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ABSTRACT 

 
Utilizing off the shelf low cost parts, we have constructed a robot that is small, light, powerful and relatively 
inexpensive (< $3900). The system is constructed around the Beowulf concept of linking multiple discrete 
computing units into a single cooperative system. The goal of this project is to demonstrate a new robotics platform 
with sufficient computing resources to run biologically-inspired vision algorithms in real-time. This is accomplished 
by connecting two dual-CPU embedded PC motherboards using fast gigabit Ethernet. The motherboards contain 
integrated Firewire, USB and serial connections to handle camera, servomotor, GPS and other miscellaneous 
inputs/outputs. Computing systems are mounted on a servomechanism-controlled off-the-shelf “Off Road” RC car. 
Using the high performance characteristics of the car, the robot can attain relatively high speeds outdoors. The robot 
is used as a test platform for biologically-inspired as well as traditional robotic algorithms, in outdoor navigation and 
exploration activities. Leader following using multi blob tracking and segmentation, and navigation using statistical 
information and decision inference from image spectral information are discussed. The design of the robot is open-
source and is constructed in a manner that enhances ease of replication. This is done to facilitate construction and 
development of mobile robots at research institutions where large financial resources may not be readily available as 
well as to put robots into the hands of hobbyists and help lead to the next stage in the evolution of robotics, a home 
hobby robot with potential real world applications. 
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1. INTRODUCTION 
  
The evolution of robotics seems in many ways to mirror the evolution of the computer. Today robots can be found in 
many businesses and practically every major research institution. However, the promise of the common robot 
envisioned by many prognosticators and authors to exist in the homes and lives of the average person has yet to be 
fully realized in the same way the personal computer has come to be as ubiquitous as the refrigerator.  As such we 
believe that the next logical step in the evolution of robotics is to place robots in the hands of the hobbyists. 
Additionally, these robots must be powerful and flexible enough to spur this next step. We have thus designed a 
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powerful, durable yet relatively low cost robot that relies almost exclusively on off the shelf parts. By making the 
design open source, it is our goal to create the next generation of robots for the home hobbyist and for research 
institutions without deep pockets. 
 
It is our belief that by putting a robot in the hands of the hobbyist, more players can be brought into the game. This 
will allow more minds to be applied to the problems that face robotic development and the barriers to full domestic 
utilization. Further, as the hobbyist begins to “play” with robots, industries will have incentive to develop robotic 
devices for home use to meet the market of the home robot enthusiast. This will not only create new markets for 
robotic devices, but will create economy of scale for current robotic devices as well. However, as mentioned in order 
for this to happen robots must be cheap enough for a hobbyist to afford. Additionally, the assembly and usage of the 
robot must be easy enough such that extensive technical training is not necessary.  
 
While the usage of off the shelf parts and an open source design principle makes the assembly of the hardware 
components easier, it is also necessary that software implementation be easy to understand, as well as effective 
enough that the hobbyist can create robotic applications that are useful in the home. This is analogous to computer 
programmers writing simple programs to balance their checkbook in the early days of home computing. While such 
applications may not have been efficient for their time, it created the foundation for idealistic development that 
would lead to the spreadsheet and other useful home applications that came later. As such, we are developing a 
comprehensive open source toolkit based upon biological principles to bring powerful software applications to the 
end user hobbyist to experiment with in the hopes of creating highly useful home and real world applications.     
 

