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Abstract. We have created an agorithm to integrate contour elements and find
the salience value of them. The algorithm consists of basic long-range
orientation specific neural connections as well as a novel group suppression
gain control and a fast plagticity term to explain interaction beyond a neurons
normal size range. Integration is executed as a series of convolutions on 12
orientation filtered images augmented by the nonlinear fast plasticity and group
suppression terms. Testing done on a large number of artificialy generated
Gabor element contour images shows that the agorithm is effective at finding
contour elements within parameters similar to that of human subjects. Testing
of real world images yields reasonable results and shows that the agorithm has
strong potential for use as an addition to our already existent vision saiency
algorithm.

Introduction

We are deveoping a fully integraed mode of early visud sdiency, which atempts to
andyze scenes and discover which items in that scene are mogt sdient. The current
modd includes many visud features that have been found to influence visud sdience
in the primate bran, incduding luminance center-surround, color opponencies and
orientation contrast (Itti & Koch, 2000). However, many more factors need to be
induded; one such factor is the gestdt phenomenon of contour integration. This is
wheare severd agpproximatdy collinear items, through ther dignment, enhance ther
delectability. Figure 1 shows two examples where a crde is formed by roughly
colliner Gabor edements The currat pgper outlines our progress in building a
computationd modd of contour integration using both currently accepted as wel as
novel techniques.

Over sverd years the topic of contour integration hes yidded severa known
factors that should be used in shaping a modd. The firg is tha andysis of an image
for contour integration is not globd, but seems to act in a globd manner. That is, the
overlgp of neurd connections in primary visud cortex (V1) rady exceeds 1.5mm
(Hubd and Weisd, 1974), which severdy limits the spatid extent of any direct
interaction. However, severd dudies have shown that contour sdiency is optimd for
contours with 8-12 dements, with a saturation a 12, which is longer than the spatid
range of direct interaction, typicdly corresponding in these diglays to the inter-
eement disance (Braun, 1999). In addition, if the contours are aranged in such a
way tha they form a dosed shape such as a drde, sdiency is sgnificantly enhanced
(Braun, 1999; Kovacs and Julesz, 1993). This suggests not only a non-locd
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Fig. 1. Two examples of contours comprised of roughly collinear Gabor elements created by
Make Snake(a Gabor element isthe product of a2D Gaussian and asinusoidal grating).

interaction, but dso a broaderrange synergy between interacting neurons such thet
two neurons can affect each other without being directly connected.

Ancther noted factor playing a role in contour integraion is the sgparation of
dements usudly messured in | separation, which is the disgance in units of the
wavelength of the Gabor eements in the display. Studies by Polat and Sagi (1994) as
wel as Kapadia e a. (1995 indicate that an optimd separation exigs for the
enhancement of a centrd Gabor dement by flanking dements. Polat and Sagi, using
three Gabor dements (a test dement and two flankers), found that a separation of
goproximately 2 was optima.

From these known factors severd computationa models have been proposed. Most
dat with a butterfly shgpe of neurd connections That is dements are connected
locdly in such a way that the closr or more collinesr another dement is, the more the
dements tend to dsimulaie each other (Braun, 1999). In addition many modds add
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Fig. 2.A. The strength of interaction between two neurons is a product of a, b and d. The
result isa set of 144 kerndls (12 possible orientations, at each of two locations)
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Fig. 2.B. 12 of the 144 kernels used by CINNIC are represented here. Each one in the figure
show the weights of connections between a neuron with O° preferred orientation and neurons
with al other preferred orientations. The areas surrounded by a white boarder represent
suppression while the other areas represent excitation. Lighter areas represent greater strength.
neurd suppresson whereby pardld dements suppress eech other. This has the effect
of dlowing smdler contours to be suppressed more then larger contours Figure 2a
shows how these factors combine and 2b shows what he butterfly pattern looks like
inour modd.

In addition to dmple locd connections, severd other behaviors have been used in
modds in an dtempt to explan observed long range interactions. Such methods
include tempora synchronization (Yen and Firkd, 1998) and cumuldive propagaion
(Li, 1998). It has ds0 been suggested by Braun (1999) that a form of fast platicity
(<250 ms) may enhance synaptic transmisson aong contours.

