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Abstract We propose a computational model of contour inte-
gration for visual saliency. The model uses biologically plau-
sible devices to simulate how the representations of elements
aligned collinearly along a contour in an image are enhanced.
Our model adds such devices as a dopamine-like fast plastic-
ity, local GABAergic inhibition and multi-scale processing
of images. The fast plasticity addresses the problem of how
neurons in visual cortex seem to be able to influence neurons
they are not directly connected to, for instance, as observed in
contour closure effect. Local GABAergic inhibition is used
to control gain in the system without using global mecha-
nisms which may be non-plausible given the limited reach
of axonal arbors in visual cortex. The model is then used to
explore not only its validity in real and artificial images, but
to discover some of the mechanisms involved in processing
of complex visual features such as junctions and end-stops as
well as contours. We present evidence for the validity of our
model in several phases, starting with local enhancement of
only a few collinear elements.We then test our model on more
complex contour integration images with a large number of
Gabor elements. Sections of the model are also extracted and
used to discover how the model might relate contour integra-
tion neurons to neurons that process end-stops and junctions.
Finally, we present results from real world images. Results
from the model suggest that it is a good current approxima-
tion of contour integration in human vision. As well, it sug-
gests that contour integration mechanisms may be strongly
related to mechanisms for detecting end-stops and junction
points. Additionally, a contour integration mechanism may
be involved in finding features for objects such as faces. This
suggests that visual cortex may be more information efficient
and that neural regions may have multiple roles.
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1 Introduction

In the visual world there are many things which we can see,
but certain features, sets of features and other image proper-
ties tend to more strongly draw our visual attention toward
them. A very simple example is a stop sign, in which com-
binations of red color and angular features of an octagon
combine with a strong word “stop” to create something that
hopefully we would not miss if we come upon it. Such pro-
pensity of some visual features to attract attention defines in
part the phenomenon of visual saliency. Here we assert, as
others (James 1890; Treisman and Gelade 1980; Koch and
Ullman 1985; Itti and Koch 2001) that saliency is drawn from
a variety of factors. At the lowest levels, color opponencies,
unique orientations and luminance contrasts create the effect
of visual pop-out (Treisman and Gelade 1980; Wolfe et al.
1998). Importantly, these studies have highlighted the role of
competitive interactions in determining saliency – hence, a
single stop sign on a natural scene backdrop is usually highly
salient, but the saliency of that same stop sign and its ability
to draw attention is strongly reduced as many similar signs
surround it. At the highest levels it has been proposed that
we can prime our visual processes to help guide what we
wish to search for in a visual scene (Wolfe 1994;Miniussi
et al. 2002; Navalpakkam and Itti 2002). Given the organiza-
tion of visual cortex it has also been proposed that saliency is
gathered into a topographic saliency map. This is a landscape
of neurons in partnership and competition with each other.
For instance, neurons that are most excited have the great-
est ability to competitively suppress their neighbors. This
creates a winner-take-all phenomenon, whereby the stron-
gest and most unique features in an image dominate other
features to become salient. However, in addition to direct
uniform center-surround competition, it has been suggested
by several studies that saliency is enhanced when a series
of elements like the dashed lines on a road are aligned in a
collinear fashion (Braun 1999; Li and Gilbert 2002; Peters
et al. 2003). Such a phenomenon is part of what is known
as contour integration. Here, instead of a global inhibition
for surround, neurons can selectively enhance other neurons
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with a similar preference for image features. In this case,
neurons will enhance if they have a preference for the same
line orientation and are aligned by preference in a collin-
ear or co-circular fashion. Neurons thus, compete with other
neurons selectively, while enhancing the activity of others.

In contour integration, bar or Gabor elements (defined
as the product of a Gaussian “bell-curve” and a sinusoidal
grating) that are collinear, when observed, seem to enhance
their ability to “Pop out” in an image that is also filled with
other Gabors that are nonaligned noise elements (Field et al.
1993; Kovács and Julesz 1993; Braun 1999; Gilbert et al.
2000;Wu and Gilbert 2002).An example can be seen in Fig. 1,
which shows Gabor elements of the same contrast, modula-
tion, amplitude and size aligned into what seems to be an
uneven circle. There is no direct physical link between the
elements in this image that would give a direct cue as to
their connectedness. Instead, the elements seem merely to
point toward each other. The brain makes a functional gestalt
leap and links these elements into a single unified contour
(Wertheimer 1923; Koffka 1935). At the same time, the rel-
ative salience of the contour objects is elevated in the visual
cortex. Thus, our brain reads between the lines as it were and
creates the cognitive illusion of continuity even when objects
along a contour are not physically connected. At the same
time, our mind takes these contour elements and promotes
their visual importance thus creating the effect of pop-out.

Several factors have been explored as being important
to the phenomenon of contour integration. In particular, the
properties of the elements in the contours can affect our abil-
ity to detect contours in a seemingly nonlinear fashion. For

Fig. 1 This is an example of a contour created by Make Snake (Braun
1999). As can be seen, there appears to be a complete circle. However,
the circle is created by unconnected Gabor wavelet elements. The mind
connects these elements in a phenomenon known as contour integration

instance, contours can be affected by continuity of colors,
phase of Gabors and luminance of aligned foreground ele-
ments (Field et al. 2000; Mullen et al. 2000). Similarly, sta-
tistics of the background can also affect our perception of
contours. For instance, if contour elements have a stronger
collinear orientation compared with background elements,
that is, they are more aligned, the contour is more visible
(Polat and Sagi 1993a,b; Usher et al. 1999; Hess and Field
1999). Interestingly, when result data for enhancement of
Gabor elements is plotted on a graph, enhancement for col-
linear elements is “U”-shaped. That is, a string of parallel
Gabor elements, aligned like the steps on a ladder also have
enhancement abilities, but diagonally oriented elements (ele-
ments which point in the same direction but are off-set like
a staircase) have far less ability to enhance (Polat and Sagi
1993a,b; Yu and Levi 2000). Thus, as elements are rotated
relative to each other, they have the strongest enhancement
if the elements are aligned collinear or directly parallel to
each other, but enhancement drops as elements are rotated
between being collinear and parallel.

In addition to sameness of elements, contours also seem
to become enhanced if the arrangement of the elements forms
a closed loop (Kovács and Julesz 1993; Braun 1999). While
there is some disagreement to the amount of pop-out from
contour closure it is still nonetheless considered significant.
This suggests that neurons sensitive to contour integration
may perform some sort of linking to each other in a manner
conceptually similar to a closed circuit like loop (Li 1998;
Yen and Finkel 1998; Braun 1999; Prodöhl et al. 2003). That
is, neurons that do not directly touch may propagate effect
to each other through their neighbors. Thus, ideally, if we
imagine that contour integration is the result of neurons of
preferred orientation linking to each other, we might con-
clude that contour integration may not just involve linking
nearest neighbors to each other in a linear one-shot excite-
ment, but may involve continuous reciprocation of neurons
such that effects can propagate around a network. Such a
notion is supported by current observations that all of the
neurons on a contour that are thought to enhance each other
in contour integration cannot be directly connected due to the
limited reach of visual cortical axons. Thus, neurons in V1
and V2 are limited in the scope of their direct effect onto each
other and should not cross the entire visual field. For contour
closure effects to occur, especially over long contours, there
should be some sort of network propagation (Li 1998; Yen
and Finkel 1998; Braun 1999).

Contour integration can also be explored in both local and
nonlocal ways. For instance, single Gabor element flankers
and center-surround pedestals demonstrate that elements in a
contour can enhance each other with only one flanker neigh-
bor element to each side (Polat and Sagi 1993a,b; Zenger
and Sagi 1996; Yu and Levi 2000). However, contours are
further enhanced as elements are added (Braun 1999; Li and
Gilbert 2002). This has become somewhat of a mystery for
the reason that elements seem to enhance each other at dis-
tances that span beyond the size of the classical receptive field
of neurons in the visual cortex (Braun 1999). Thus, adding
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to the previous argument, there seems to be some ability
for neurons in visual cortex to enhance a contour’s percep-
tibility at locations represented by neurons that they are not
directly connected to. Several theories have been advanced to
explain how that can happen, for instance neural synchroni-
zation (Yen and Finkel 1998; Choe and Miikkulainen 2004),
potential propagation (Li 1998) and fast plasticity (Braun
1999; Mundhenk and Itti 2003).

In addition to their saliency effects, it has also been sug-
gested that contours play an important role in object identifi-
cation. In particular, the ends of contours frequently referred
to as end-stops and the junctions of contours may hold impor-
tant data for the geometric interpretation of objects (Rubin
2001; Biederman et al. 1999). Thus, contour enhancement
may not only be important for drawing our attention to the
contours qua contours, but to the places at which those con-
tours join with other contours and yield useful geometric
information about objects for identification. Thus, it may be
important for a mechanism that integrates contours for the
sake of visual saliency to not only find contours, but to find the
junctions at those contours even more salient. From this, we
propose that a model of contour integration may do more than
just enhance isolated contours. That is because more infor-
mation is to be obtained from the junctions at contours. From
an efficiency standpoint, junctions should also be detected if
possible since this would reduce the number of neurons ded-
icated to the task of contour integration and end-stopping as
well as speed up computation through parallel processing of
information. This then could reduce redundancy and extra
processing steps.

1.1 Computation

Traditionally, it has been a challenge to model contour inte-
gration. Two approaches are generally taken when trying to
model contour integration. The first is the biological route
(Yen and Finkel 1998; Li 1998; Grigorescu et al. 2003; Mund-
henk and Itti 2003; Choe and Miikkulainen 2004; Ben-Shahar
and Zucker 2004). In this method, the idea is to create a
model of contour integration that explores how the brain
may perform such activities. The other route is computational
(Shashua and Ullman 1988; Guy and Medioni 1993), which
is another important approach. However, these models tend
to explore possibilities of contour integration computation or
attempt to take a direct path to simulate contour integration
for engineering applications. Here our approach is both. Our
model attempts to explain saliency for contours in a man-
ner that strives to illuminate the mechanisms that the brain
uses, while attempting to optimize computation in order to
be applied to visual saliency tasks in machine vision.