2. ROBOT DESIGN 
 
2.1 Hardware Design  
 
Our robot, which we have named Beobot is the product of the emerging power of open source software as well as 
the entry into the market of consumer grade robotic devices that previously only existed in industrial as well as 
scientific applications. For instance, servomotors are now widely used in remote control (RC) hobby vehicles. Given 
the nature of RC racing, these servos must be cheap, durable and have ample torque for their size. Additionally, the 
motors used to run RC cars have become more powerful allowing for the construction of larger lower cost RC 
vehicles. The Beobot is based upon such a vehicle. We chose the Traxxas E-Maxx RC car because it was one of the 
largest electric RC cars on the market. It is a 4-wheel drive model truck that is able to reach speeds over 35 MPH, 
and is servo controlled. It also includes many benefits such as independent shock mounted suspension, differential 
power control to wheels and a shift on the fly two-speed transmission. In addition to the drive motor, steering is also 
servo controlled. This provides an easy interface to computer control. This is achieved through the low cost Mini-
SSC II servo controller, a device the size of a silver dollar, which allows interface between computer serial RS-232 
interface and servomechanisms of the type used in RC cars. Thus, the task of creating a robot in the E-Maxx is a 
matter of connecting the servomotors to the Mini-SSC to a serial port on a computer. In essence, the minimum 
hardware requirement is only three components (1) E-Maxx RC car (2) Mini-SCC II (3) a computer. Additionally, it 
should be noted that many RC cars including gasoline powered RC cars are also servo controlled. Thus, with some 
creative judgment, the base component vehicle could take on many forms. At this point we should also note the 
limitations of using off the shelf servos; for instance, the Mini-SSC has a resolution of 256 pixels. Thus, it is not 
ideal for certain industrial and scientific applications where high accuracy from servos is needed. 
 
The design of a robot is of course more than taking a computer and dropping it on a drive train. The choice of the 
computer is also important. The server market for computers has created an ideal computer form for our robot called 
PICMG. These are compact motherboards for use in small 1U size rack mountable servers. These motherboards tend 
to include many on board features such as video, firewire and gigabit Ethernet. We chose the Rocky-3742EVFG, 
which is a dual 1 GHz Pentium III based motherboard. The gigabit Ethernet allows us to connect two motherboards 
into a Beowulf style distributed computer. Integrated firewire creates in input for streaming digital video (30 fps) at 
640 x 480 resolution. Integrated USB and serial ports connect to peripherals such as GPS, WiFi Ethernet, Mini-SSC 
and LCD readout panel. Additionally, the motherboard has a built in slot for compact flash. This allows us to install 
mission critical software and boot components onto a flash disk that is more resilient to shock than a standard hard 
drive.  Figure 1 shows the Beobot opened for view with a basic schematic.  



 
Power is provided from Lithium Ion or Nickel Metal Hydride based batteries. The power source for the car is kept 
separate from the computer power source. The computer uses eight 7.2 volt power cells. These send power to one of 
the few custom designed components of the Beobot, which is the computer power supply. This uses the Texas 
Instruments Power Trends chip set to create +/- 12 volt and +/- 5 volt power supply. This powers the computer and 
any standard computer peripheral such as hard drives and USB devices. Power to the robot computer can be 
maintained for one to two hours depending on the type of power cells used. Robot drive power runs about 20 
minutes. This does not present as a problem since the battery cells are small and easy to replace. 
 
By encasing Beobot in a hard plastic shell and utilizing base components made of Lexan, our robot is extremely 
durable and able to withstand high-speed impacts. This is an important aspect of robot design as autonomous 
devices do not always obey our will. While a remote e-stop has been included via a switch from the RC receiver, 
human error is inevitable and it is desirable to scratch and dent our robot rather than disable it. Repeated operator 
error has demonstrated that our robot is more durable then we had originally anticipated. Additionally, none of the 
incidents of error has resulted in any disability to the robot in a temporary or permanent fashion.  
 
Not including the cost of tools and labor, the total cost of the Beobot is around $ 3,800. This includes two dual 
Pentium III mother boards, eight 38 Watt Hour Li Ion batteries, the E-Maxx RC car and all peripherals mentioned.  

Figure 1: This is the schematic and layout for Beobot. The top left box is the completed Beobot robot. The top right box 
shows the linking of two power sources from batteries to primary components such as motherboards and signal outputs 
such as serial and USB to peripheral components. The bottom left is the robot with the top plastic shell opened. The frame 
in the bottom right is with the next layer opened which is the motherboard base plate.  