The Model

The current mode which we have named CINNIC (Carefully Implemented Neurd
Network for Integrating Contours) darts with the basic butterfly locd connections,
but in addition to this we have added the use of multiscde andyss a locd group
suppresson gain control and fast pladicity for long range effects Figure 3 shows a
schamdtic description of our modd, which is dso described by equations  (1-5). The
fird sep is andyzing the input image usng Gabor filters turned for 12 different
angles. This produces 12 images that represent dements from the origind image a
increments of 15 degrees A noise factor of gpprox. 2% is introduced a this Stage.
These 12 images are then reduced into three different scales 64x64, 32x32 and 16x16
pixels in resolution, which are run separatdly and do not interact. A 4D convolution is
run to dmulate the interaction between the different orientation images The
convolution is done usng a set of 144 kemnds tha represent dl possble interactions
between pars of the 12 orientaion images. Thee kernds specify the excitation and
suppresson that should occur between two elements in the images The kemnels take
into account the colinearity of two dements as wdl as their separaing distance. For
smplicity, interaction drength decreeses as a ramp function as two dements are
further separated. The kends ae daticaly specified a the beginning of a program
run by input parameters and do not interact.
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Each scde is run separady from the other.  Each dement is convolved egaingt
every other eement within its range in such a way tha collinear dements tend to
excite, while pardld dements tend to suppress each cother (eg. 1). This is expressed as

Xjja being the source image pixel & location (i, j) and orientation a, and X, being the
other image pixd a location (k) and orientation b  then taking the product of these
two by the kemel kyppyi-j) (12 of which are pictured in fig. 2.B). It should be noted
tha m and n equa the image scde for indance 64,32 or 16. Further, (SJ-)t is a group
suppresson tem fa the current group (detailed below) with t beng the current
iteration. (P,ja)t is a pledicity teem (dso detaled below). The resulting potentid from
a sngle iteration is st to a sdiency map (Vij)t+1. Each pixd in the diency mgp
represnts a column of pixels from each of the twelve orientation images summed.
The sdiency map itsdlf ismade up of lesky integrator neurons, which lose
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some condat potentid L from one iteraion to the next (eq. 2). To form a find
sdiency mgp for one of the three image resolutions, the potentid from the lesky
integrator neurons are fed through a dgmoidd function that sSmulates neurd firing
patterns (eg. 5) with Ij; being the findl saliency map pixel for this scale.

NonHinearities are introduced in the form of the group suppresson gan control
(eg. 3) where T is the threshold congtant and (V)t is the potentid for a neuron in this
group which are dl summed for that group with u as a condant multiplied by tha
sum. m and n represent the image sSze a that scde The suppression is based upon the
rate of the change of excitation. Fast plagticity (eg. 4) is introduced as Viia being the
potentid this neuron had multiplied by a corstant C. The fast pladticity works by
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Fig. 3. Thisis a basic representation of the CINNIC agorithm. An input image is filtered,
rescaed then interacted with images at other orientations including itself. The output goes to
a saliency map of leaky integrator neurons. Group suppression is fed back from the change
in group potential.

increesng dl weights for a single smulated neuron, proportiondly to the excitation it
recaved in the previous iteration. That is neurons that are simulaed more tend to
dimulate collinear neighbors more as wdl as to suppress pardld neighbors more.
This function is introduced to recreste norHocd interactions that are observed in
human subjects in an atempt to account for observed contour dosure effect. The fast
pledticity used here is bounded to 5 times the origind connection drength for any
given neuron.

IN our modd the usage of fast pladicity was chosen for severd reasons. The firg
was the suggestion by Braun (1999) that other methods that attempted to explan
contour closure either occurred too fagt such as cumulaive propegation (Li, 1998), or
were too dow such as tempord synchronization (Yen and Finkd, 1998) as to explan
the time it takes for dosure effect to happen which Braun messured at about 250 ms.
Second we wished to test the idea of fag pledticity and find if it was a viddle
mechanism for explaining closure effect.

Ancther norHinearity introduced is a sdmple locd gan control using group
suppression. Neurons are grouped into locd neighborhoods of size 1/8x1/8 pixds of
the image sze a the current scde (eg. 8x8 pixds for a 64x64 pixd scde). If the tota
change in potentid from a group surpasses a threshold then the neurons increase their
suppresson of pardle neighbors proportiondly to the increese pagt threshold. The
group includes dl neurons in dl orientation maps for a given visud locaion, which
report to the same image location. There is no current cg on how much additiond
suppression can be added using this method.