An important aspect of many contour integration algo-
rithms has been the control of connectivity between compu-
tational elements. This is because, as has been mentioned,
neurons seem to influence, beyond their own physical range,
other neurons evaluating the same contour. This creates a
situation where neural groups that process contour integra-
tion need to spread effect throughout the network while at

the same time controlling the network and preventing it from
losing control. Some biological approaches have included
a global normalization gain control and neural synchroni-
zation for this effect (Yen and Finkel 1998). We attempt to
control our model by taking advantage of the properties of
GABAergic interneurons to control local groups of neurons
discretely. As we will describe later, the corresponding group
that processes contours is broken into smaller local groups.
Each local group is managed by its own single GABAer-
gic interneuron, which controls gain by managing activity
gradients for the local group it belongs to. Thus, each local
group of neurons in the corresponding group has its own
inhibitory bandleader to control its gain. The reason for tak-
ing this approach over global normalization is that we avoid
direct influence between elements in the model that should
not have direct interactions due to the limitations of the reach
of neurons in visual cortex.

Our model will also attempt to explain how contour
enhancement can extend beyond the typical receptive field
of neurons by utilizing a fast plasticity (von der Malsberg
1981; von der Malsburg 1987) based on dopaminergic tempo-
ral difference like priming effects and pyramidal image size
reduction. We will also show our model’s abilities to perform
similarly to humans in local enhancement tasks involving col-
linear aligned elements (Polat and Sagi 1993a,b) as well as
in longer contour tasks with elements that enhance beyond
the range of the neurons’ receptive field.

In addition, our model will take into account physiolog-
ical mechanism for contour integration by comparing our
results to those of psychometric data. By fitting our algo-
rithm to this data we will not only demonstrate the viability
of our solution, but show we will have created a more com-
plete solution in the process.

2 The model

2.0 Features

We have created a model, which we call carefully imple-
mented neural network for integrating contours (CINNIC).
Our model simulates the workings of a corresponding group
of hyper-columns in visual cortex. We use the term “corre-
sponding” to mean small proximate hyper-column groups,
which correspond to the same basic task, for instance, inte-
grating contours for saliency. In essence, it can be thought
of as a cube of brain matter. Each neuron in a correspond-
ing group connects to the many neighboring neurons within
its reach. Each neuron in the corresponding group is sensi-
tive to a distinct angle present in an image being observed
by the model. That is, certain neurons activate more strongly
when they are presented with a 45◦ line in their receptive
field while others might be more sensitive to a 30◦ angle line.
This means that each neuron in a hyper-column, and thus
each neuron in the corresponding group has a preference to
distinct angles (Hubel and Weisel 1977). Contour integra-
tion is achieved in principle when neurons that are close and



Computational modeling and exploration of contour integration for visual saliency 191

Fig. 2 a An image is taken (1) and is split into 12 orientation-filtered images (2), which are sent to their own layers in the corresponding group
(3). Each of the 12 preferred orientations are rotated at 15 degrees (3). After interaction the output is collected at a top-level saliency map (4).
b Interaction between layers is governed by collinearity. More collinear elements excite each other (α and β are small) while less collinear
elements suppress each other (α and β are large). c Elements like (1) enhance, elements like (2) suppress, and highly parallel elements can
enhance, like in (3)

have similar preferred orientations either enhance if they are
collinear to each other, or suppress if they are parallel to
each other. This is a method used widely (Yen and Finkel
1998; Li 1998; Grigorescu et al. 2003; Mundhenk and Itti
2003). Figure 2 shows an example of these simple rules for
enhancement. It should be mentioned that the reason to sup-
press parallel flanking elements is to preserve the uniqueness
of the visual item. For instance, a single line on a blank back-
ground should be more salient than a group of parallel lines
(Treisman and Gelade 1980; Itti and Koch 2001). This can
be intuitively imagined by thinking of one thin line drawn on
a wall compared with a line on a pin stripe suit. It is easy to
imagine that a single line on the wall is more salient and more
likely to pop out than a single line amongst several others on
the pin stripe suit.

An overview of the functioning of the network is as fol-
lows, as each neuron in the corresponding group fires, it trans-
mits synaptic current to a neuron at the top of its hyper-column.
This top-level neuron is a leaky integrator that stores charge
received from neurons in its hyper-column. The way to imag-
ine this is that the top level of leaky integrator neurons map
one to one with an input image and creates a saliency map.
Thus, an input pixel is connected to several neurons above it
in a hyper-column and creates a one-to-one mapping for loca-
tion between each hyper-column and an image pixel. That is,
a hyper-column of neurons and its leaky integrator neuron on
top maps spatially to exactly one pixel in an image, but then
connects outwards to surrounding pixels in a center-surround
architecture.

Each neuron has the ability to enhance its neighbor us-
ing dopamine-like priming connections.Thus, connectedness

among neurons in the corresponding group is enhanced by
their ability to prime each other. The reason for this is that it
allows activity of neurons to propagate. This gives neurons
the ability to extend their influence beyond their own reach
to neurons outside their receptive field. For instance, an ac-
tive neuron primes its neighbor which causes its neighbor
to become more active following that priming which in turn
causes the neighbor to prime its neighbor and so on. Dopa-
mine-like neurons are used in our model since they are fairly
ubiquitous and can prime one another in 50–100 ms (Schultz
2002), which is well within the time span suggested for long-
range contour integration of about 250 ms (Braun 1999). We
state this because contour detection performance saturates at
12 Gabor elements. 50-ms priming may be the right amount
of time for it to propagate in the network since depending
on the exact speed of the network, a 10 or 12 cell networks
effect will have met half way by this point in time. Addition-
ally, this means that our model depends on a Hebbian-like
associative priming where neurons that receive input in one
epoch of our model enhance their neighbors firing in the next.
Figure 3 shows a frame-by-frame example of this process.
We reason for this method of propagation by observing that
this process of priming has been observed and simulated in
the brain, for instance in striatal neurons (Schultz 2002; Suri
et al. 2001). Additionally, we should note that we empha-
size the term dopamine-like. This is because other systems
such as norepinephrine neurons in the locus coeruleus and
Cholinergic neurons in basal forebrain also exhibit similar
behavior (Schultz 2002), and while fast plasticity has been
observed in higher cortical areas such as the prefrontal cortex
(Hemple et al. 2000) and the rat visual cortex (Varela et al.
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Fig. 3 An important element of the model is a fast plasticity term. In our
model we follow the notion of priming via dopamine. (1) A neuron and
its neighbor receive input. (2) The neuron on the right sends a signal to
the neuron on the left. (3) The left neuron is now primed via dopamine.
(4) When the neuron on the left receives another input, it is more likely
to cross its firing threshold. This allows contour elements to propagate
activity to other contour neurons that are not directly connected

1997) the time course and underlying mechanisms seem not
to be understood well enough at the moment for our simula-
tion. As such, we use the term dopamine-like since it seems
that its mechanisms are generalizable enough for our pur-
poses. Our model does not implement explicit temporal syn-
chronization for propagation since it is our observation that
evidence for its actions in V1 and V2 seem less certain, and
that while some papers suggest explicit temporal synchro-
nization based on their results (Lee and Blake 2001) as we
mention in the discussion, they can also be accounted for by
a fast plasticity mechanism. Our argument will then be for
such a process based upon its feasibility as well as the fitness
of such a mechanism to explain the processes which are ob-
served in humans. As a last note we wish to point out that
we do not object to explicit temporal synchronization at any
theoretical level, it is to say, we believe that fast plasticity
may better explain contour propagation.

Another feature of our model is that it controls runaway
gain from over excitation of the corresponding group. It does
this by using suppression of local groups of pyramidal neu-
rons that are in subsections of the whole corresponding group.
To accomplish this we hypothesize that medium sized basket
type fast spiking (FS) interneurons are stimulated from one
or few putative inputs from the top leaky integrator neuron
and exhibit strong control over the neurons they efferently
connect to. Such neurons have been observed in the brain
in many areas, particularly in the pre-frontal cortex (Krimer
and Goldman-Rakic 2001) and Striate Cortex (Shevelev et al.
1998; Pernberg et al. 1998). They need only one or few
inputs and can give very strong inhibition. Here, these FS

parvalbumin-type interneurons are plausible since they re-
quire very few putative inputs in order to create inhibitory
post-synaptic potentials (IPSP) (Krimer and Goldman-Rakic
2001). Further, they have been found to modulate pyramidal
neuronal activity directly (Gao and Goldman-Rakic 2003),
which are the type of neurons we have constructed our cor-
responding group from. A gradient-based suppression could
be attained by having a second slow interneuron inhibit the
first interneuron, this may be plausible since interneuron to
interneuron connections are well known (Wang et al. 2004).
If the activity of the first interneuron levels off, the second
interneuron will catch up and suppress the first completely.
Figure 4 shows a representation of this. Since interneutrons
can spike at a variety of rates (Bracci et al. 2003), the end
result from this mechanism is that local groups of pyrami-
dal neurons are inhibited proportionally to their local groups’
sum excitation.