 
Part Quantity Cost per unit Total Cost 
Rocky 3742 Motherboard 2 500 1000 
512 Mb Memory (PC 133) 2 36 72 
Flashram (256 Mb) 2 47 94 
Unibrain Fire-I Camera 1 100 100 
Notebook Hard Drive (40 GB) 2 107 214 
Traxxas E-Maxx 1 369 369 
1 GHz Pentium III CPU 4 92 368 
SONY NP-F960 7.2 V 38.8 Wh Battery 8 129 1032 
Power Supply (TI Power Trends + Parts) 1 300 100 
Extra Parts, misc 1 200 500 
  TOTAL (USD) 3849 

 
We have also factored in $500 for extra items. Table 1 shows a break down of this. From a cost standpoint, this 
places the Beobot mobile robot in the price range of the average hobbyist as well as smaller research institutions.     
 
2.2 Software Design 
 
In order to obtain the greatest amount of flexibility Beobot is built on the Linux operating system. All code is 
developed and compiled with the open source GNU C++ compiler and libraries. Software interfaces to hardware as 
well as vision processing programs were developed as part of the open source iLab Neuromorphic Vision Toolkit 
(INVenT). Thus, every single software component of the Beobot is open source and freely available. Additionally, 
GNU open source software is generally far easier to port to other platforms than closed source software. Thus, the 
software components may be ported to other operating systems such as BSD or Mac OS X. This allows greater 
flexibility to a second party developer who may prefer a different operating system platform.  
 
Hardware interfacing software to the Mini-SSC and LCD panel are relatively simple and involve no more than 
simple C++ write commands to the serial port. Inputs from video source use the INVenT frame grabber class to get 
video into a program usable format. Additionally, INVenT creates Beowulf interfaces for distributed computation. 
Manipulation and processing of images is handled from the INVenT image processing class.    
 

3. APPLICATIONS 
 
3.1 Leader Following 
 
One reason for the development of Beobot is to test primarily vision based programs. As such we have limited 
Beobot’s other senses for now. This means that a leader following algorithm must be strictly visually based. Since 
Beobot includes four 1-GHz CPUs this allows us more levity to create complex vision algorithms. Here, leader 
following is done by a more traditional blob tracking algorithm but it can also be done by biologically based 
saliency.  
 
To leader follow using blob tracking we have created our own smart blob tracker. It integrates the ability to 
adaptively track in HSV color with multi blob tracking and segmentation. This allows the program to analyze 
multiple blobs and pick which ones it believes are the best candidates for tracking. Adaptive HSV color thresholding 
allows the tracker to adjust to variable lighting conditions and changes in intensity. The adaptive nature is also 

Table 1: This is the breakdown of costs of building the Beobot in US Dollars. It includes all the major components with 
current prices.  



essential since many consumer video sources have their own light adaptation, which can change the perceived hue 
and saturation of the target on the fly. Figure 2 gives a visual example of the outputs from the tracker. 
The blob finding and segmentation algorithm proceeds in several steps. 
 

(1) Find HSV color candidate pixels 
• Scan the image and do an initial thresholding on pixels based upon some desired HSV threshold. 

(2) Remove singles 
• Remove candidate pixels without at least one 4 connectivity neighbor since it is most likely noise. 

(3) Scan image and Link pixels into blobs  
• Scan the image and link candidate pixels into discrete blobs. Link connected blobs into unified 

blobs. 
(4) Determine blob viability 

• Based upon Mass, dimensions, Ratios and Trajectories with hard constraints or soft statistical 
constraints, remove blobs less likely to be the target. 

 
The first step involves labeling pixels as candidates if their Hue, Saturation and Luminance values are within a 
boundary either set by the operator or maintained by the adaptive HSV thresholder. For the adaptive thresholder, 
HSV bounds are based upon mean values from past frames for the target blob with the threshold limit set by the 
standard deviation. All candidate pixels are marked with a bool value that indicates that they are a candidate. Pixels 
that are not candidates following this step are ignored. Some noise pixels are eliminated by removing singles. That 
is, if a pixel does not have a 4 connectivity neighbor, it is removed from the list of candidates. 
 
