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Abstract. We have created an algorithm to integrate contour elements and find 
the salience value of them. The algorithm consists of basic long-range 
orientation specific neural connections as well as a novel group suppression 
gain control and a fast plasticity term to explain interaction beyond a neurons 
normal size range. Integration is executed as a series of convolutions on 12 
orientation filtered images augmented by the nonlinear fast plasticity and group 
suppression terms. Testing done on a large number of artificially generated 
Gabor element contour images shows that the algorithm is effective at finding 
contour elements within parameters similar to that of human subjects. Testing 
of real world images yields reasonable results and shows that the algorithm has 
strong potential for use as an addition to our already existent vision saliency 
algorithm. 

Introduction 

We are developing a fully integrated model of early visual saliency, which attempts to 
analyze scenes and discover which items in that scene are most salient. The current 
model includes many visual features that have been found to influence visual salience 
in the primate brain, including luminance center-surround, color opponencies and 
orientation contrast (Itti & Koch, 2000). However, many more factors need to be 
included; one such factor is the gestalt phenomenon of contour integration. This is 
where several approximately collinear items, through their alignment, enhance their 
delectability. Figure 1 shows two examples where a circle is formed by roughly 
collinear Gabor elements. The current paper outlines our progress in building a 
computational model of contour integration using both currently accepted as well as 
novel techniques.  

Over several years the topic of contour integration has yielded several known 
factors that should be used in shaping a model. The first is that analysis of an image 
for contour integration is not global, but seems to act in a global manner. That is, the 
overlap of neural connections in primary visual cortex (V1) rarely exceeds 1.5mm 
(Hubel and Weisel, 1974), which severely limits the spatial extent of any direct 
interaction.  However, several studies have shown that contour saliency is optimal for 
contours with 8-12 elements, with a saturation at 12, which is longer than the spatial 
range of direct interaction, typically corresponding in these displays to the inter-
element distance (Braun, 1999).  In addition, if the contours are arranged in such a 
way that they form a closed shape such as a circle, saliency is significantly enhanced 
(Braun, 1999; Kovacs and Julesz, 1993). This suggests not only a non-local 
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interaction, but also a broader-range synergy between interacting neurons such that 
two neurons can affect each other without being directly connected.  

Another noted factor playing a role in contour integration is the separation of 
elements usually measured in λ separation, which is the distance in units of the 
wavelength of the Gabor elements in the display.  Studies by Polat and Sagi (1994) as 
well as Kapadia et al. (1995) indicate that an optimal separation exists for the 
enhancement of a central Gabor element by flanking elements. Polat and Sagi, using 
three Gabor elements (a test element and two flankers), found that a separation of  
approximately 2λ was optimal. 

From these known factors several computational models have been proposed. Most 
start with a butterfly shape of neural connections. That is, elements are connected 
locally in such a way that the closer or more collinear another element is, the more the 
elements tend to stimulate each other (Braun, 1999). In addition many models add 

Fig. 1.  Two examples of contours comprised of roughly collinear Gabor elements created by 
Make Snake(a Gabor element is the product of a 2D Gaussian and a sinusoidal grating). 

Fig. 2.A.  The strength of interaction between two neurons is a product of α, β and d. The 
result is a set of 144 kernels (12 possible orientations, at each of two locations) 
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neural suppression whereby parallel elements suppress each other. This has the effect 
of allowing smaller contours to be suppressed more than larger contours. Figure 2a 
shows how these factors combine and 2b shows what the butterfly pattern looks like 
in our model.  

In addition to simple local connections, several other behaviors have been used in 
models in an attempt to explain observed long range interactions. Such methods 
include temporal synchronization (Yen and Finkel, 1998) and cumulative propagation 
(Li, 1998). It has also been suggested by Braun (1999) that a form of fast plasticity 
(<250 ms) may enhance synaptic transmission along contours.  

The Model 

The current model which we have named CINNIC (Carefully Implemented Neural 
Network for Integrating Contours) starts with the basic butterfly local connections, 
but in addition to this, we have added the use of multiscale analysis, a local group 
suppression gain control and fast plasticity for long range effects. Figure 3 shows a 
schamatic description of our model, which is also described by equations  (1-5). The 
first step is analyzing the input image using Gabor filters turned for 12 different 
angles. This produces 12 images that represent elements from the original image at 
increments of 15 degrees. A noise factor of approx. 2% is introduced at this stage. 
These 12 images are then reduced into three different scales 64x64, 32x32 and 16x16 
pixels in resolution, which are run separately and do not interact. A 4D convolution is 
run to simulate the interaction between the different orientation images. The 
convolution is done using a set of 144 kernels that represent all possible interactions 
between pairs of the 12 orientation images. These kernels specify the excitation and 
suppression that should occur between two elements in the images. The kernels take 
into account the colinearity of two elements as well as their separating distance. For 
simplicity, interaction strength decreases as a ramp function as two elements are 
further separated. The kernels are statically specified at the beginning of a program 
run by input parameters  and do not interact.  