2.1 The process

In our computational model, before an image is sent to the
corresponding group it must undergo some preprocessing.
This takes several steps. The first is to take in a real world
image. This can be a digital photograph, or an artificially-
created stimulus such as an image of Gabors. The input im-
age is filtered for orientation using Gabor wavelets. This
creates several images, in our case 12, that have been fil-
tered for orientation. In this model, 12 orientations are used
since it is hypothesized that this is the number of the orien-
tations the brain may use in V1 (Itti et al. 2000). The image
is then reduced into three different scales of 64×64, 32×32
and 16×16 pixels by using the pyramid method for image
reduction (Burt and Adelson 1983). This yields 36 processed
images, that is, 12 orientations by three scales. In the next
stage, each scale is processed separately. As such, we have
three independent sub-corresponding groups, one for each
scale. Each orientation image is sent to a layer in the sub-
corresponding group for its scale that is selective for that
orientation. For instance, the 90◦ orientation image inputs
directly only into the layer that is designated as selective for
90◦ orientations. This creates a sub-corresponding group with
a stacked topology where each layer is comprised of neurons
sensitive to only one orientation. To reiterate, the structure
places neurons directly above each other, which receive di-
rect input from the exact same location in the visual field.
Thus, the result can be thought of as a cube of neurons where
the i and j dimensions correspond to a specific location in the
visual field and the α dimension corresponds to the preferred
orientation of the neuron. To make this cube of brain matter
a corresponding group, connections are established between
the neurons.

Interaction between neurons is created using a hyper-
kernel. Each hyper-kernel describes both the inhibitory and
excitatory connections between neurons simultaneously rat-
her than as two separate kernels where one is for inhibition
and one is for excitation. This is done to speed up the compu-
tation operation and can be done since, if we neglect temporal
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Fig. 4 Gain in the network is controlled by a Basket GABAergic interneuron-like connection scheme. This works by spatially grouping local
neurons into groups that are all suppressed by a local interneuron for that group. This creates a gain control, but keeps such control local to within
the theoretical spatial range if axonal arbors in V1 and V2

differences between excitation and inhibition at this level, the
summation of inhibition and excitation to another neuron re-
sults in a mutually exclusive inhibition or excitation result.
That is, the hyper-kernel is the summation of excitation and
inhibition kernels. Figure 5 shows the “slices” of the kernel
we used and how it is used to define how neurons interact
with each other by defining the weights of excitation and
inhibition. Each hyper-kernel slice has a reach of 12 pixels
(reaching out to a span of 12 neurons) for excitation and ten
for inhibition. It should be noted that this is the same across
all scales. When the image is reduced, the kernel will reach
across 1.4◦ of visual angle for 64×64 pixel scale image, 2.8◦
for the 32×32 scale image and 5.6◦ for the 16×16 scale im-
age. Additionally, while the kernel at the 16×16 pixel scale
is large in terms of visual angle, it has a relative lack of acuity
since the image has been reduced dramatically. Thus, we still
fall within size constraints for neuron reach since the kernel at
16×16 is still the same size. However, the image has shrunk.

In all, 144 slices are created for our hyper-kernel. These
represent all the possible connections between two neurons
in the corresponding group. That is, each neuron is selec-
tive for one of 12 orientations and can interact with another
neuron, which can be selective for one of 12 orientations.
This creates 12×12 possible interactions. The spatial rela-
tion for each hyper-kernel is handled within each slice. That
is, each slice maps retinotopically. Orientation is thus han-
dled between slices, while translation is handled within slices
of the hyper-kernel. It can be seen then, that the hyper-kernel
is stacked in the same way as the layers of a corresponding

group. Since it has the same topology, it can then pass over
and through a corresponding group in much the same way
a standard 2D kernel is passed over a standard 2D image.
However, the process moves the hyper-kernel in 2dimensions
over the 3D corresponding group (with 4D connections), so
in essence, the convolution adds an extra set of dimensions
over 2D convolution. This can be thought of as moving a
hypercube of 12 spatially overlapping cubes (one for each
orientation) simultaneously in a Cartesian manner along 2D
through a larger box of the same height (which can be thought
of as the corresponding group).

Each orientation-selective neuron when stimulated by in-
put from the image and by input from other neurons that ex-
cite it will send synaptic current to a top layer of leaky inte-
grator neurons at the top of its hyper-column. The top layer of
leaky integrator neurons is treated as a saliency map for these
purposes. The top layer can reciprocate to control gain of lo-
cal neurons using suppression from FS interneurons. That is,
the activity of the saliency map’s top-layer neurons controls
the activity of the gain control for the interneurons. Thus, a
noisy image is gain controlled locally using the gradient of
excitation in a local group controlled by a single interneuron
for that group.

Contours are sharpened and extended using the dopa-
minergic-like priming described previously.The outputs from
the three different scaled sub-corresponding groups are
merged together using a weighted average. The end effect
is a combined saliency map from across scales, which is the
final output from CINNIC.
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Fig. 5 A A Kernel is generated that dictates the base strength of the connections between neurons in the network. Each kernel slice shown
represents the interaction between two neurons given their preferred orientations. Red represents inhibition while green represent excitation. B
If two neurons are parallel in preference but not collinear, then they inhibit each other. C Parallel bars excite if they are close to collinear in
preference. The three kernels shown (the same as highlighted in a) show the interaction if elements are related to each other as shown by the bars.
For instance, if two elements are totally co-linear they would use the first kernel. The next kernel would be used if one element is offset by 15◦. D
This is a side view of the 0◦ offset kernel. The kernel has modest second- and third-order polynomial curvature, which can be observed on close
inspection

2.2 Kernel

As mentioned the hyper-kernel is defined that contains both
excitation and inhibition in it. However, excitation e is defined
in the kernel in a slightly different way than inhibition s. As
can be seen in Fig. 5, excitation is strongly sensitive to the
preferred orientation between two neurons, while inhibition
is mostly sensitive to the spatial location between two neu-
rons. That is, excitation is sensitive to the preferred orien-
tation of both neurons in an interaction, while inhibition is

only sensitive to the orientation of the operating neuron so
most of its effect is from the distance between neurons. The
excitation term can be seen in Eq. 1. Here aα is a term for
the collinear disjunction (how much this neurons preferred
orientation points to the other neurons) between this neuron
and the other neuron. aβ oppositely describes how much the
other neuron points to this one. The planar Euclidian distance
between these neurons is expressed as de, this can be thought
of more in terms of the distance between the hyper-columns
a neuron resides in and not the direct distance between two
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neurons in space. The excitation output expression to the ker-
nel is Ke

αβ , this is the excitation that will be expressed by the
kernel from the preferred orientation α of the neuron that is
operating (this neuron) and orientation β of the neuron to be
operated on (the other neuron). In simplest terms, ae

α and ae
β

describe how much two neurons point toward each other in
a collinear fashion. That is, ae

α is the angle from the other
neuron to this one, and ae

β is the angle from this neuron to the
other as seen in Fig. 2. Thus as Eq. 1 shows, the excitation
part of the kernel is the average over a collinearity term and
distance.

Ke
αβ = (de + (ae

α · ae
β))/2 (1)

The output angles are derived as:

ae
α = lfe

· Ae + P e
2 · (

Ae
)2 + P e

3 · (
Ae

)3 + 1 (2)

ae
β = lfe

· Be + P e
2 · (

Be
)2 + P e

3 · (
Be

)3 + 1 (3)

The terms P e
2 , . . . , P e

3 are constants used to curve the ker-
nel’s shape with a third-order polynomial. That is, as pre-
ferred orientation ae differences increase and the distance
de between neurons increases, excitation tapers off along a
slightly flat, but in this case, an almost monotonically decreas-
ing polynomial function. The polynomial is used since its
ability to take on a variety of shapes is very strong. Addition-
ally, since it is applied radially, it can take on shapes similar
to a Gaussian, but we are able to avoid explicitly making
such assumptions. Be and Ae are expressions for how far off
collinearity is in this interaction. Basically, this ranges from
1 to 0 with 1 being if two neurons are collinear and 0 if two
neurons are non-collinear to a degree that surpasses a thresh-
old. lfe

simply normalizes Be and Ae to be within the 0 to
1 threshold. Here normalization is used to constrain values
used in the kernel manufacture so that initially values for
inhibition fall within the same range as excitation. Inhibition
is expressed in more simple terms as

Ks
αβ = W · (ds + (as

α · c))/2 (4)

In this equation the major difference from excitation is c
which is the difference between preferred angles in the two
layers being interacted (remember, inhibition is only sensitive
to the operating neurons orientation α and not the receiving
neurons orientation β). That is, it is less important how much
another neurons preference points at this neuron compared
with how much this neurons points at it during inhibition.
Spatial location is thus more important than strict collinear-
ity for inhibition. The reason for this is because originally,
better results were obtained early on by removing the as

β term
between elements and replacing it with c. This also has the
effect of making inhibition more purely center-surround in
its effects.

Just as with excitation ds is the distance between this
neurons column and the other neurons column and as

α is
based upon the orientation of the operating neuron. Again
note Fig. 5, which shows the general shapes of the kernel.
The most obvious result of the difference between excitation
and inhibition is that inhibition is strongly symmetric over
both principal axis. Thus, the shape of its field of influence

stays ellipsoidal. W is a constant that gives a gain to the inhi-
bition, either making it stronger, or weaker than excitation
depending on what value we decide is suitable. Again, as

α is
expressed as

as
α = −1 · (lfs

· As + P s
2 · (

As
)2 + P s

3 · (
As

)3 + 1), (5)

where again lfs
is a normalizer and Bs and As range between

1 and 0 depending on the angle offset of this neuron and the
other neuron. Similar but orthogonal to excitation, as

α is equal
to 1 if the operating neuron and the neuron being operated on
are parallel, but not collinear. It becomes 0 if the two neurons
are orthogonal. Thus, an important note about this system
is that preferentially orthogonal neurons do not have direct
influence on each other for either excitation or inhibition, but
do carry indirect influence as will be discussed later in our
discussion of junction finding.

Values for as
α and ae

α are derived such that they are mutu-
ally exclusive causing both excitation and inhibition to zero
at the same angle. Thus, when Ks

αβ and Ke
αβ are combined

into a single kernel it is a simple matter of mapping one over
the other. This can be thought of as having computed the hill
and the valley separately and then bringing the two together.
Since the system is discrete, any minor disjoint is not noticed.