The dgorithm runs for eight iterations, which was a number chosen based upon its
observed optimdity. After the find iteraion, the three scdes ae brought back
together and combined usng a fixed weighted average  This average is the totd
sdiency map of contours for the input image. The entire process takes agpproximaey
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2 minutes using an Athlon 1400 MHz based PC running Linux. The time is mostly
due to the enormous amount of computation needed to compute interactions between
neurons from dl possible pairsof the 12 images using 144 2D kernels.

Testing on Artificial Images

To tune our dgorithm to humen vison we ae currently usng a specid program
cdled Make Snake provided and crested by J Braun (1999), to generate test images in
which a sdient contour is embedded among noise dements. Usng these stimuli, we
tested under which conditions our dgorithm would detect the contour as being the
most sdlient image € ement.

Make Snake creates images like the one presented in figure 1. The output is severd
Gabor patches digned with randomized phese into a crcular contour. The drde itsdf
is carefully morphed by the program usng energy to flex the joints of an “N-gon” to
creste a vaidy of drcular contour shapes The drdes made up of foreground
dements are controlled for the number of edements as wdl as the speacing in |
snusoidd wavelengths. The eements can dso be specified in teems of sze and
period. Background noise Gabors are added randomly. They are placed in such a way
that they are moved like patides in liquid to a minimum spacing specified by the
user. Gabors are added and floated until minimum spacing requirements are satisfied.
The end resllt can d ceae accidentd smdler contours among the noise
background dements.

Test images were created usng two different Gabor sizes, a samal Gabor (70 pixels
wide with a 20 pixel period) and a lage Gabor (120 pixels wide with a 30 pixd
period). The background eements were kept a a condant minimum spacing (48 for
the smdler Gabors and 72 for the lager Gabors). Spacing for larger Gabors
foreground elements was varied between 2 and 35 | in steps of 0.1666. This was
condrained since vaues above 35 made the cirde larger then the images frame itsdf.
The sndler Gabors had more levity and could be varied from 15 to 6 | in deps of
05. For both Gabor szes, the minimum sze is st the way it is because bdow this,
the foreground dements begin to overlgp. It should be noted tha the ratio of
foreground separation to the minimum background separation was the same for both
large and smal Gabor patch conditions given thesamel .

For each condition, Gabor size and foreground spacing, 20 images were crested.
An output mask was dso crested representing where foreground dements were
positioned. Thiswas used for later Satistica analysis. In dl, 400 images were run.

Satidicd andyds was done by taking the output sdience map from CINNIC,
which dways ran with identicd modd parameter sdtings for dl images, and
comparing it to the mask; this was done by looking for the top mogt sdient points in
the sdience image. When a <dient point was found, the locd region was flooded to
prevent the same eement area from being counted twice. Sdient points were marked
as fird, second, third and so on depending on its vaue in the sdience magp. Andyss
was done by finding the most sdient point in an image, which was dso found within
the foreground eement mask. The rank of the most sdient point dso within the mask
was the rank given to the image. The number of images of each rank was summed to
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find out, for instance, how many images had their most sdient point dso lie within
the mask (ranked as 1%).

As can be seen in figure 4, for the larger gabor images the mogst sdient point fals
on the foreground cirde in 19 out of 20 images for separaions from 233 to 2.833 |,
with the most sdient point being found on dl cirdes a a separation of 2.833l. For
smdler dements, in 19 out of the 20 images the mogt sdient point was found in the
foreground a a separation of 251, It should dso be noted that the optima results
were obtained for the large Gabor Sze st with a ratio of 1181 beween the
foreground eement separation and background separdtion. The raio for the smdler
elements was optima a 1.041. This means that optima results were obtained with a
dightly grester ditance between foreground contour dements than  background
dements. Bumps in figure 4 can probably be accounted for as an atifect of the

Fig. 4.A The top row of images shows contour image masks from make snake super imposed
with what CINNIC found as the 5 most salient contour mints. The arrow shows the most
salient point CINNIC found that also lied on a contour circle. The first image is ranked as a 1¢
rank image since the most salient point in the image aso lies on a contour. The second image
is ranked as a 2 rank image since the second most salient point is the first point to fal on a
contour circle. Continuing this example the right most image is ranked as 3 rank since the
most salient point to be found on a contour circle is the third most salient point in the image

Rank of salient points against background Rank of Salient points against background
Gabor Size 120, period 30 Gabor Size 70, Period 20
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Fig. 4.B The bottom row image illustrates that as separation of foreground elements increeses
the likelihood off a contour element being found most salient also decreases for both Gabor
sizes. Image count shows how many of the 20 images tested in each condition fall into one of
the five different category ranks of saliency, or were not salient within thetop fiveranks.
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discrete nature of the interactions between kernd and the image pixels.

