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To understand the neural mechanisms underlying humans’ exquisite ability at processing briefly flashed
visual scenes, we present a computer model that predicts human performance in a Rapid Serial Visual
Presentation (RSVP) task. The model processes streams of natural scene images presented at a rate of
20 Hz to human observers, and attempts to predict when subjects will correctly detect if one of the pre-
sented images contains an animal (target). We find that metrics of Bayesian surprise, which models both
spatial and temporal aspects of human attention, differ significantly between RSVP sequences on which
subjects will detect the target (easy) and those on which subjects miss the target (hard). Extending
beyond previous studies, we here assess the contribution of individual image features including color
opponencies and Gabor edges. We also investigate the effects of the spatial location of surprise in the
visual field, rather than only using a single aggregate measure. A physiologically plausible feed-forward
system, which optimally combines spatial and temporal surprise metrics for all features, predicts perfor-
mance in 79.5% of human trials correctly. This is significantly better than a baseline maximum likelihood
Bayesian model (71.7%). We can see that attention as measured by surprise, accounts for a large propor-
tion of observer performance in RSVP. The time course of surprise in different feature types (channels)
provides additional quantitative insight in rapid bottom-up processes of human visual attention and rec-
ognition, and illuminates the phenomenon of attentional blink and lag-1 sparing. Surprise also reveals
classical Type-B like masking effects intrinsic in natural image RSVP sequences. We summarize these
with the discussion of a multistage model of visual attention.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

What are the mechanisms underlying human target detection in
RSVP (Rapid Serial Visual Presentation) streams of images, and can
they be modeled in such a way as to allow prediction of subject per-
formance? This question is of particular interest since, when images
are presented at high speed, humans can detect some but not all
images of a particular type (target images; e.g. images containing
an animal) which they would be able to detect with far greater accu-
racy at a slower rate of presentation. Our answer to this question is
that two primary forces are at work related to attention and are part
of a two or more stage model (Chun & Potter, 1995; Reeves, 1982;
Sperling, Reeves, Blaser, Lu, & Weichselgartner, 2001). Here we will
suggest that the first stage is purely an attentional mask with the
blocking strength of attention given by image features which have
already been observed. The second stage on the other hand can block
the perception of the image if another image is already being pro-
cessed and is monopolizing its limited resources.
ll rights reserved.

ndhenk).
We consider here the metric of Bayesian surprise (Itti & Baldi,
2005, 2006) to predict how easily a target image containing an ani-
mal may be found among 19 frames of other natural images (dis-
tractors) presented at 20 Hz. In a first experiment, we show that
surprise measures are significantly different for target images
which subjects find easy to detect in the RSVP sequences vs. those
which are hard. We then present a second experiment which at-
tempts to predict subject performance by utilizing the surprising
features to determine the strength of attentional capture and
masking. This is done using a back-propagation neural network
whose inputs are the features of surprise and whose output is a
prediction about the difficulty of a given RSVP sequence.

1.1. Overview of attention and target detection

It has long been argued that attention plays a crucial role in
short term visual detection and recall (Duncan, 1984; Hoffman,
Nelson, & Houck, 1983; Mack & Rock, 1998; Neisser & Becklen,
1975; Sperling et al., 2001; Tanaka & Sagi, 2000; VanRullen & Koch,
2003a; Wolfe, Horowitz, & Michod, 2007). This also applies to
detection of targets when images are displayed, one after another,
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in a serial fashion (Duncan, Ward, & Shapiro, 1994; Raymond,
Shapiro, & Arnell, 1992). Many studies have demonstrated that a
distracting target image presented before another target image
blocks its detection in a phenomenon known as the attentional
blink (Einhäuser, Koch, & Makeig, 2007a; Einhäuser, Mundhenk,
Baldi, Koch, & Itti, 2007b; Evans & Treisman, 2005; Maki & Mebane,
2006; Marois, Yi, & Chun, 2004; Raymond et al., 1992; Sergent,
Baillet, & Dehaene, 2005). Thus, one image presented to the visual
stream can interfere with another image that quickly follows,
essentially acting as a forward mask (e.g. target in frame A blocks
target in frame B).

