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In order to gain a better understanding of visual saliency, we have developed 
and algorithm which simulates the phenomenon of contour integration for the 
purpose of visual saliency. The model developed consists of the classical 
butterfly pattern of connection between orientation selective neurons in the 
primary visual cortex. In addition, we also add a local group suppression gain 
control to eliminate extraneous noise and a fast plasticity term which helps to 
account for closure effect often observed in humans exposed to closed contour 
maps. Results from real world images suggest that our algorithm is effective at 
picking out reasonable contours from a scene. The results improved with the 
introduction of both the fast plasticity and group suppression. An addition of 
multi scale analysis has also increased the effectiveness as well. 

1 Introduction 

We have created an algorithm, which will integrate contours in real world images. 
The idea is to emulate the way the human brain integrates contours for visual salience 
in early visual pre-processing. To this end, our goal is to simulate saliency for a given 
contour. The important components of this model are not only its abilities to find 
contours in an image, but for it to find contours that a human finds salient as well. 
Such things include contour continuity, length, closure and the uniqueness of the 
contour when compared to its background.  
 
Our approach has been to start with a simple model of neural connections. We use 
here a standard butterfly shape for connections, which has been tried with success in 
the past (for instance Li[2]). The elements of the butterfly pattern are connections that 
branch out like wings to co-linear neurons, which creates excitation on the neurons it 
connects to. However, suppression is also added with a set of orthogonal wings that 
are used to suppress parallel contours. The end result should be that the butterfly 

                                                        
1 More information at http://iLab.usc.edu 
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model picks out salient contours in an image using co-linearity. However, it seems 
that the original butterfly shape of connections is difficult to manually tune for 
multiple images suggesting that the brain has adaptive centers to do this. In addition 
to this, the butterfly shape also does not necessarily account for contour closure or the 
observation that contour effects seem to extend beyond their receptive field. 
 
To address these factors, we propose to use several devices that should aid in 
explaining several observed effects. We have added an adaptive layer using group 
suppression for when a group of neurons seems to get to excited. We have also added 
fast plasticity described by Braun [1], for neural weight to allow connections to 
dynamically adapt to local neural activity. In addition we are using the model at multi 
scales, which should help in preventing otherwise salient contours from being 
excluded. 

2 MODEL 

The current model which we have named CINNIC (Carefully Implemented Neural 
Network for Integrating Contours) starts with the basic butterfly local connections, 
but in addition to this, we have added the use of multiscale analysis, a local group 
suppression gain control and fast plasticity for long range effects. Figure 1 shows a 
schematic description of our model, which is also described by equations  (1-5). The 
first step is analyzing the input image using Gabor filters turned for 12 different 
angles. This produces 12 images that represent elements from the original image at 
increments of 15 degrees. A noise factor of approx. 2% is introduced at this stage. 
These 12 images are then reduced into three different scales 64x64, 32x32 and 16x16 
pixels in resolution, which are run separately and do not interact. A 4D convolution is 
run to simulate the interaction between the different orientation images. The 
convolution is done using a set of 144 kernels that represent all possible interactions 
between pairs of the 12 orientation images. These kernels specify the excitation and 
suppression that should occur between two elements in the images. The kernels take 
into account the colinearity of two elements as well as their separating distance. For 
simplicity, interaction strength decreases as a ramp function as two elements are 
further separated. The kernels are statically specified at the beginning of a program 
run by input parameters and do not interact.  

 Each scale is run separately from the other.  Each element is convolved against 
every other element within its range in such a way that collinear elements tend to 
excite, while parallel elements tend to suppress each other (eq. 1). This is expressed as 
xijα being the source image pixel at location (i, j) and orientation α, and xklβ being the 
other image pixel at location (k,l) and orientation β  then taking the product of these 
two by the kernel kαβ(k-I)(l-j). It should be noted that m and n equal the image scale for 
instance 64,32 or 16. Further, (Sij)t is a group suppression term for the current group 
(detailed below) with t being the current iteration. (Pijα)t is a plasticity term (also 
detailed below). The resulting potential from a single iteration is sent to a saliency 
map (Vij)t+1. Each pixel in the saliency map represents a column of pixels from each 
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of the twelve orientation images summed. The saliency map itself is made up of leaky 
integrator neurons, which lose 

some constant potential L from one iteration to the next (eq. 2). To form a final 
saliency map for one of the three image resolutions, the potential from the leaky 
integrator neurons are fed through a sigmoidal function that simulates neural firing 
patterns (eq. 5) with Iij being the final saliency map pixel for this scale. 

 Non-linearities are introduced in the form of the group suppression gain control 
(eq. 3) where T is the threshold constant and (Vkl)t is the potential for a neuron in this 
group which are all summed for that group with υ as a constant multiplied by that 
sum. m and n represent the image size at that scale The suppression is based upon the 
rate of the change of excitation. Fast plasticity (eq. 4) is introduced as vijα being the 
potential this neuron had multiplied by a constant C. The fast plasticity works by 
increasing all weights for a single simulated neuron, proportionally to the excitation it 
received in the previous iteration. That is, neurons that are stimulated more tend to 
stimulate collinear neighbors more as well as to suppress parallel neighbors more. 
This function is introduced to re-create non-local interactions that are observed in 
human subjects in an attempt to account for observed contour closure effect. The fast 
plasticity used here is bounded to 5 times the original connection strength for any 
given neuron.  