A quedion raised by our results is that of why there seems to be an optima
separation digance in the daa while an optima distance is not explicitly defined in
the neurd connection weights (remember that weights decay linearly with distance).
Further experimentation reveded tha ths was due to the group suppression gan
control sating. We found that & a higher gain control threshold that sdience in the
smdler Gabor sze images was reduced dramaticaly due to an increase in noise
between irrdevant Gabors Going in the opposte direction shows tha the optima
digance for the larger Gabor Sze increeses with a lowered threshold for the gain
control. This is due to the coser dements over exciting past the lower threshold.
These reslts are interesting in tha they not only explan why we obtan optima
digances, but it alows our dgorithm to agree with research by Pola and Sagi (1994)
who aso found an optimd distance between Gabor dements.

Testing on real world images

Pat of the god of our project has been to be ale to incorporate the CINNIC
dgorithm to our more generd bottom-up visud sdience modd. Thus, CINNIC must
be ale to andyze red world images much the same as the current sdiency modd
does. At this point testing on real world images has been condrained to running the
dgorithm and ingpecting the outputs to meke sure that they seem ressoneble
Although of a purdy subjective and quditative nature, such experimentetions are
paticulaly ussful to esimae the gpplicability of our modd to more generd classes

Fig. 5. The top row are real world images with the top 5 most salient points circled by the
algorithm. The bottom row represents the raw saliency map for each image.
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of gimuli. We found that in mogt cases, the agorithm behaves in a ressonable fashion
when processng rea world images. Noise is generdly filtered out and the most
ient points tend to lie on reasonable line dements and contours. Over 100 images
were ingected in dl; each image contained a different subject (eg plants, city
pictures, wilderness images). This was done by sdecting one image a random from
each image subject category on two image library CD’s. Figure 5 shows some typica
outputs on red world images. The top five most sdient points are cirded in the
images.

From the three images presented, the most sdient contours can be found in 5@ on
the edges and stem of the leafs, on the cats ear and the chair rim in 5(b) and in 5(c) te
stone wal, sdewak and dreet possess the most sdient contours. This agrees with a
common sene idea that the modt sdient contours are found on objects with long
collinear continuity and is supported by data from Braun (1999) and Hess and Feld
(1999) which shows that longer contours with smoother continuity and more eements
tend to be more sdient then shorter more jagged ones.

Discussion

On atificidly-generated contours CINNIC peforms very wel. Peformance for
identifying generated contours drops as foreground dements are separated reldive to
background dements. This is to be expected as the same thing is observed in human
subjects (Braun, 1999). Not only does it peform wel but it dso has an optima
disancing between foreground Gabor dements, which agrees with Pola and Sagi
(1994) and the peformance of deection begins to drop a a foregroundto-
background retio of about 1.25, which is what is observed by Braun (1999). The fall-
off for the modd is complete a a spacing of aout 6 which is condgtent with the
specing range proposed by Hess and Fedd (1999), which they edimate to be about 4
to61 a maximum.

The modd 0 far is dso successful because dl dements induded in the modd are
biologicdly plausble This is because the modd is built upon basic longrange neurd
interactions (Gilbert et d., 2000). Our additions to this basc modd include a
previoudy untested neurd plasicity and nove locd gain control factors It is our
opinion that al of these factors are plausble and could hdp explan how contour
integration occurs. It should dso be noted that our use of fast pladticity may better
explain long range interactions than previous modes relying on syngptic transmisson
(Li, 1998, Pettet et al ,1998), tempord synchronization (Yen and Finkd, 1998), or
NMDA-medigted pledticity (Braun & d. 1994) snce, as Braun daes the time
required for ther mechanisms do not closdly match observed times needed for
sdience in contour integration under contour dosure (Braun, 1999). Tha is, syneptic
transmisson would cause contour closure far sooner then the gpproximatey 250 ms
observed by Braun, while tempora synchronization and NMDA-mediated plagticity
take dightly too long.

It should dso be noted tha our novel usage of a group suppression was successful.
As we found, it seemed to have an optima vaue where by removing it, turning it up
too high or in generd adjudting it too high or too low yidded sub-optima results.
Thissuggeststo usthat it is useful in our gpproach.
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