To link blobs, maps and tables are used to label a pixels membership in a blob. This increases memory used, but 
decreases CPU overhead. Figure 3 shows an example of this algorithm at work. The end result is several blobs that 

Figure 2: In this example the tracker is keying off of skin color along with the basic size ratios of the human head. Here it 
is quite adept at finding and tracking the human head even in the presence of a large number of distracters. Here is can be 
seen that the tracker is not fooled by the introduction of even the experimenters hand into the scene. This can be observed 
even though, in the candidate pixels window, the hand as a larger correct color target. Since the hand has slightly different 
color characteristics, even upon path crossing, the program still tends to follow the head due to adaptive color thresholding. 



are distinguished as being discrete if they do not touch. The resulting blobs are then processed for fitness. If a blob is 
too large or too small it is eliminated. This can be determined by both pixel count mass and the size of the bounding  
box which encloses it. The blob can also be eliminated if its proportions are incorrect for the target. Using statistical 
methods, a blob can be eliminated if it violates expectations for size, trajectory or position.  
 
The remaining blobs can be treated in a number of different ways. For instance, a blob that is most like the blob in 
the last video frame could be voted as a winner blob. However, we have had success with simply combining the 
remaining blobs into a mother blob and tracking that one. This is less computationally expensive and seems to yield 
good results. The computational epilog for the blob tracker is that it processes and tracks multiple blobs in real time 
(30 fps) using about 25% CPU on an AMD 2000 XP based system. This figure includes CPU overhead from several 
video stream outputs to X Windows.  
 
Beobot uses the tracker to establish the position of the target relative to itself. Steering is adjusted proportionally to 
keep the target collinear with its trajectory. Speed is adjusted based upon an observed homeostasis in blob target 
size. The robot attempts to keep the target size constant by slowing down or speeding up. Since uncertainty is 
constant in such a simple paradigm, beobot must use cautious heuristics in speed adjustment. For instance, assuming 
the target is moving fluidly, size should not change suddenly. If the blob changes suddenly the robot attempts to 
smooth over such events, for instance, with a Kalman filter. This prevents sudden surges of speed, which may be 
hazardous to both operator and robot. 
 
3.2 Visual Robot Navigation Using Image Spectral Information 
 

Figure 3: The algorithm must find blobs without knowing how many there are. It first finds all candidate pixels by applying 
HSV thresholding. All candidates are linked together during the image scan. This is done by labeling each contiguous scan 
line. If two contiguous scan lines touch, they are labeled as being a member of the same blob. As can be seen in step one, this 
might lead to the same blob being labeled as two distinct blobs. To avoid this, as seen in step 2, scan lines check to make sure 
their neighbors belong to the same blob, if not, then scan lines are backward linked into the same blob. This requires that 
maps are created that show how pixels have membership in contiguous scan lines which have membership in blobs. 
Maintenance of these maps also facilitates post hoc statistics on blobs since each blob is treated as an independent entity. The 
down side for this method is the memory needed for the maps, but this is not excessive and given that RAM is cheap, a 
reasonable strategy.         



One of our interests is in exploring what navigationally useful information can be extracted from the spatial 
frequency and orientation components of an image, and to apply this information to the task of autonomous robot 
navigation, in this case path following.  
 
For this job we do not attempt any computationally expensive and time-consuming tasks such as object recognition, 
so as to enable us to operate in real time, at relatively high speeds (brisk walking to jogging, limited primarily by 
safety concerns). This also prevents us from being dependent on specific environmental features and creates a more 
biological-like flexibility. 
 