Additionally, with attentional blink, interference follows a time
course, whereby optimal degradation of detection and recall per-
formance for a second target image can occur when it follows
the first target image from 200–400 ms (Einhäuser et al., 2007a),
which is evidence of a second stage processing bottleneck. In most
settings, an intermediate distractor between the first and second
targets is needed to induce an attentional blink, a phenomenon
known as lag-1 sparing (Raymond et al., 1992). However, for some
types of stimuli, such as a strong contrast mask with varying fre-
quencies and naturalistic colors superimposed with white noise,
interference can occur very quickly (VanRullen & Koch, 2003b).
This may create a situation whereby for some types of stimuli, a
target is blocked by a prior target with a very recent onset
(<50 ms prior), or by contrast, a much earlier onset (>150 ms prior).
As such, there seems to be a short critical period with a U-shaped
performance curve where interference is reduced against the sec-
ond target. That is, interference is reduced if the preceding distrac-
tor comes in a critical period of approximately a 50–150 ms
window before the target, but is larger otherwise. This interval
we will generically refer to as the sparing interval.

In addition to interference with the second target, detection of
the first target itself can be blocked by backward masking (e.g. tar-
get in frame B blocks target in frame A) (Breitmeyer, 1984; Breit-
meyer & Öğmen, 2006; Hogben & Di Lollo, 1972; Raab, 1963;
Reeves, 1980; VanRullen & Koch, 2003b; Weisstein & Haber,
1965). However, in natural scene RSVP, backward masking occurs
at a very short time interval, <50 ms without a good ability to dwell
in time (Potter, Staub & O’Conner, 2002) That is, interference is not
U-shaped in the same way as with forward masking. As we will
mention later, longer intervals (>150 ms) may conversely enhance
detection of the first target (e.g. target in frame B enhances target
in frame A). However, backwards masking in the case of RSVP still
retains a U like shape as the effects of the mask peak and decrease.
The difference is that it does not have a second almost discrete epi-
sode of new masking following a short interval of sparing as for-
ward masking does. That is, once the backwards mask fades in
effect the first time, it is finished masking. The forward mask on
the other hand has the ability mask twice.

Putting these pieces together, there is a lack of literature showing a
strong reverse attentional blink which would be produced by a second
interval of backwards masking. With different stimuli, both forward
and backward masking can be observed over very short time periods
by flanking images in a sequence. However, only forward masking
interferes with targets observed several frames apart, following a
sparing lag with a much higher target onset latency. It should be noted
that these masking effects are not universally observed in all experi-
ments. As such, the mechanisms responsible for masking are depen-
dant to some degree on both masking and target stimuli, which may
result in a target being spared or completely blocked.

Much like masking from temporal offsets, if the first target is
displayed spatially offset from the second target, interference is de-
creased for recall of the first target (Shih, 2000). As an example, a
large spatial offset would occur if a target in frame A is in the upper
right hand corner while a target in frame B is in the lower left hand
corner. Thus, if we overlapped the frames, the targets themselves
would not overlap. As a result, recognition of individual target
images allows for some parallel spatial attention (Li, VanRullen,
Koch, & Perona, 2002; McMains & Somers, 2004; Rousselet, Fab-
re-Thorpe, & Thorpe, 2002). This is also seen if priming signals
for target and distractor are spatially offset (Mounts & Gavett,
2004). However, at intervals over 100 ms, spatial overlap may
actually prime targets in an attentional blink task (Visser, Zuvic,
Bischof, & Di Lollo, 1999). We then should gather that objects offset
in space lack some power to mask each other, but in contrast, may
at longer time intervals lack the ability to prime each other. Addi-
tionally it has been found that more than one object at different
temporal offsets can be present in memory pre-attentively, at the
same time, but only if they do not overlap at critical temporal, spa-
tial and even feature offsets (VanRullen, Reddy, & Koch, 2004).
However, there is reduced performance as more items, such as nat-
ural images, are added in parallel (Rousselet, Thorpe, & Fabre-
Thorpe, 2004). Thus, even if objects do not interfere along critical
dimensions, performance may degrade as a function of the number
of complex distractors added.