In our model the usage of fast plasticity was chosen for several reasons. The first 
was the suggestion by Braun [1] that other methods that attempted to explain contour 

(vijα)t+1 = (Sij)t (Pijα)t (xijα)Σ (xklβ)(kαβ(k-i)(l-j)) 

                                                                           k∈ [[0,m]] 
                                                                          l∈[[0,n]] 

                                                                               β∈[[0,11]] 

(1) 

(Vij)t+1 = Σ(vklα )t+1 – L 
                                                              k∈ [[0,m]] 
                                                              l∈[[0,n]] 

                                                                   β∈[[0,11]] 

(2) 

(Sij)t = υ[Σ((Vkl)t – (Vkl)t-1 ] – T 

                                                  (k,l)∈ Ni x Nj 
 

with 
 

Ni = [[i-(m/8);i+(m/8)]] 
Nj = [[j-(m/8);j+(m/8)]] 

 

(3) 

(Pijα)t = (vijα)t(C) (4) 

Iij = sig((Vij)t) (5) 
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closure either occurred too fast such as cumulative propagation [2], or were too slow 
such as temporal synchronization [3] as to explain the time it takes for closure effect 
to happen which Braun measured at about 250 ms. Second we wished to test the idea 
of fast plasticity and find if it was a viable mechanism for explaining closure effect. 

 Another non-linearity introduced is a simple local gain control using group 
suppression. Neurons are grouped into local neighborhoods of size 1/8x1/8 pixels of 
the image size at the current scale (e.g. 8x8 pixels for a 64x64 pixel scale). If the total 
change in potential from a group surpasses a threshold then the neurons increase their 
suppression of parallel neighbors proportionally to the increase past threshold. The 
group includes all neurons in all orientation maps for a given visual location, which 
report to the same image location. There is no current cap on how much additional 
suppression can be added using this method.  

The algorithm runs for eight iterations, which was a number chosen based upon its 
observed optimality. After the final iteration, the three scales are brought back 
together and combined using a fixed weighted average.  This average is the total 
saliency map of contours for the input image. The entire process takes approximately 
2 minutes using an Athlon 1400 MHz based PC running Linux. The time is mostly 
due to the enormous amount of computation needed to compute interactions between 
neurons from all possible pairs of  the 12 images using 144 2D kernels.  

3 RESULTS and CONCLUSION 

Initially, the model had been tested on a number of both real world images as well as 
contour simulation images. The results at face value seemed to yield positive results. 

Fig. 1. This is a basic representation of the CINNIC algorithm. An input image is filtered, 
rescaled then interacted with images at other orientations including itself. The output goes to 
a saliency map of leaky integrator neurons. Group suppression is fed back from the change 
in group potential. 
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Large amounts of noise are cleaned out with the adaptive group suppression. The fast 
plasticity enhances the contours of the test images and the multi scale model insures 
that fewer contours are missed. 
 
Quantitative analysis has also been conducted. 24 real world images representing a 
wide variety of contexts were used. A priori we used Photo Shop or GIMP to trace the 
outline of what seemed to us to be reasonable salient contours. The outline images 
where taken and then compared with the output images from CINNIC. It should be 
noted that, all images from CINNIC were run with the same values and no manual 
tuning was done between the time images were run.  
 
Analysis was done between the test image and CINNIC output image for all 24 
images using Euclidian distance as well as linear regression correlation under several 
different conditions. Without group suppression the mean Euclidian distance was 
poorer. Also, the variance was twice as much without group suppression for both 
correlation and Euclidian Distance suggesting that group suppression increases the 
consistency of outcomes. Fast plasticity also seemed to help. Without fast plasticity 
the minimum correlation was negative among the 24 images. However, with fast 
plasticity, all correlational values were positive.   
 
The data also supports the notion of improvement from the use of multi scales. Each 
of the scale images by themselves was compared with the outline images. In neither 
case did the mean correlational value or Euclidian distance surpass the values of the 
final max selected composite image.  
 
Finally, figure 2 shows the output from the algorithm on three real world images used 
in the sample of 24 images. The five most salient points are circled by the algorithm 
and shown against the original image in the top row. The bottom row represents the 

Fig. 2.  The top row are real world images with the top 5 most salient points circled by the 
algorithm. The bottom row represents the raw saliency map for each image. 
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raw saliency map output from which the five most salient points are selected using the 
five brightest regions. 
 
Qualitative analysis suggests that CINNIC has an affinity for longer straighter contour 
segments with greater continuity, which seems to agree with literature on contour 
integration. CINNIC is also more effective at finding contours that are more unique 
given its region, as is also suggested by literature on contour integration. CINNIC’s 
abilities with closure effect are currently being assessed, but the data regarding it as of 
yet is not conclusive.   
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