Fig. 2.B. 12 of the 144 kernels used by CINNIC are represented here. Each one in the figure 
show the weights of connections between a neuron with 0° preferred orientation and neurons 
with all other preferred orientations. The areas surrounded by a white boarder represent 
suppression while the other areas represent excitation. Lighter areas represent greater strength. 
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k∈ [[0,m]] 
l∈[[0,n]] 
β∈[[0,11]] 

k∈ [[0,m]] 
l∈[[0,n]] 
α∈[[0,11]] 

(k,l)∈ Ni x Nj 

 Each scale is run separately from the other.  Each element is convolved against 
every other element within its range in such a way that collinear elements tend to 
excite, while parallel elements tend to suppress each other (eq. 1). This is expressed as 
xijα being the source image pixel at location (i, j) and orientation α,  and xklβ being the 

other image pixel at location (k,l) and orientation β  then taking the product of these 
two by the kernel kαβ(k-I)(l-j) (12 of which are pictured in fig. 2.B). It should be noted 
that m and n equal the image scale for instance 64,32 or 16. Further, (Sij)t is a group 
suppression term for the current group (detailed below) with t being the current 
iteration. (Pijα)t is a plasticity term (also detailed below). The resulting potential from 
a single iteration is sent to a saliency map (Vij)t+1. Each pixel in the saliency map 
represents a column of pixels from each of the twelve orientation images summed. 
The saliency map itself is made up of leaky integrator neurons, which lose 

some constant potential L from one iteration to the next (eq. 2). To form a final 
saliency map for one of the three image resolutions, the potential from the leaky 
integrator neurons are fed through a sigmoidal function that simulates neural firing 
patterns (eq. 5) with Iij being the final saliency map pixel for this scale. 

 Non-linearities are introduced in the form of the group suppression gain control 
(eq. 3) where T is the threshold constant and (Vkl)t is the potential for a neuron in this 
group which are all summed for that group with υ as a constant multiplied by that 
sum. m and n represent the image size at that scale The suppression is based upon the 
rate of the change of excitation. Fast plasticity (eq. 4) is introduced as vijα  being the 
potential this neuron had multiplied by a constant C. The fast plasticity works by 

(vijα )t+1 = (Sij)
t (Pijα)t (xijα)Σ (xklβ)(kαβ(k-i)(l-j)) 

 
 

(1) 

(Vij)t+1 = Σ(vklα )t+1 – L 
 
 
 

(2) 

(Sij)t = υ[Σ((Vkl)t – (Vkl)t-1 ] – T 

 
with 

 
Ni = [[i-(m/8);i+(m/8)]] 
Nj = [[j-(m/8);j+(m/8)]] 

 

(3) 

(Pijα)t = (vijα)t(C) (4) 

Iij = sig((V ij)t) (5) 
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increasing all weights for a single simulated neuron, proportionally to the excitation it 
received in the previous iteration. That is, neurons that are stimulated more tend to 
stimulate collinear neighbors more as well as to suppress parallel neighbors more. 
This function is introduced to re-create non-local interactions that are observed in 
human subjects in an attempt to account for observed contour closure effect. The fast 
plasticity used here is bounded to 5 times the original connection strength for any 
given neuron.  

IN our model the usage of fast plasticity was chosen for several reasons. The first 
was the suggestion by Braun (1999) that other methods that attempted to explain 
contour closure either occurred too fast such as cumulative propagation (Li, 1998), or 
were too slow such as temporal synchronization (Yen and Finkel, 1998) as to explain 
the time it takes for closure effect to happen which Braun measured at about 250 ms. 
Second we wished to test the idea of fast plasticity and find if it was a viable 
mechanism for explaining closure effect. 

 Another non-linearity introduced is a simple local gain control using group 
suppression. Neurons are grouped into local neighborhoods of size 1/8x1/8 pixels of 
the image size at the current scale (e.g. 8x8 pixels for a 64x64 pixel scale). If the total 
change in potential from a group surpasses a threshold then the neurons increase their 
suppression of parallel neighbors proportionally to the increase past threshold. The 
group includes all neurons in all orientation maps for a given visual location, which 
report to the same image location. There is no current cap on how much additional 
suppression can be added using this method.  