For this we use the Fourier amplitude spectrum, which reflects an image's dominant contours, their orientations, 
widths, and lengths. This information should be able to describe the relevant features of a path we wish the robot to 
follow. It also reflects the degree of high- versus low-frequency information in an image, and combined with the 
above can describe the potential for movement within a scene. 
 
To demonstrate that high-level, human meaningful navigational descriptors can be extracted from the spectral 
components, we first classified images along the following dimensions: path vs. non-path, orientation/direction of 
path, depth of scene, and obstacles in scene. 
 
That there is sufficient information in the amplitude spectra to make the discriminations described above is 
supported by the averaged Fourier amplitude spectra of iconic images of each feature extreme, as illustrated in 
Figure 4. Here we have pictures, which were taken on the University of Southern California (USC) campus at 
slightly above ground level, at a robot's eye view, and thus are dominated by path borders, if present, and other 
potential ground-level obstacles or barriers.  
 
Ideal paths are generally indicated by roughly parallel lines, which indicate path borders, extending off into the 

Figure 4: Averaged Fourier amplitude spectrum for all images human-labeled as path or non-path (A) and highly leftward-
or rightward-oriented (B), open (deep) or closed (C), and crowded (with obstacles) or empty (D). 



distance. As shown in Fig. 4A, this is reflected in the averaged amplitude spectrum of path scenes by higher activity 
in the diagonal orientations compared with the vertical and horizontal ones, unlike the non-path scenes, which are 
more dominated by vertical and horizontal orientations, and which also have more high-frequency content, 
reflecting the relative smoothness of the path portion of path scenes versus non-path scenes. 
 
The information critical to staying on a path is the direction along which the path is oriented, and this information is 
also reflected in the Fourier amplitude spectra. As can be seen in Fig. 4B leftward-oriented scenes have increased 
activity in the first quadrant (i.e., the path is at ~135 degrees, meaning the borders are oriented so that they appear in 
the intensity gradient as a wave moving at ~45 degrees). The rightward-oriented scenes show the complementary 
pattern. 
 
Open scenes, with high depth, have less high-frequency energy than closed scenes, whose close-up obstacles 
presumably supply high-frequency details not visible on the more distant barriers in the open scenes (Fig. 4C). 
Finally, scenes crowded with obstacles contain more high-frequency energy than empty scenes, for reasons similar 
to above, and also are somewhat biased in the horizontal frequency direction, corresponding to vertical lines in 
image space, which perhaps reflect vertical obstacles such as people (Fig. 4D). 
 
We have compiled a data set comprised 1,343 RGB images taken from a Beobot-mounted camera. Some of these 
were from a consumer-grade Hi-8 video camera (Sony, Inc.) and some from a firewire consumer web camera 
(Unibrain Fire-i), which is the Beobot's normal means of vision. Images were manually labeled along the 
dimensions of left-right orientation, depth, and obstacles, as well as whether they were path, non-path, or 
ambiguous. For orientation, images were put into one of eight different classes. For depth and obstacles, images 

were put into one of six different classes. Of these, 896 images were used for training, 447 for testing. The images 

Figure 5: From left to right, the original image, the brightness-only and normalized image, the amplitude spectrum from 
the Fourier transform of the image, and the amplitude spectra from the Fourier transform of each of 16 nonoverlapping 
30x40-pixel blocks of the image (for 3 Beobot-captured track images, showing straight, leftward turning, and rightward 
turning instances, from top to bottom). 



Table 2: Accuracy in judgment for different kinds of conditions using non-localized and localized classification   

were all pictures of daytime outdoor scenes taken on the USC campus, especially but not exclusively along paths, 
and along the school's running track. 
 
It is important to note that nothing in our technique has been specifically designed or tuned to the class of images 
used here for testing. Presumably, similar results could be obtained in very different environments, such as in indoor 
situations. Pictures were either 120x160 pixels or were 240x320 pixels; the latter were downscaled to 120x160. 
Pictures varied not only by location and resolution but also by time of day, and thus overall illumination, and by 
camera angle. 
 