2.3 Psuedo-convolution

The main process of CINNIC lies in the mechanisms of the
corresponding group. Interactions in a corresponding group,
which defines how collinear sensitive neurons work, uses
a pseudo-convolution. The major difference between CIN-
NIC’s hyper-kernel convolution and traditional convolution
is that the results from the operation are stored at the other
pixel, not the pixel being operated on. This was done ear-
lier on when we were experimenting with other features that
were later removed. Equation 6 shows the basic pseudo-con-
volution operation, which is also illustrated in Fig. 6. Here
x is an orientation processed image pixel at image location
i, j in one of the 12 different orientation layers α. Each pro-
cessed image pixel, which becomes represented as a neu-
ron, is multiplied by the sum of its interactions with other
pixels (neurons) in its receptive field at the relative location
k, l with respect to the neuron i, j, α, with a field size of m
by n. That is, k, l is the location of the other neuron rela-
tive to this neuron. The main interaction of this pixel-neuron
(xijα) and the other pixel-neuron in its receptive field (xklβ)
is described by their weights from the kernel (Kαβ(k−i)(l−j))
described earlier (where (k − i)(l − j) is the corresponding
hyper-kernel slice pixel mapped onto the field n by m). An
approximation for the dopamine-like fast plasticity term is
described as (fklβ)t which is derived in Eq. 9. Thus, this neu-
ron (xijα) will dopamine prime the neuron at location k, l, β.
Further, iff the interaction is inhibitory (the neural activity
is computed as less than zero), (gkl)

t represents an addition
to suppression from the gain control group suppression term
from (xklβ)’s group (Eq. 7) at time t which is the last com-
plete iteration. Thus, this represents the GABA-based group
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Fig. 6 This graph illustrates the way in which neurons interact with neurons in other hypercolumns. By mapping the hyper-kernel K over the
neuron α, i, j we can find the base synaptic current generated that should be sent to another neuron at the relative position β, k, l.

suppression mentioned earlier. This interaction is combined
with the base excitation to this neuron times a constant gain
(xijα)A with a pass through term. That is, the sum excitation
of this neuron also includes the input pixel intensity from
the orientation image as well as the activity from other neu-
ron interactions in its corresponding group. The linear output
from this neuron is stored in (vijα)t , which is the total activ-
ity for this pixel-neuron after a single pseudo-convolution
iteration at time t .

(vijα)t = (xijα) · A + (xijα)

×
∑

k∈[[0,m]]
l∈[[0,n]]
β∈[[0,11]]

(xklβ)(gkl)
t (fklβ)t (Kαβ(k−i)(l−j)) (6)

(gkl) =
{

(gkl) iff (Kαβ(k−i)(i−j)) ≤ 0
1 otherwise

(7)

The resulting potential is sent to an upper level of leaky inte-
grator neurons (Eq. 8). This is the neuron that rests at the top
of the hyper-column and along with the other neurons at the
top of their respective hyper-columns forms a saliency map
for this scale. A simple leak is approximated here with a con-
stant leak term L with the sum being placed in (Vij )

t+1 as a
quick, but sufficient leaky integrator approximation, with the
down side of not being proportional to potential. In essence,
this sums the potential of all 12 neurons in this column that
receive input from the same pixel in the image.

(Vij )
t =

∑

α∈[[0,11]]

(vijα)t − L (8)

Dopamine-like fast plasticity (fijα)t is approximated as Eq. 9.
Here a neuron is primed to have a greater weight if it received

input during the last iteration (vijα)t−1, which is proportional
to that input. A constant F controls the gain on this effect. A
ceiling is placed by Eq. 10 which limits this effect to be no
less then 1 (no effect) or greater than 5 (strong effect). In this
case, the selection of a ceiling of 5 is slightly arbitrary and
dependant on observations that it worked well in our early
test cases.

(fijα)t = (vijα)t−1 · F (9)

1 ≤ (fijα)t ≤ 5 (10)

Group suppression (Eq. 11) is based upon the gradient of the
increase in excitation for all neurons in this group and approx-
imates the GABAergic gradient circuit previously described.
That is, all the neurons that are in this group (Vpq) have their
output summed, with the finite difference determining the
gradient. A gain v is applied and the constant T is a resis-
tance threshold term that assures that group suppression can
only occur when excitation has reached a certain level. Ni

and Nj express the boundary of this local group which is
1/8th × 1/8th of the total image size. In other words, if the
image is 64×64 pixels, a local suppression group is 8×8 pix-
els in size. This size makes the range of this inhibition roughly
the same size as the kernel and assures even division.

(gij )
t = v








∑

(p,q)∈Ni×Nj

(Vpq)
t − (Vpq)

t−1



 − T





+(gij )
t−1 (11)

Ni = [[i − (m/8); i + (m/8)]] (11a)

Nj = [[j − (m/8); j + (m/8)]] (11b)
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Fig. 7 CINNIC works in several phases. The first is to take in a real world image. Gabor filters are applied that creates 12 orientation selective
images. The image is then rescaled using an image pyramid into three different scales. The 12 orientation selective images are then pseudo-con-
volved and the corresponding region is run with dopamine-like fast plasticity and group suppression over several iterations. The three different
scales are then brought back together using a weighted average and combined into a contour saliency map

All the potential is run through a logistic sigmoid (Eq. 12),
which simulates firing rates. Thus, the final top most saliency
map for contours at this image scale is taken from Eq. 13.

S(x) = 1
/
(1 + exp(−2βv)) (12)

I t
ij = S((Vij )

t ) (13)

The final saliency map for all scales is created by taking a
weighted average of all the scales (sub-corresponding groups),
as can be seen in Eq. 14 (Fig. 7). Here Iiju is the saliency map
for this sub-corresponding group at its own scale u while wu

is the weight bias given to this scale (a number from 0 to 1).
nu is the number of scales analyzed (in this case 3) and Mij

is the final saliency map derived from across all differently
scaled sub-corresponding groups.

Mij =

(
∑

u

Iiju · wu

)

nu

(14)

Thus, Mij represents a saliency map of what parts of the
image are most salient based on contour information. If the

algorithm is effective then Mij should have a large value cor-
responding to a contour segment at location i, j in the input
image. It should correspondingly have a low value where
no contour segment or a noise segment lies. The most salient
point or points are the pixels from Mij which have the highest
or maximum values (Fig. 8). Additionally, it should be noted
that while the saliency map, that is, output shows clearly the
contours, since the goal of this work is to simulate visual
saliency, the most important component of the output should
be the salient points that draw attention to the contours.

3 Experiments

To investigate the validity of our model we followed a
multi-tier approach. The idea was that our model should be
viable at several levels. First we looked at how our model
worked with simple element interactions. For instance, how
would our model work on a Gabor patch with two flank-
ers only. In this we should see saliency enhancement with
greater collinear alignment as observed in humans (Polat
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Fig. 8 The top three images show the results of pseudo-convolution at each of the three scales used. The bottom left image shows the weighted
average of the three images. The circles represent what the program feels are the five most salient points. The bottom right image is the input
image with the most salient points shown with the red circle on the most salient point and the blue circle on the least salient of the top five

and Sagi 1993a,b). Additionally, enhancement should extend
beyond a small number of elements. That is, we needed to
check if our model worked on chains of Gabor elements.
This would validate our model against data that shows that
enhancement is formed for collinear Gabor elements against
background noise Gabor elements along paths extending be-
yond the receptive field of V1 neurons (Braun 1999). The
third level of validation involved real images. This was the
next logical increment.That is, we first test if our model works
on a few simple Gabor elements (simple, local), then we test
longer chains of Gabor elements with Gabor noise (simple,
nonlocal), then next we test on natural images (complex, non-
local). We should expect to find validity of our model at all
three levels if we are to claim that it could be a reasonable
approximation to contour integration in humans. Addition-
ally, we also report on results that suggest that the CINNIC
model is also sensitive to junctions and end-stops. This is to
illustrate the generalization of the CINNIC model as well as
demonstrate possible efficiencies in visual cortex for finding
junctions with the same or a similar mechanism as used for
contour integration. Additionally, a unified mechanism that
finds contours and junctions may help explain some psycho-
physiological observations made by others, which we discuss
later.

3.1 Local element enhancement

As has been discussed, contour integration behavior can be
seen in cases where only a few Gabor or other direction-
ally specific element, such as a line segment, flank one ele-
ment (Polat and Sagi 1993a,b; Kapadia et al. 1995; Gilbert
et al. 1996; Kapadia et al. 2000; Freeman et al. 2003). We
attempted to replicate work by Polat and Sagi (1993a,b)
showing that a Gabor element when flanked by one collinear
Gabor on either side can be enhanced from this arrangement.
That is, the ability to detect the Gabor element in the cen-
ter is increased or in some cases decreased as two flank-
ing Gabors are altered for distance from the central Gabor.
Enhancement changes should also be observed with altera-
tions in contrast/amplitude for the Gabors. The results they
obtained show that when the flanking elements are moved
away from the central Gabor in increments of λ (which is the
frequency size for the Gabor wavelet and is used as the mea-
sure for the separation between Gabor elements), at very close
distances, flanking Gabors seem to make it harder to detect
the central Gabor. Maximal enhancement is obtained when
the flanking Gabors are separated from the central Gabor by
approximately 2 λ. However, as the flankers are moved even
further away, the enhancement effect seems to be completely
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Fig. 9 The program makes a decision as to which of the two images has the target in it. The model estimates this decision by taking the probability
of a decision as the Poisson of the output at the target. The error is the error function (EFC) of the two distributions for both target and nontarget.
Target amplitude is changed until error rate is 25%. This marks the relative enhancement

diminished. This reaches a total diminishment of enhance-
ment when separation reaches about 12 λ.