The algorithm runs for eight iterations, which was a number chosen based upon its 
observed optimality. After the final iteration, the three scales are brought back 
together and combined using a fixed weighted average.  This average is the total 
saliency map of contours for the input image. The entire process takes approximately 

Fig. 3. This is a basic representation of the CINNIC algorithm. An input image is filtered, 
rescaled then interacted with images at other orientations including itself. The output goes to 
a saliency map of leaky integrator neurons. Group suppression is fed back from the change 
in group potential. 
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2 minutes using an Athlon 1400 MHz based PC running Linux. The time is mostly 
due to the enormous amount of computation needed to compute interactions between 
neurons from all possible pairs of  the 12 images using 144 2D kernels.  

Testing on Artificial Images 

To tune our algorithm to human vision we are currently using a special program 
called Make Snake provided and created by J Braun (1999), to generate test images in 
which a salient contour is embedded among noise elements. Using these stimuli, we 
tested under which conditions our algorithm would detect the contour as being the 
most salient image element.  

Make Snake creates images like the one presented in figure 1. The output is several 
Gabor patches aligned with randomized phase into a circular contour. The circle itself 
is carefully morphed by the program using energy to flex the joints of an “N-gon” to 
create a variety of circular contour shapes. The circles made up of foreground 
elements are controlled for the number of elements as well as the spacing in λ 
sinusoidal wavelengths. The elements can also be specified in terms of size and 
period. Background noise Gabors are added randomly. They are placed in such a way 
that they are moved like particles in liquid to a minimum spacing specified by the 
user. Gabors are added and floated until minimum spacing requirements are satisfied. 
The end result can also create accidental smaller contours among the noise 
background elements.  

Test images were created using two different Gabor sizes, a small Gabor (70 pixels 
wide with a 20 pixel period) and a large Gabor (120 pixels wide with a 30 pixel 
period). The background elements were kept at a constant minimum spacing (48 for 
the smaller Gabors and 72 for the larger Gabors). Spacing for larger Gabors 
foreground elements was varied between 2 and 3.5 λ in steps of 0.1666. This was 
constrained since values above 3.5 made the circle larger then the images frame itself. 
The smaller Gabors had more levity and could be varied from 1.5 to 6 λ in steps of 
0.5. For both Gabor sizes, the minimum size is set the way it is because below this, 
the foreground elements begin to overlap. It should be noted that the ratio of 
foreground separation to the minimum background separation was the same for both 
large and small Gabor patch conditions given the same λ.  

For each condition, Gabor size and foreground spacing, 20 images were created. 
An output mask was also created representing where foreground elements were 
positioned. This was used for later statistical analysis. In all, 400 images were run. 

Statistical analysis was done by taking the output salience map from CINNIC, 
which always ran with identical model parameter settings for all images, and 
comparing it to the mask; this was done by looking for the top most salient points in 
the salience image. When a salient point was found, the local region was flooded to 
prevent the same element area from being counted twice. Salient points were marked 
as first, second, third and so on depending on its value in the salience map. Analysis 
was done by finding the most salient point in an image, which was also found within 
the foreground element mask. The rank of the most salient point also within the mask 
was the rank given to the image. The number of images of each rank was summed to 
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find out, for instance, how many images had their most salient point also lie within 
the mask (ranked as 1st). 

As can be seen in figure 4, for the larger gabor images the most salient point falls 
on the foreground circle in 19 out of 20 images for separations from 2.33 to 2.833 λ, 
with the most salient point being found on all circles at a separation of 2.833λ.  For 
smaller elements, in 19 out of the 20 images the most salient point was found in the 
foreground at a separation of 2.5λ. It should also be noted that the optimal results 
were obtained for the large Gabor size set with a ratio of 1.181 between the 
foreground element separation and background separation. The ratio for the smaller 
elements was optimal at 1.041. This means that optimal results were obtained with a 
slightly greater distance between foreground contour elements than background 
elements. Bumps in figure 4 can probably be accounted for as an artifact of the 

Fig. 4.A The top row of images shows contour image masks from make snake super imposed 
with what CINNIC found as the 5 most salient contour points. The arrow shows the most 
salient point CINNIC found that also lied on a contour circle. The first image is ranked as a 1st

rank image since the most salient point in the image also lies on a contour. The second image 
is ranked as a 2nd rank image since the second most salient point is the first point to fall on a 
contour circle. Continuing this example the right most image is ranked as 3rd rank since the 
most salient point to be found on a contour circle is the third most salient point in the image  