RGB images were converted to HSV, with only the value component being retained. Each image was normalized for 
luminance by subtracting out its mean and dividing by its standard deviation. Next, each image was discrete Fourier 
transformed. The results of these processes can be seen in Figure 5. 
 
Because we are only interested in non-localized frequency information, we discard the phase information and use 
the amplitude spectrum. The amplitude spectrum is a 120x(160/2+1) = 9720-element array of real numbers. In order 
to reduce dimensionality sufficiently to make the learning tractable for the neural network, we convolve the image 
with 40 filters of varying scales and orientations. The filters are log Gabors tuned to five spatial frequencies, with 
eight different orientations at each frequency. The dot products are computed and the resulting 40 scalars are saved 
as a feature vector. 
 
Feature vectors for the 896 training images were used to train a fully connected feedforward neural network using 
backpropagation. For online use, test images were processed as above and then passed through the feedforward 
network to get an estimation of the four high-level features. 
 
This classification results for the global amplitude spectrum, completely nonlocalized within the image are seen in 
Table 2. 

Nonlocalized classification 
 

Coarsely localized classification 
 

 
Condition 

Accuracy Mean Squared 
Error 

Accuracy Mean Squared 
Error 

Path vs. Non-path 81% 0.22 84% 0.18 
Orientation 40% 1.56 58% 1.23 
Depth 60% 0.52 56% 0.59 
Obstacles 48% 1.01 57% 0.68 

  

To see if coarsely localized information would help the classification, we next performed the above procedures not 
on the entire image, but separately on 16 non-overlapping 30x40-pixel blocks. This leaves 16x40=640 features. To 
reduce this to a more manageable number for training, we took the first 40 principal components of the features 
computed over the training set, yielding the results on the test set seen in table 2. 
 
Several different network architectures, as well as several simpler linear classifiers all yielded similarly superior 
results for the coarsely localized model over the global one. There are significant gains in orientation discrimination 
and obstacle detection. We therefore used this model for navigation. 
 
Having demonstrated that navigationally useful information can indeed be extracted from image spectral 
components, we next developed a system to use this information for autonomous robot navigation. Orientation 
judgments can be mapped straightforwardly onto steering commands. To enable continuous improvement through 
online training, we use a neural network that maps the processed visual features directly onto steering commands 
and learns from its errors in real time. The current architecture is a 3-layer backpropagation network with 40 inputs 
and 13 outputs, ranging from hard left to hard right, probabilistically chosen at each iteration based on strength of 
response. 
 



Initial weights may be learned offline from images and corresponding steering commands previously captured with 
the robot under human control, or they may be set randomly. 
 
Then, the operator takes the robot out to the chosen course and lets the robot run autonomously, using the 
autonomous steering commands that the algorithm computes. As the robot runs along, the operator can correct the 
steering choices as necessary via remote control. These human-issued commands are treated as target values from 
which an error is computed for backpropagation. The path-following performance of the robot thus improves with 
time. 
 

4. DISCUSSION 
 
4.1 Basic Hardware and Software Issues 
 
The amount of CPU power provided by the Beowulf computer in Beobot is more than adequate for even complex 
visual tasks. Additionally, its price tag is low enough to give smaller institutions and hobbyists a chance to 
experiment in the field of mobile robotics.  However, several practical limitations exist with the current robot. The 
first is the battery limitation. While the batteries for the Beobot are more than adequate to drive it during 
experiments, since they are separate cells, recharging can be time consuming. A solution to this is to purchase more 
battery chargers from 50$ to 150$ each depending on the type of cells you are charging and the bells and whistles 
involved. This can increase the cost of maintaining the robot substantially if you build a one to one population of 
chargers for each battery. The alternative is to charge each of the 10 batteries the robot uses separately in order. That 
is, if you opt for two chargers you must charge five sets of two. The toll is that a person needs to be around to 
supervise the recharging. This illustrates by far the largest single barrier to keeping Beobot ready for play. However, 
even with the problem posed by powering the Beobot with off the shelf batteries as we have done, the Beobot is still 
able to run every day for experimentation. 
 