Using this experiment as a guide, we optimized the kernel
parameters of our model to create an outcome that resembled
theirs as closely as possible. This was done by creating Gabor
images with flankers at 0, 1, 2, 3, 4 and 12 λ. We created
our Gabor images as closely as possible to the ones used in
their experiments (Polat and Sagi 1993a,b). Additionally, the
images could have alterations for the amplitude of the tar-
get Gabor in the same way they altered their image targets.
In their experiments, they found the amplitude of enhance-
ment for a center Gabor element when flanked by two collin-
ear Gabor elements of the same size using a two alternative
forced choice paradigm. Thus, they did this by showing two
images and forcing a participant to choose which one had the
central Gabor in it and which one had an image with only the
flankers and no central element. When the amplitude of the
central element yielded a 75% correct rate, that was consid-
ered the threshold amplitude of detection for that particular
separation of Gabor condition. They then mapped the relative
enhancement of the target Gabor in the condition by compar-
ing it with a single stand alone Gabor with no flankers which
served as the baseline for detection threshold.

We achieved a similar result by estimating the error rate
using the error function from the Poisson obtained from the
output of the target/no-target conditions (Fig. 9). This method
used previously by our group (Itti et al. 2000) and others esti-
mates the error from physiological observations since noise
and error in the brain follows a Poisson distribution. By mod-
eling this, from Eq. 15 we could show that given the output
stimulus in the target/no-target condition, what would be the
probability that it would pick one image over the other. This
method was used because it gives us dramatically increased
performance over using a Monte Carlo simulation for deter-
mining error in a two alternative forced choice paradigm
which was pivotal to train our model as will be described.

P(error) = 1

2
erfc

µ1 − µ2√
2
(
σ 2

1 + σ 2
2

) . (15)

What this means is that we showed our algorithm the target
and no target images. An intensity value from the saliency

map at the location in Mij (Eq. 14) where the target Ga-
bor from the input location corresponded to was obtained.
The value from Mij was then considered to be a mean value
with the expected standard deviation of outputs defined from
the Poisson distribution. Using an iterative technique, ampli-
tude was adjusted for the central Gabor using a hill climbing
method with momentum, until the error rate was 75% ± 1.
The amplitude at threshold was then compared with the out-
put from an image with a single unflanked element, to mea-
sure relative enhancement just as in the study by Polat and
Sagi. Our results were then compared with their results. The
error was tallied and used to drive a second custom gradi-
ent descent search algorithm whose goal it was to minimize
the error between our results and theirs by adjusting kernel
parameters. As can be seen in Fig. 10, error was reduced
substantially and fit — Polat and Sagi’s experimental out-
put for subject AM almost perfectly with a maximum error
at less than 2 standard errors off of subject AM’s results (as
estimated for this experimental paradigm in (Polat and Sagi
(1993b) p. 76 and Polat and Sagi (1993a) p. 995). These re-
sults fare particularly well for our model because not only
do they fit the experimental result of Polat and Sagi, but they
have the same eccentric nature of reducing enhancement for
Gabors that are particularly close.

To illustrate why we observed the result of decreased
enhancement at very close distance between Gabors, kernel
slices from CINNIC were extracted and interacted with tar-
gets of different sizes to measure the enhancement when two
targets are moved closer or further away. What we discov-
ered is that with larger targets of approximate size, 4 λ, when
compared with the 64×64 scale kernel, had the ability to
contact neurons that were in inhibitory regions as well as the
excitatory regions. This stimulus is about the same size as
the Gabors used in our study that were about 3.5 λ in size.
This occurred as the elements moved closer to each other.
Figure 11 shows that as target objects get larger, they begin
to have far stronger inhibitory ability at close distances. Thus,
for enhancement, given a wedge-shaped excitation range,
there is an optimal distance for enhancement between two
elements, with that distance being closer for smaller Gabors.
Also note that enhancement begins to fall off between 2.4 λ
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Fig. 10 The algorithm was optimized against observer AM. The pre-optimized output has a similar shape, but approaches the performance results
from observer AM following optimization of CINNIC using hill climbing. The decision process from the program yields results that are within
2 standard errors (0.05) at its greatest difference found at a separation of 2 λ

and 1.6 λ. This is where you would expect it to fall given
the current reviewed psychophysical data and the outcome
of CINNIC.

3.2 Nonlocal element enhancement

Further testing of CINNIC was done using a special program
called Make Snake provided and created by Braun (1999).
This was used to generate test images in which a salient
closed contour is embedded among noise elements. Using
these stimuli, we tested under which conditions our algo-
rithm would detect the contour elements as being the most
salient image elements.

Make Snake creates images like the one presented in
Fig. 1. The output is several Gabor patches aligned with ran-
domized phase into a circular contour. The circle itself is care-
fully morphed by the program using energy to flex the joints
of an “N-gon” to create a variety of circular potato-like con-
tour shapes. The circles made up of foreground elements are
controlled for the number of elements as well as the spacing in
λ sinusoidal wavelengths. The elements can also be specified
in terms of size and wave period. Background noise Gabors
are added randomly and are of the same size as foreground
elements but may be at different separation distances. They
are placed in such a way that they are moved like particles
in liquid to a minimum spacing specified by the user. Gabors
are added and floated until minimum spacing requirements
are satisfied. The end result can also create accidental smaller
contours among the noise background elements.

Test images were created 1024×1024 pixels in size and
corresponded to a simulated total visual angle of 7.37×7.37
degrees. Test images were created using two different Ga-
bor sizes, a small Gabor (70 pixels wide with a 20 pixel Ga-
bor wave period) and a large Gabor (120 pixels wide with a

30 pixel wave period). The background elements were kept
at a constant minimum spacing (48 pixels for the smaller Ga-
bors and 72 pixels for the larger Gabors). Spacing for larger
foreground Gabors (120 pixel size) was varied between 2 λ
and 3.5 λ in steps of 0.1666 λ. This was constrained since
values above 3.5 λ made the contour circle larger than the
image frame itself. The smaller Gabors (70 pixel size) had
more leeway and could be varied from 1.5 λ to 6 λ in steps of
0.5 λ. For both Gabor sizes, the minimum spacing is set the
way it is because below this, the foreground elements begin
to overlap. It should be noted that the ratio of foreground
separation to the minimum background separation was the
same for both large and small Gabor patch conditions given
the same λ. That is, the background elements had the same
constant λ separation for all images. The smaller Gabors in
these tests were the same size in pixels as the Gabors used
in the experiment in 3.1. This size corresponded to a visual
size of 0.5◦.

For each condition, Gabor size and foreground spacing,
100 images were created. An output mask was also created
representing where foreground elements were positioned.
This was used for later statistical analysis. In all, 2,000 im-
ages were created and tested.

Statistical analysis was done by taking the output saliency
map from CINNIC, which always ran with identical model
parameter settings for all images, and comparing it to the
mask; this was done by looking for the top most salient points
in the combined saliency image map M. When a salient point
was found, the local region was concealed by a disk to pre-
vent the same element area from being counted twice. Salient
points were marked as first, second, third and so on depend-
ing on its value in the salience map. That is, the most salient
point was ranked first, and the second most salient point was
ranked second and so on. Analysis was done by finding the
most salient point in an image, which was also found within
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Fig. 11 As a collinear element draws closer, its receptive field begins to overlap another element’s region of surround inhibition (red). Here
the stimulus element sizes may be compared with the kernel at the 64×64 pixel scale, which are 2.396 λ (3 pixels), 4 λ (5 pixels) and 5.597 λ
(7 pixels). The separations for elements shown are at 2.4 λ, 1.6 λ and 0.8 λ. Here we interacted two single elements with a kernel. As elements
get larger and closer, it can be seen that enhancement dips. Careful analysis shows that this is due to overlap of elements into inhibition zones, in
the surround, as they move closer. Thus, no special kernel, or neural structure is necessary to create inverse enhancement at very close distances
between two elements. This explains the dip in enhancement at close distances observed in CINNIC and by Polat and Sagi

the foreground element mask. The rank of the most salient
point, also within the mask, was the rank given to the image.
For instance, if the most salient point CINNIC found that also
corresponded to a real contour element as indicated by the
mask was the second most salient point, that image was given
a rank of second. The number of images of each rank was
summed to find out, for instance, how many images had their
most salient point also lie within the mask (ranked as 1st).
Figure 12 illustrates how images looked and the subsequent
saliency map looked after processing as compared with an
example of the masks used to rank the contour images.

As can be seen in Fig. 13, for the larger Gabors of size
120, the top five most salient points fall on a contour in a
minimum of 95 of 100 images for all conditions. For half the
conditions, all 100 images have a top five salient point fall-
ing on the contour. Further, we analyzed the probability of
obtaining these results at random. This was done by counting
the number of pixels in the mask and the number of pixels not
in the mask. This determined the probability at random of a
salient point falling on the mask. Given 100 images and five
samples per image we could then use a Bernoulli binomial
probability distribution and ascertain the probability of our
results. This was done using Eq. 16 where from Hayes (1994,
p 139), in sampling from a stationary Bernoulli process, with
the probability of a success equal to p, the probability of
achieving exactly r successes in N independent trials is:

p(rsuccesses;N, p) =
(

N
r

)
prqN−r (16)

From Table 1 we see that the p of obtaining these results at
random for larger Gabors is at maximum 3.1 × 10−05. The

results for smaller Gabors of size 70 is not as potent. The top
five salient points fall on a contour element between 75% and
80% of the time. However, the probability of obtaining these
results is still very small and is at a maximum of p 1.3×10−05

for conditions where foreground element separation ranges
between 1.5 λ to 5.5 λ. Only in the condition at a separa-
tion of 6 λ do the results come out as non-significant at a p
of 0.078. This is understandable since at larger separations
of foreground elements, detectability of contours seems to
become less tangible as can be seen in Fig. 14.

