15 (36 images)
All targets 4:23 � 4:01 (30 images)

Table 1. Number of false detections before targets were found, for the 72 images studied. The generic model,
which detects salient locations irrespectively of their nature, visited an average of 1.36 locations before attending to
a pedestrian (the �rst pedestrian found was hence at between the second and third attentional shifts on average). It
made an average of 4.16 false detections before sequentially �nding all pedestrians in 58 images, and failed to �nd
all pedestrians in the remaining 14 images within the time allocated for the search (up to about 15-20 shifts). After
training, we can see the number of shifts necessary to �nd a �rst target is reduced, but this is at the cost of increasing
the time necessary to �nd all targets.

Using a cooperation of the front-end and back-end models, the biologically-inspired combined system proposed
here searches for targets only in the restricted set of image locations provided by the attentional front-end. In the
current implementation, the link between front- and back-end is extremely simple: The focus-of-attention front-end
provides a list of candidate (x; y) locations to be analyzed in more detail by the back-end object recognition model.

3. RESULTS

3.1. Detection of Pedestrians Using Attention and SVM-based Recognition

The system integrating the attention front-end to the SVM-based pedestrian detection back-end system was evaluated
on a database of 72 color images at 384�256 resolution, and compared to the baseline system (in which an exhaustive
search replaces the attention front-end). The images were acquired with a consumer-electronics camera around
the MIT campus, and contain substantial amounts of imaging noise, large variations in illumination and shadows,
important clutter, and numerous salient \distracting" objects such as buildings, vehicles, ags, advertising signs and
trees. In addition, the pedestrians shown in these images vary in size, posture, viewing angle, illumination, colors
and contrast. One to six persons were present in each image.

3.1.1. Focus-of-Attention Target Detection Performance

The generic (untrained) bottom-up attention front-end yielded remarkable target detection performance in most
images, with on average the 2.36-th attended location being a pedestrian. Training, however, did not substan-
tially improve target detection rate. Since we have previously reported more dramatic improvements using similar
training,16 we attribute the relatively poor improvement obtained here to the too high diversity of target features
relatively to the number of features implemented.16 A summary of the results in terms of the number of false alarms
before targets were attended to is presented in Table 1. The predictions of the model for the 72 images studied
can be interactively examined on our World-Wide-Web site at http://iLab.usc.edu/bu/javaDemo/ (odd-numbered
images are from the training set, while even-numbered ones are from the test set).

3.1.2. Integrated System Performance

We computed receiver-operating characteristic (ROC) curves which compare the integrated system to the baseline
(exhaustive) system (Fig. 3). The performance of the version using the attention front-end is slightly worse than for
the baseline system. However, fewer locations are considered by the attention-based system, resulting in a signi�cantly
increase in processing speed. Indeed, processing time for one image using the baseline approach was approximately
one hour on a 450MHz Linux system. As this time directly scales with the number of patterns considered, it was
reduced by a factor 3.3 when only the 5 most salient locations were analyzed, i.e., less than 18 minutes per image
(Fig. 3). In counterpart, �nding the �ve most salient locations using our front-end only required 30 seconds. The
almost superimposed ROC curves for N 2 f5; 6; 7g indicate that considering more than the �ve most salient regions
essentially does not impact performance.
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Figure 3. (left) ROC curves for pedestrian detection, comparing the baseline (exhaustive) system to the trained
integrated system using the attentional front-end. Although the attention-based system only explores a small fraction
of all image locations, detection rate is only slightly degraded (by less than 5% on average). Analyzing the 5, 6, or
7 most salient locations yields essentially identical results. (right) Percentage of total patterns processed by the
baseline and integrated models. For the model using the focus-of-attention front-end (FOA), all locations in the
analysis window around each attended location are reported.

3.2. Detection of a Circle Among Rectangles using Attention and HMAX model

The above results demonstrate that integrating attention and recognition may yield a very powerful yet computa-
tionally eÆcient target detection system. One aspect which can be further improved in the above system is to try
and merge the early image processing stages of both models. To this end, we here present experiments with a second
back-end, the HMAX model, whose early stages of processing are very similar to those of the attention front-end.

We present simple results using synthetic search array stimuli1: a single circular shape (target) is embedded in an
array of randomly rotated and jittered rectangular shapes (distractors). The circle is not particularly salient among
the rectangles (because it contains no unique low-level feature, such as a di�erent color or a unique orientation),
and does not immediately \pop-out" from the surrounding rectangles. Thus, the attentional front-end successively
selects various shapes in the array, and the recognition back-end is used to determine when the selected shape is the
target circle.

3.3. Learning and Simulation Results

In order to recognize various shapes, we build one view-tuned unit in HMAX model for each shape to be recognized.
Each such unit receives weighted inputs from 256 C2 cells (Fig. 2). The corresponding 256 synaptic weights are
trained using two sample images (one containing the target circle and another containing the distractor rectangle).
An additive learning rule is iteratively applied, which increases the weights associated to C2 cells responding strongly
to the target, and decreases the weights associated to the C2 cells responding strongly to the distractor. For each
C2 cell i:

wi  wi � (1� �C2i) [+ if target, - if distractor]

After each update, the vector of weights w is normalized to unit norm. The update is iterated with � 2
f0:2; 0:3; 0:4g, over 9 possible numbers of repetitions between 240 and 1,200. The output of the view-tuned cell is
�nally obtained by taking the di�erence between the sum of the C2 responses with weights all equal to 1=256 and
the sum of the C2 responses with trained weights; a positive response means that the target was found.
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For �ve di�erent pairs of circles and rectangles (128� 128), we train and evaluate the performance of our system
using arrays made of the shapes used for training. Arrays contain one target shape (circle) among many randomly
jittered and oriented distractors (rectangles). Speckle color noise is added to each search array with uniform density
of 0.1. For each target/distractor pair, we use six array sizes (2�2, 3�3, 4�4, 5�5, 6�6, 7�7) and ten randomized
instantiations of the arrays for each size.