Fig. 4.B The bottom row image illustrates that as separation of foreground elements increases 
the likelihood off a contour element being found most salient also decreases for both Gabor 
sizes. Image count shows how many of the 20 images tested in each condition fall into one of 
the five different category ranks of saliency, or were not salient within the top five ranks.  
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discrete nature of the interactions between kernel and the image pixels.  
A question raised by our results is that of why there seems to be an optimal 

separation distance in the data while an optimal distance is not explicitly defined in 
the neural connection weights (remember that weights decay linearly with distance). 
Further experimentation revealed that this was due to the group suppression gain 
control setting. We found that at a higher gain control threshold that salience in the 
smaller Gabor size images was reduced dramatically due to an increase in noise 
between irrelevant Gabors. Going in the opposite direction shows that the optimal 
distance for the larger Gabor size increases with a lowered threshold for the gain 
control. This is due to the closer elements over exciting past the lower threshold. 
These results are interesting in that they not only explain why we obtain optimal 
distances, but it allows our algorithm to agree with research by Polat and Sagi (1994) 
who also found an optimal distance between Gabor elements.  

Testing on real world images 

Part of the goal of our project has been to be able to incorporate the CINNIC 
algorithm to our more general bottom-up visual salience model. Thus, CINNIC must 
be able to analyze real world images much the same as the current saliency model 
does. At this point testing on real world images has been constrained to running the 
algorithm and inspecting the outputs to make sure that they seem reasonable. 
Although of a purely subjective and qualitative nature, such experimentations are 
particularly useful to estimate the applicability of our model to more general classes 

Fig. 5.  The top row are real world images with the top 5 most salient points circled by the 
algorithm. The bottom row represents the raw saliency map for each image. 
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of stimuli. We found that in most cases, the algorithm behaves in a reasonable fashion 
when processing real world images. Noise is generally filtered out and the most 
salient points tend to lie on reasonable line elements and contours. Over 100 images 
were inspected in all; each image contained a different subject (e.g plants, city 
pictures, wilderness images). This was done by selecting one image at random from 
each image subject category on two image library CD’s. Figure 5 shows some typical 
outputs on real world images. The top five most salient points are circled in the 
images.  

From the three images presented, the most salient contours can be found in 5(a) on 
the edges and stem of the leafs, on the cats ear and the chair rim in 5(b) and in 5(c) the 
stone wall, sidewalk and street possess the most salient contours. This agrees with a 
common sense idea that the most salient contours are found on objects with long 
collinear continuity and is supported by data from Braun (1999) and Hess and Field 
(1999) which shows that longer contours with smoother continuity and more elements 
tend to be more salient then shorter more jagged ones. 

Discussion 

On artificially-generated contours CINNIC performs very well. Performance for 
identifying generated contours drops as foreground elements are separated relative to 
background elements. This is to be expected as the same thing is observed in human 
subjects (Braun, 1999). Not only does it perform well but it also has an optimal 
distancing between foreground Gabor elements, which agrees with Polat and Sagi 
(1994) and the performance of detection begins to drop at a foreground-to-
background ratio of about 1.25, which is what is observed by Braun (1999). The fall-
off for the model is complete at a spacing of about 6λ which is consistent with the 
spacing range proposed by Hess and Field (1999), which they estimate to be about 4 
to 6 λ at maximum.  

The model so far is also successful because all elements included in the model are 
biologically plausible. This is because the model is built upon basic long-range neural 
interactions (Gilbert et al., 2000). Our additions to this basic model include a 
previously untested neural plasticity and novel local gain control factors. It is our 
opinion that all of these factors are plausible and could help explain how contour 
integration occurs. It should also be noted that our use of fast plasticity may better 
explain long range interactions than previous models relying on synaptic transmission 
(Li, 1998; Pettet et al ,1998), temporal synchronization (Yen and Finkel, 1998), or 
NMDA-mediated plasticity (Braun et al., 1994) since, as Braun states, the time 
required for their mechanisms do not closely match observed times needed for 
salience in contour integration under contour closure. (Braun, 1999). That is, synaptic 
transmission would cause contour closure far sooner then the approximately 250 ms 
observed by Braun, while temporal synchronization and NMDA-mediated plasticity 
take slightly too long. 

It should also be noted that our novel usage of a group suppression was successful. 
As we found, it seemed to have an optimal value where by removing it, turning it up 
too high or in general adjusting it too high or too low yielded sub-optimal results. 
This suggests to us that it is useful in our approach.   
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