A question raised by our results is that of why there seems
to be an optimal separation distance in the data while an opti-
mal distance is not explicitly defined in the neural connection
weights. This is due to two factors. The first as explained in
our first experiment is that as elements get too close, they
tend to inhibit each other as the elements overlap with inhib-
itory regions. The second seems to be that group suppression
begins to over activate and has a greater likelihood of treating
real foreground contour Gabors as noise background Gabors.
That is, at closer distances, the gain for a foreground Gabor
may be high enough to trip its own suppression. This we
believe creates the slight dip in the Gabor size 70 results.
Additionally, suppression from over facilitation of local Ga-
bor elements should be expected since it has been found to
exist by neurophysical experiments (Polat et al. 1998). The fi-
nal tapering off on the size 70 Gabor results seems to come as
the Gabor separation becomes too large for the kernel in the
64×64 pixel scale sub-corresponding group to connect them.
Thus, at 5.14 λ, the first kernel can no longer bridge between
two Gabor elements and its stimulus ends all together in the
final saliency map (Fig. 15).
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Fig. 12 Input images created by Make Snake are run through CINNIC. The output saliency map is processed to find the five most salient points.
These five points are compared with a mask that represents the position of foreground contour elements. This allows the ground truth for such
images to be determined with greater ability since foreground elements are controlled

It should also be noted that using this same display Braun
(1999) noticed that one of the two subjects showed slightly
improved threshold when the ratio of foreground element
distance λ to background distance λ was increased from 1 to
1.25. The ratio 1.25 corresponds to 3 λ to 4 λ of foreground
separation in our results, which is slightly less than the peak
at 4.5 λ in the data presented in Table 1. That is, our results
peak near a ratio of 1.25. As such it is not a perfect fit, but it
does display an increase of enhancement at about the same
ratio and drops off near a ratio of 1.6, which is between 3.8 λ
and 5.1 λ. This corresponds with the drop off in threshold
of human subjects, which occurs at a ratio of about 1.6. As
such, enhancement of contours by CINNIC is within a similar
range for drop off in threshold observed in human subjects.

3.3 Sensitivity to non-contour elements

3.3.1 Sensitivity to junctions

In addition to selectivity for contour elements we have found
that CINNIC is sensitive for junctions and conditionally for
end-stops which has been described in the visual cortex
(Gilbert 1994). This is important since junctions seem to hold
important visual information, especially for reconstruction
of geometric interpretation of objects (Rubin 2001; Bieder-
man et al. 1999). For instance, following a Geon theoretical
construct for object identification, simple lines without junc-
tions may lack certain necessary information since it may
be harder to determine where line segments connect to each

other. However, junctions hold more information than sin-
gle lines since they contain the line projections as well as
the determined junctions. Thus, a junction is a line plus its
intersection and thus holds more information.

It is also interesting to note this sensitivity to junctions
since it creates a possibility that the mechanisms described in
this paper are generic enough to be applied to not only contour
finding, but junction finding as well. That is, it is interesting to
think that only mild augmentation of a corresponding group
can change it from a contour detector to a junction detector
or that one corresponding group may detect both junctions
and contours at the same time. From a functionally simplistic
standpoint this is an attractive idea. Especially since the most
interesting junctions are probably found at the end of longer
contours rather than shorter contours, such a synergy may
also prove advantageous. For instance, when not wanting to
walk into a desk, the corners and the center of the contour
edges are very important to notice.

CINNIC was not designed explicitly to filter for junc-
tions and end-stops. However, analysis of processed images
seemed to reveal this ability as can be seen in Fig. 16. For
plus and T-junctions it is easy to show that CINNIC should be
sensitive to these type of image features. This is because CIN-
NIC was designed without orthogonal suppression. Thus, two
orthogonal lines will not cancel out. Additionally, since two
orthogonal lines are processed in two separate layers in the
corresponding group which are summed, the junction of two
line segments are additive. This can be seen in Eq. 8. Thus,
if each pixel element in two intersecting lines is equal to
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Fig. 13 The results of from processing 2,000 images from Make Snake by CINNIC are shown. The sum of all images where the most salient
point was on a foreground contour is shown in dark gray for each of the λ separation conditions. In the experiment all images where the second
most salient point was on a foreground element but the first was not are labeled second and are in a lighter shade of gray. In each condition, the
general saliency result can be seen by summing the number of images where a foreground element is among the five most salient points found. At
separations between 2.4 λ and 3.2 λ foreground and background element separation is about the same. At 5.14 λ, elements fall beyond the reach
of enhancement defined by the finest resolution kernel. Thus, we expect to begin to see a drop off here. There is a slight pick up in enhancement
between 3.2 λ and 5.14 λ perhaps due to optimal separation where elements do not overlap each other’s inhibition regions.

Fig. 14 The declining performance of CINNIC at increasing λ separation is easy to understand by inspecting the contour images at 1.5 λ, 3.5 λ
and 6.0 λ of foreground separation. Casual observation shows that saliency decreases with larger separation of contour elements. At 6.0 λ contour
elements are almost invisible

one, the saliency map at the point of intersection would be
equal to two. This can also be seen for T-junctions. Again,
the enhancement of the junction should be 1.5 times that of
elements on either line segment. This is because a half line
segment that joins a full line segment should enhance less
than a full line segment. Thus a T-junction would intuitively
have 1.5 times the excitation of a single line rather than 2
times for a plus junction.

Another interesting facet of these results is that they sug-
gest a possible explanation for the reduced enhancement
when the gestalt continuity of a line is violated. For instance
studies have shown that when a line is presented with two
flanking lines its enhancement is greater than if one of the
flankers is in the shape of a T (Kapadia et al. 1995). Such
a result might be predicted by our model since the flanking
T would then be promoted to have a higher saliency value
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Fig. 15 The size of kernels at each of the three scales is shown compared with Make Snake image. The line on the Make Snake image shows the
width of each kernel for close reference against an image with foreground separation of 4.5 λ, which is the same separation as the peak observed
in Fig. 13. As can be seen, when the image is reduced to 16×16, the kernel stretches across much of the image, but with little specificity of effect
on the image due to the scale reduction

Table 1 As λ separation increases between foreground elements, saliency decreases

Gabor size 70, period 20 Gabor size 120, period 30
λ separation Salient images p λ separation Salient images p

1.5 99 2.3×10−99 2 100 2.5×10−32

2 89 8.6×10−48 2.16 99 4.1×10−26

2.5 71 1.0×10−19 2.333 99 4.2×10−22

3 72 4.0×10−15 2.5 100 4.2×10−21

3.5 71 1.3×10−11 2.66 100 8.3×10−19

4 76 6.8×10−13 2.83 100 1.0×10−16

4.5 82 2.8×10−16 3 99 6.3×10−13

5 78 2.8×10−12 3.16 100 6.6×10−13

5.5 67 1.3×10−05 3.33 98 6.6×10−09

6 49 0.078 3.5 95 3.1×10−05

For the smaller Gabor sized image, around 75% of all images with a foreground separation of 1.5 to 5λ have a foreground element as one of the
top five most salient. The probability of obtaining such a result at random is less than .005 percent. For images with larger Gabor elements, almost
all the images contain a foreground element that is highly salient. Again the probability is very low suggesting that the null hypothesis should be
rejected
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Fig. 16 The five images shown above demonstrate CINNIC’s sensitivity to junctions in the elemental shapes seen. Here, the most salient point
is always on a junction (red circle) and there is always another point of very high saliency (in the top 5) on a junction. When not falling on a
junction, the most salient point is near the center between two junctions which is quite possibly the second most important part to find salient.
Some of the anomalies observed such as a saliency point in blank space are due to the algorithm blanking out the saliency map as it selects points
to prevent it from picking the same point more than once

than the central stimulus element. As such, continuity is not
broken by suppression from the T so much as it is broken by
having a lower saliency than the T. It should be noted addi-
tionally that we do not predict enhancement of a central line
element with two orthogonally oriented elements if they are
divided by a large enough gap. That is, it is important to note
that enhancement of junctions here likely relies on a joint
overlap of orthogonal lines.

While the evidence for plus and T-junctions is intuitive,
it is not so much for L junctions. Thus, we tested L junc-
tions against the CINNIC kernel. In this case we assumed
perfect colinearity on the kernel. This allows us to test ele-
ments against only one kernel slice, which keeps analysis
much simpler. Figure 17 shows the results of passing two
types of L joints in front of the CINNIC kernel. Each L joint
can be thought of as infinitely long. That is, the end-stops on
the L junctions will never pass in front of the kernel. Two
types of L junction line segments are used. One is a two pixel
wide line while the other is one pixel wide. To determine the
enhancement of a junction, we compare the enhancement of
the pixel that lies on the junction compared with other pixels
on the line. That is, we move the L over the kernel. Then
each pixel will report some enhancement level. If CINNIC
could have sensitivity to junctions, we would expect that the
junction pixel would be more enhanced than other pixels on
the line not on the junction.

For the one pixel width (0.12–0.46◦ of visual field depend-
ing on the image scale), it can be seen that the kernel will
enhance the junction pixel more strongly than neighboring
pixels along the line as far away as 5 pixels (0.575◦–2.38◦).
When the kernel is moved to a point, 6 pixels (0.69–2.78◦)
in distance from the junction pixel, enhancement is the same
as for the junction pixel. This can be considered intuitively
this way: a line segment that is half way through the kernel
will enhance one half as much as a full line passing all the
way through the kernel. However, at the junction, two halves
sum to the same enhancement as a full line. Thus, by the
6th pixel in, enhancement is the same since the junction has
moved outside of the kernels field and is now essentially a
simple bar. So for any L junction, enhancement will be higher
at the junction pixel than any other part in the line segment

for a radius of 5 pixels. Very similar results are found with L
junctions of width 2 (0.23◦ – 0.93◦). However, the maximal
enhancement is found at the inner elbow junction and not the
outer junction. That is, an L junction of two pixels in width
has two pixel junctions, one on the inside and the other on the
outside of the joint. The inner junction seems to have more
enhancement for a radius of 5 pixels.