Depending on the pair, we obtain variable discrimination results, as shown in the receiver operating characteristic
(ROC) curves of Fig. 4. Pair No. 2 yielded yielding best discrimination, because of the strong orientation di�erence
between both shapes. These results indicate that it is possible to obtain very good recognition performance if the
patterns to be discriminated are well chosen.

On our computer systems (800MHz Pentium-III Linux machines), each 128 � 128 HMAX model evaluation is
achieved in 6.75s. For a 1280�1280 array, attempting recognition at every location on a grid with 64�64 pixel spacing
(to ensure suÆcient overlap between adjacent locations to be analyzed) would hence require � 2; 977s � 50min. The
computation of the saliency map, however, only takes 32s for the same 1280� 1280 array, which is equivalent to the
time required for � 4:75 recognitions. Thus, our implementation results indicate that if the attention front-end can
eliminate �ve recognitions of the 441 done in an exhaustive search, the combined model will perform faster than the
exhaustive search.
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3.4. Generalization

One important test to evaluate the usability of our combined model in practice regards the robustness of the recog-
nition process with respect to the exact coordinates of the focus of attention. Indeed, attention is directed to objects
based on the activity in the saliency map, which has a coarse scale compared to the original image (16 times smaller
horizontally and vertically). Thus, it cannot be guaranteed that attention will always exactly be centered onto the
object, but variations of �16 pixels in the coordinates of the focus of attention can reasonably be expected, due to
noise or sampling artifacts.

We trained the HMAX model using pair No. 2, and evaluated how the system can recognize translated and rotated
versions of the images in pair No. 2. Translations of -70 to 70 pixels were systematically applied to the rectangular
shape (Fig. 5), as well as rotations of 0 to 180Æ (Fig. 6), in a manner similar to that previously described with
HMAX model.20 Overall, we observed good invariance of recognition with respect to translation and rotation. This
result indicates that our combined approach, in which the exact positioning of the focus of attention onto an object to
be recognized may be subject to small variations, is overall robust thanks to the small-scale translation and rotation
invariance built into the HMAX model. This systematic analysis directly consolidates the very good ROC results
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obtained with search arrays (Fig. 4).

Finally, to evaluate robustness to variations in target shape, we trained the HMAX model using pair No. 2 and
evaluated how the system could recognize the squares and circles from the other pairs (Fig. 7). The results for pair
No. 2 are identical to previously, and good results are also obtained for pair No. 5, for which the shapes are similar
to those in pair No. 2. The results on the other pairs indicate that good hit rates can be obtained if one is to tolerate
some false alarms.

3.5. Discussion

Through the integration of the attention and SVM-based models, we have demonstrated a complete arti�cial vision
system, which integrates a rapid \where" attention-based orienting component, as well as a more computationally
expensive \what" object recognition component. Integrating both components yielded a substantial decrease in
processing time, by a factor three, at the cost of only slightly degrading target detection rate, by less than 5%.

Integrating saliency information to our object detection framework however remains imperfect in several ways:
First, the center of each salient region is often not at the exact center of the target person (since one part of the
person may be more salient than another), hence requiring that a relatively large window of possible target locations
be examined around each attended location. We are currently investigating a re�ned version of our front-end, which
would also provide an estimate of target size as well as more precise object location. Such improvement should allow us
to reduce the search window around each attended location as well as to reduce the number of spatial scales examined
by the object recognition back-end for each candidate target. The manner in which biological systems, which also
appear to encode salience in relatively crude topographic maps,11,27 solve this problem is not fully understood,
though neuronal models have been proposed for translation- and scale-invariant object recognition.28 Second, the
lack of improvement in detection rate when using the 5, 6 or 7 most salient locations suggests that non-salient targets
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will not be visited by the attentional system unless a large number of attentional shifts is retained. Considering more
attentional shifts however reduces the appeal of our approach in terms of decreasing computation time. One solution
to this problem would be to integrate a larger number of features into the front-end, which is likely to render the
supervised training more eÆcient.16 A complementary approach, directly inspired from primate behavior, would be
to integrate a top-down, volitional component to our purely bottom-up attention focusing mechanism, which could
actively guide attention towards likely target locations as increasing amounts of information is gathered about the
topography and organization of the scene.

Our results with the HMAX model indicate that fast and reliable target detection could be obtained on simple
stimuli, using a fully biologically-inspired system. Although not yet as performant as the system using the SVM-
based back-end, this approach appears very promising because it lends itself to further developments in which the
early stages of visual processing may be shared by the attention and recognition components. A challenge for future
research will be to extend HMAX model to natural color images. Preliminary testing with grayscale images containing
pedestrians suggested that the current version of HMAX model has diÆculty discriminating between pedestrians and
the wide variety of other salient locations attended to by the attention model.

4. CONCLUSION

In conclusion, we have demonstrated two full, detailed implementations of a complete target detection system inspired
from biological architectures. The success of this approach shows that using a relatively crude and non-speci�c
attention focusing system, based on a small set of simple early vision features, can substantially accelerate a search
for targets. Our results hence suggest that even sophisticated pattern recognition algorithms can bene�t from a
spatial reduction in their search space based on simple image cues.
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