Another important issue to mention with the Beobot is that while the Linux operating system environment is well 
suited for development, it is sometimes limited in its hardware support. For most important devices, drivers and 
support utilities have been written. However, there are many situations in which drivers have not been written for 
hardware you may wish to install. Thus, there is some limit placed on how easily new hardware may be integrated 
onto the Beobot. This limit is however tempered by the fact that creating drivers on an open source platform is 
generally easier than for a closed source OS since the operating system mechanisms are completely visible. 
Additionally it should also be noted that the open source concept is pivotal to development in a Beowulf cluster 
since the Beowulf networking mechanisms are not only more developed under Linux, but require open sourcing of 
networking services in order to customize them for the distributed computational task at hand. It is also important to 
note the power of customization available with Linux and other open source operating systems. This allows 
Beobot’s operating system and utilities to be squeezed onto a 256 Mb flash disk along with the test software. 
Further, we can avoid loading a windows operating environment and gain efficiencies from not having the 
computational overhead that it comes with.  
 
One of the strongest characteristics we have observed with Beobot is its durability. Since it is built on top of an RC 
chassis built for “Off Road” racing, it has the ability to take a great deal of stress. Additionally by supporting other 
Beobot components with lightweight highly durable materials such as Lexan, Beobot is able to withstand strong 
impacts and generally rough treatment. Even if parts of the robot break in response to collision or other trauma, most 
components that make up the exterior and supporting frame are low cost and easily replaced. This creates a certain 
liberty during experimentation since there is less worry that the robot will damage itself in the event it misbehaves.  
 
 
 
 
 4.2 Operational Issues 
 
One major issue yet to be resolved is how to create the most ideal interface for Beobot to use during 
experimentation. For instance, our current interface uses a two character line LCD panel with five input keys to run 
the robot during experimentation. This is a low cost approach, but it limits the interaction between the operator and 
robot during trial runs. To address this issue, future plans may involve a wireless connection via a handheld 



computer. This would allow us to use a portable graphical interface with greater flexibility to control and interact 
with the Beobot than a terminal that is hard mounted onto the robot. With the advent of high-speed wireless access 
at speeds of 56 MB/s, streaming important data to a handheld computer is highly viable. 
  
4.3 Software Development issues 
 
Utilization of INVenT facilitates development and deployment of robotic applications. With software modules for 
control, network communications and image manipulation it becomes easier to create applications for the Beobot. 
For instance, a model manager handles each software function of the robot, which is a step towards creating a Lego 
like environment for robot development. Software components for controlling motion, creating network 
communication, grabbing input and processing information can be reused and are portable to other robotic 
applications. For instance, the leader following and track following programs reuse the same code for distribution of 
processes across the Beowulf cluster. They also use the same methods to grab images and manipulate them. Thus, in 
order to create and deploy a new application for Beobot, the programmer can skip development of many low-level 
systems. For instance, the code for leader following was created and deployed in the equivalent of a few weeks 
rather than months by using this readily available code base. Additionally, by creating the leader following code in a 
modular fashion, it too can be used as a building block onto which other robot applications can be developed.  
   

5. CONCLUSION 
 
The Beobot has allowed us to test a variety of both biological and traditional algorithms in the real world with 
success. Given its relatively low cost and high performance coupled with its off-the-shelf modular design should 
enable other labs and individuals to borrow from our design and create their own low cost robots. This will 
hopefully enable powerful robotics to come into the hands of the hobbyist and labs with smaller budgets, thus 
accelerating the development of robotics into the home and other areas where robot deployment is still sparse. From 
our experience with Beobot, it should be replicable by other individuals and facilitate the next stage in the evolution 
of robotics, creating a home hobby robot with enough computational power to facilitate the development of useful 
home applications. 
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