Since the enhancement of the junction is isolated, this
means that even if it has a similar enhancement of a line seg-
ment six pixels in, it may be enhanced more since it will not
push the local region activity higher and increase the group
suppression. Thus, enhanced lines are more likely to create
levels of excitement that will trip group suppression than
junctions, which are more isolated in their activity. From this
it might be hypothesized that group suppression may aid in
the discovery of L junctions in CINNIC.

3.3.2 Conditional sensitivity to end-stops

Using the same procedure for analysis of L junctions, we
checked the sensitivity of CINNIC to end-stops. We found
that there was some elevated sensitivity to end-stops, but only
under certain conditions. Three conditions were tested. The
first involved the outline of bars. Enhancement was tested
for the junction area on the outline of a bar versus an edge in
the middle of the bar. The results in Fig. 17 show that when
the bar is wide enough in width, sensitivity is increased for
the end-stop junction. Additionally, this affect is increased
as group suppression effects are added. Thus, the junctions
on the end of bars are enhanced over elements in the middle
of the bar by even greater amounts as group suppression is
added. Further, the bar of width 4 (0.46◦–1.86◦) becomes
stronger than a middle segment when group suppression
reaches 50% above normal.

The second and third test involved passing a bar of width
2, in front of the Kernel. As can be seen the second bar
was sharply pointed at its tip Fig. 17. The kernel shows no
enhancement for the end of the plain bar even if group sup-
pression is increased to 250%. However, for the pointed bar,
enhancement is seen over the other 4 segments tested once
group suppression reaches 150% above normal.
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Fig. 17 These graphs show enhancement of pixels from an image when convolved with an orthogonal slice from the CINNIC kernel. As can be
seen, in the top left graph, the corners on L junctions, both 1 and 2 pixels wide, are enhanced more than their neighbor pixels and other pixels
along the L out to a distance of 4.8 λ. Additionally, in the top right, we can see that the corners on bars are enhanced over pixels outside of their
receptive field (>4.8 λ) along the same bar as the two parallel edges are separated and additionally as group suppression is added. The bottom
row shows that end-stops with a point are not enhanced at base group suppression, but as suppression is added, the end point overtakes its three
closest neighbors (0.8 λ, 1.6 λ, 2.4 λ) when group suppression reaches 200%. This effect is not seen for the non-pointed bar. Thus, the current
version of CINNIC is only conditionally sensitive to end-stops. Note, each pixel corresponds to a width of 0.8 λ with the 64×64 scale kernel

Thus it can be seen that CINNIC has sensitivity for some
types of end-stops. This agrees well with research on V1 neu-
rons which shows that most neurons there have some sensi-
tivity to end-stops (Jones et al. 2001; Sceniak et al. 2001;
Pack et al. 2003). Additionally it follows a very similar pat-
tern of behavior seen in end-stop neurons in the cat visual
cortex. In this case, end-stop sensitive neurons were found
to detect end-stops after an initial saturation period. Thus,
the neurons for a brief interval (<30 ms) were sensitive to
non-end-stopped elements, but built up to end-stop sensitiv-
ity (Pack et al. 2003). Our model agrees with these obser-
vations since build up of group suppression increases end-
stop detection and would also create a delay for such detec-
tion as suppression builds. This is also similar to the model
by Rao and Ballard (1999), which used a predictive feed-
back suppression mechanism to facilitate end-stop detection.

However, the primary difference is that suppression in CIN-
NIC comes from activity in the corresponding group and not
from a higher level process.

3.4 Real world image testing

Real world testing was conducted by inspecting the output of
CINNIC on 132 real world images. We did this by inspecting
each image and cataloging the results by hand. This was done
due to the fact that classifying contours in an image a priori
is extremely difficult due to the subjective nature of classi-
fying image elements in a natural image. However, this has
a new subjective drawback in that the efficacy is based on a
post hoc analysis, which may carry a different expectation
bias. In either case, the results are difficult to not bias. Either
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Table 2 Post Hoc analysis of CINNIC for its sensitivity to certain kinds
of features again suggests that it is not only sensitive to contours, but
junctions as well. This can be seen as the most salient point in 42% of
random real world images analyzed lies on a contour junction. Prior
probability is not supplied since it is not known by us what the real
incidence of contour junctions is in real world images. Thus, the true
posterior significance is unknown

Type of feature Number Likelihood

Contours, no junctions 46 0.348
Contours, with junctions 56 0.424
Contours, end-stops 13 0.098
Contours, short 10 0.075
None 7 0.053
Total 132 1.0

the experimenter subjectively leaves out or includes contours
before the analysis is done, or the experimenter sees results in
the post analysis due to a personal bias. The latter approach
provides room for analytical reanalysis and careful evalua-
tion which we believe to be a strength in a situation where
there seems to be a bias no matter which method is used. It is
hoped that the reader will consider the previously presented
material as showing some of the more controlled evidence of
the model’s efficacy and take this as evidence of real world
applicability.

Each image was analyzed for salient content of contours,
junctions, end-stops and short contours, which often include,
for example, eyes or mouths. For each image it was noted
what the nature of the most salient location was. So for in-
stance, if the most salient contour location was on a junction,
then that image was counted as having its most salient con-
tour on a junction. Each image was thus counted in one of five
exclusive groups (a) contours without a junction (b) junctions
between two contours (c) end-stopped points from a contour
(d) short contours that tended to be eyes and mouths or (e)
none of the above, which tended to mean it was a poor re-
sult. Table 2 shows the results. As can be seen, these results
agreed with the analysis provided from junctions. In essence,
it was observed that most of the top salient locations, as deter-
mined by CINNIC, seem to lie on a junction. Additionally,
the conditional end-stop sensitivity can be seen in about 10%
of all real world images. Thus, CINNIC has a strong sensitiv-
ity to contours at junction points and additionally has some
sensitivity to end-stops, which is to be expected since most
neurons in V1 have some end-stop sensitivity.

Since there seems not to be any studies which suggest
the real prior probability of junctions in natural images, we
are forced to read these results from a worst case hypothet-
ical framework. Thus, the significance of these results may
be interpreted as follows, since each junction in an image
requires at least one line segment edge pixel, there can never
be more junction pixels than contour non-junction pixels.
Thus, in a worst-case scenario, at most 50% of all detected
contours would be on junctions if the likelihood of falling on
a junction versus a non-junction was totally random. How-
ever from our image analysis, contour junctions are more
likely to be detected as the most salient object in an image

than contours not on a junction. Thus, this analysis again sug-
gests that CINNIC is indeed more sensitive to junctions than
contour segments without junctions.

Additionally, it can be seen from Fig. 181 that in many
images CINNIC finds facial features salient. In the 27 im-
ages where human or animal facial features are visible, CIN-
NIC finds 14 to have salient facial features in the top five
most salient points. Here we define facial features as noses,
mouths, eyes or ears. That means that based on contour anal-
ysis alone, half of all faces have a highly salient feature. This
suggests that CINNIC may be able to play a role in a face
finding algorithm. It also suggests that contour integration
mechanisms may be involved in a dual role that includes not
only landscape contour finding but face finding as well. Here
CINNIC seems sensitive to facial features such as short con-
tours since they are isolated from other similar parallel lines
on smooth faces. Thus, even though they are short, they are
not suppressed by anything else.

The reason why we believe that face feature finding is
interesting in that it suggests that CINNIC may approximate
more generic mechanisms in visual cortex, and as such may
be a closer fit to what processes actually occur in the brain.
For instance, it is suggested that the interaction of simple
horizontal and vertical lines derived from important facial
objects such as eyes and noses play a part in facial catego-
rization (Peters et al. 2003). If this is correct then a neural
device that finds such features and can describe them in terms
of lines may be necessary. Thus, it may be possible to aug-
ment the simple butterfly kernel connection with some of the
other mechanisms described here to find a variety of different
useful features.

4 Discussion

The CINNIC model performs contour integration and seems
to satisfy the criteria of its design. First it uses simple bio-
logically plausible mechanisms for its actions. Second, it
performs its action with enough speed that a real time imple-
mentation is within our grasp. Third, it helps to illuminate
what processes are at work in human contour integration
and fourth, current examination of CINNIC show its perfor-
mance to be within parameters of human contour integration
as shown from psychophysical data.

The model is biologically plausible because all neural
connections within the network are of types that are known
to exist in the human brain. For instance, no neuron should
connect to any neuron that is outside its reach. This means
that no global mechanisms were introduced to control the
gain of the network. Indeed, each neuron is independent from
any other neuron for which it is not connected from its ker-
nel interactions or through its group suppression. Our model
then uses dopamine-like priming to connect neurons that do
not directly connect. While this may not have been directly
observed in V1, the actions of dopamine priming as well as

1All results for real world images may be viewed at
http://www.cinnic.org
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Fig. 18 The five most salient points are shown in 12 real world images processed by CINNIC (red is most salient, next is orange etc.). Notice the
prevalence of representation by facial features, junctions and end-stops

other types of priming are well known to exist in the human
brain (Schultz 2002). Other models have explained linking
using neural synchronization. While this has been observed
in human neural networks, its observation and importance in
the neocortex has been open for debate.

Further, other computational models have shown dopa-
mine modulation to be effective at linking sequences (Suri
et al. 2001). Since visual contours are spatial sequences, this
would show yet another way in which dopamine-like priming
would be feasible in the long-range connection of contours.
More evidence for the dopamine-priming hypothesis can be
seen in the degradation of contour integration in patients with
schizophrenia (Silverstein et al. 2000). This lends support to
a dopamine hypothesis since dopamine, is one of the neu-
rotransmitters suspected of playing a major role in schizo-
phrenia (Kapur and Mamo 2003), with such an effect seen in
striatal dopamine neurons as well (Laruelle et al. 2003).

The group suppression we have used is also plausible
because GABAergic interneurons of many types are found

throughout the brain. Interneurons are also known to connect
to many neurons at the same time, sending inhibitory synaptic
currents to a possibly large population of pyramidal dopa-
mine neurons (Durstewitz et al. 2000; Gao and Goldman-
Rakic 2003). The firing of these neurons has also been shown
to have dramatic effects on the neurons they connect since
they can exhibit spikes at very high rates (100 Hz) (Bracci
et al. 2003) and can have low firing thresholds as well as a
need for few inputs (Krimer and Goldman-Rakic 2001).Also,
the group suppression in our model uses an axonal reach that
is about the same size as the reach for pyramidal neurons
created by our kernel. Thus, it fits well within spatial con-
straints.

It should also be noted that another feature which makes
out model unique is that it not only works in saliency for
contours, but also for junctions. As mentioned this was an
unexpected result. However, it is very interesting for sev-
eral reasons. The first is that it suggests that V1 and V2
neurons can have dual or multiple roles and that the fea-
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Fig. 19 Temporal grouping can be explained by fast-plasticity mechanisms. If alternation is strongly correlated then plastic connections are
strong and less ambigious, also by the second alternation, all connections are primed unlike uncorrelated alternation where only some connections
are primed. As such, correlated temporal alternation would facilitate neurons more strongly than a less correlated temporal structure if it used
fast-plasticity based priming

ture detection dimensionality within various processing units
in visual cortex may be higher than is generally considered
the case. Thus, following the logic behind the utilization of
Gabors in vision, neural structures may exist, which have
a broad utility. The structure for CINNIC may shed light
on a structure that allows neurons to become sensitive to
many different visual features but yet not be exotic from
each other. That is, contours, end-stops and junctions may
be detected by the same mechanisms, but the detectors are
different due to subtle variations such that a base neuron
is taken in infancy and morphed subtly to its new function
through learning. However, a morphed neurons structure is
still very similar to its original structure and is similar to
other feature detectors that operate on seemingly unrelated
features. Such a theory would be in agreement with observa-
tions that natural images can be described with a relatively
small number of Gabor derived kernels very efficiently (Ol-
shausen and Field 1996). As such one might expect the flora
of feature detectors to be somewhat constrained at this level of
cortex.

Additionally, the analysis here lends support to the no-
tion of the importance of the temporal domain in perceptual
dimensionality. That is, as has been suggested, (Prodöhl et al.
2003) perception may not just be a matter of the 3D struc-
ture of neurons, but may also hinge on the pattern of the
working of neurons. As such, an end-stop detector is only
an end-stop detector after a certain interval of suppression
from interneurons. Prior to that its role may be different and
it may be a simple contour detector. Since most neurons
in V1 show end-stop sensitivity and end stopped neurons
take extra time to register those end-stops, it seems feasi-
ble that a neuron may detect different features at different
times.

4.1 Extending Dopamine to temporal contours via TD
(dimensions)

In addition to static contours, dynamic contours may also
be enhanced by mechanisms of fast plasticity. For example,
covert object tracking (in the absence of eye movements)
could be enhanced by similar mechanisms as have been pro-
posed here. This can be hypothesized since any neuron that
receives an input in our model will attempt to prime its neigh-
bors. When an object moves to the next neuron, it maintains
a saliency enhancement (imagine the phosphors on an old
TV still glowing in a trail as a dot moves across the screen).
Additionally, neurons along the trajectory of the object will
receive the greatest enhancement, which will maintain the
saliency along that path. Because of Dopamine’s involve-
ment in fast temporal difference correlation (Suri et al. 2001;
Schultz 2002) it may be a natural candidate for such actions.
Thus, the key to understanding temporal contours and smooth
pursuit may merely lie with the basic contour integration
mechanisms.

Additionally, it is easy to imagine that the dopamine-like
priming mechanism we have hypothesized here not only en-
hances contours, but may play an integral part in training
the system in a similar manner as suggested in Rao and Bal-
lard (1999). For instance, it has been proposed that observed
movement of objects trains neurons to recognize contours
(Prodöhl et al. 2003). As such, following our hypothesis, a
dopamine-like priming may not only enhance contours, but
may train contour integrating neurons. Since dopamine is
known to play a role in reinforcement learning (Suri et al.
2001; Schultz 2002) it is an excellent candidate for such a
mechanism, and since it is already in place for the purpose
of learning, an occam’s razor reasoning would state that if
it can also fulfill the role of nonlocal interaction for contour
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integration, it is the most reasonable candidate to do so since
that would be the simplest explanation.

4.2 Explaining visual neural synchronization with fast
plasticity

It is important to note that temporal synchronization in vision
does not necessitate correlated firing as a cause. For instance,
Lee and Blake (2001) observed that alternating motion of
Gabor patches allowed greater facilitation of contours if the
Gabor motion alternates in a correlated manner. That is, they
displayed Gabor contour patterns much like the Make Snake
patterns. However, the Gabors were given visual motion by
changing the wave phase in a direction that created an orthog-
onal motion to the Gabor patches. The direction of the motion
was randomized, but switching the direction of Gabor ele-
ments could be correlated. As such, in the highly correlated
condition direction was shifted simultaneously while in the
low correlation condition switching was somewhat random.
Facilitation was observed when switching was correlated.

We believe this can be explained by fast plasticity as fol-
lows. Due to collinear relation, neurons with different motion
sensitivities will prime. For instance, two collinear Gabor
patches, one moving in the direction of 0◦ and one moving in
the direction of 180◦ will prime neurons in a hebbian fash-
ion. When the Gabors switch, two completely different sets
of motion sensitive neurons will prime. Through this alterna-
tion, it will create two sets of mutually exclusive linked sets.
By removing correlation it will begin to create cross-linked
pairs of neurons and increase the number of primed synapses
which will increase noise in the network. As such the more
synchronous the alternation of motion is, the more crisp the
plastic connections will be (Fig. 19).

4.3 Contours + Junctions, opening a new dimension on
visual cortex

The research thus far agrees with work to date that suggests
that V1 neurons are extremely powerful for extracting data
from a scene (Olshausen and Field 1996). Additionally, it
also helps to validate hypotheses that suggest neurons in V1
have a high dimensionality for visual processing. That is, a
neural group may not be responsible for just sensitivity to one
feature, but may have sensitivity to multiple features. Addi-
tionally, interaction between partially sensitive neurons may
create complete sensitivity. So for instance, if two or more
groups have some sensitivity to end-stops then, the combi-
nation of their sensitivities may yield full sensitivity to end-
stops.

It should also be noted that at least in terms of junctions,
one would expect that the same mechanism would be respon-
sible for finding L, T and + shaped junctions. This is due to
recent research that suggests that searches for L versus T
versus + junctions is inefficient (Wolfe and DiMase 2003).
That is, because we are unable to find different types of junc-
tions faster among noise of different junction types. From

a saliency stand point, one would expect that V1 or other
saliency centers do not differentiate them and thus, would
be explained by the brain using the same mechanism to find
junctions irrespective of the type.

4.4 Model limitations

Like most computation models of biological systems CIN-
NIC has its limitations. The first is that the model does not
include effects on contour integration from color (Mullen
et al. 2000). One reason for not accounting for color is that
it would most likely add another dimension to the pseudo-
convolution computation. That is, in addition to orientation
and position as dimensions, color would become a third set
making the hyper-kernel six dimensional with the addition
of blue-yellow and red-green channels. The model also does
not account for enhancement of parallel elements. This, as
mentioned previously, is when Gabor elements are aligned
like the rungs on a ladder. The primary question on paral-
lel enhancement is where it occurs. For instance, is there
a second set of contour integrators for parallel elements or
do parallel elements enhance in the exact same correspond-
ing group as collinear elements? Such questions still need to
be answered. If they do enhance in the same corresponding
group, then the shape of neural receptive fields in a contour
integration model may need to be rethought since the clas-
sic butterfly shape used in most contour integrators cannot
account for such enhancements.

An additional limitation is that inhibition and excitation
are treated with temporally similar dynamics at the kernel
level. This may be considered a weakness of the model. How-
ever, it should be remembered that inhibition does have a
build up pattern via the group suppression mechanism. As
such, temporal differences between excitation and inhibition
mechanisms are partially addressed. Indeed, as mentioned,
the key to detection of L junctions and end-stops by contour
integrators may be the temporal difference between excita-
tion and inhibition.

5 Conclusion

We believe we have created a reasonable model and simula-
tion of contour integration in visual cortex for saliency.As the
results have shown, we have fit the results of human observers
to within two standard errors for a single Gabor element with
two flankers. We have also achieved reasonable results for
images with multiple Gabor elements, which are statistically
significant. Taken with our results from real world images we
suggest that this makes our model a reasonable approxima-
tion of human contour integration. Additionally, we believe
that our model demonstrates how the neural mechanisms for
contour integration may be extended into other types of fea-
ture processing.
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Appendix

Parameter values

Max range for collinear 0 ◦–31 ◦
separation for excitation

P e
2 (kernel polynomial parameter) −0.75

P e
3 (kernel polynomial parameter) 0.095

W (kernel inhibition multiplier) 0.65
P s

2 (kernel polynomial parameter) 0.16
P s

3 (kernel polynomial parameter) −0.1
A(pass through multiplier) 30.0
L(constant leak) 94.0
F (fast plasticity gain) 1.0001
Max group size 768 neurons

(8×8×12)
T (max group suppression threshold) 50,000
v(group suppression gain) 0.0003
wu64×64 scale weight 0.58
wu32×32 scale weight 0.85
wu16×16 scale weight 0.35
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