1.2. Surprise and attention capture

Prediction of which flanking images or objects will interfere
with detection of a target might be accounted for in a Bayesian
metric of statistical surprise. Such a metric can be derived for
attention based on measuring how a new data sample may affect
prior beliefs of an observer. Here, surprise (Itti & Baldi, 2005,
2006), is based on the conjugate prior information about observa-
tions combined with a belief about the reliability of each observa-
tion (For mathematical details, see Appendix A). Surprise is strong
when a new observation causes a Bayesian learner to substantially
adjust its beliefs about the world. This is encountered when the
distribution of posterior beliefs highly differs from the prior. The
present paper extends our previous work (Einhäuser et al.,
2007b), by optimally combining surprise measures from different
low-level features. The contribution of different low-level features
to ‘‘surprise masking”, and thus their role in attention, can be indi-
vidually assessed. Additionally, we will demonstrate how we have
extended on this work by creating a non-relative metric that can
compare difficulty for RSVP sequences with disjoint sets of target
and distractor images. That is, our original work was only able to
tell us if a new ordered sequence was relatively more difficult than
its original ordering. The current work will focus on giving us a
parametric and absolute measure based on how many observers
should be able to spot a target image in a given sequence set.

While surprise has been shown to affect RSVP performance, it
remains to be seen how surprise from different types of image fea-
tures interacts with recall. Importantly, critical peaks of surprise,
along specific feature dimensions, can be measured and used to as-
sess the degree to which flanking images may block one another.
For instance, should an image with surprising horizontal lines have
more power in masking a target than an image with surprising ver-
tical lines? This is important since some features may be more or
less informative, for instance if they have a low signal to noise ratio
(SNR) between the target and distractors (Navalpakkam & Itti,
2006). Additionally, some features may be primed in human
observers, making them more powerful. As an example, if features
can align and enhance along temporal dimensions (Lee & Blake,
2001, Mundhenk, Landauer, Bellman, Arbib, & Itti, 2004; Mund-
henk, Everist, Landauer, Itti, & Bellman, 2005) in much the same
way they do spatially (Li, 1998; Li & Gilbert, 2002; Mundhenk &
Itti, 2005; Yen & Fenkel, 1998), then some features that appear
dominant may have a fortunate higher incidence of temporal
and/or spatial colinearity in image sequences.

In order to predict and eventually augment detection of target
images, a metric is needed that measures the degree of interference
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of images in a sequence. Here we follow the hypothesis that tem-
porally flanking stimuli interfere with target detection, if they
‘‘parasitically” capture attention so that the target may fall within
an attentional blink period (e.g. target in frame A and C may inter-
fere with target in frame B). The challenge is then to devise mea-
sures of such attentional masking for natural images using
stimulus statistics. We herein derive and combine several such
measures, based on a previously suggested model of spatial atten-
tion that uses Bayesian surprise. Note that this ‘‘surprise masking”
hypothesis does not deny other sources of recognition impairment,
e.g. some targets are simply difficult to identify even in spatio-tem-
poral isolation. Instead ‘‘surprise masking” addresses recall impair-
ment arising from the sequential ordering of stimuli, rather than
the inherent difficulty of identifying the target itself.

If surprise gives a good metric of interference and masking be-
tween temporally offset targets in RSVP, we should expect that by
measuring surprise between images by its spatial, temporal and
feature offsets we will obtain good prediction of how well subjects
will detect and recall target images. To this end, we first present
evidence that surprise gives a good indication of the difficulty for
detecting targets in RSVP sequences and that it elegantly reveals
almost classic intrinsic masking effects in natural images. We then
show for the first time a neural network model that predicts sub-
ject performance using surprise information. Additionally, we dis-
cuss the surprise masking observed between images in an RSVP
sequence within the framework of a two-stage model of visual pro-
cessing (Chun & Potter, 1995).

2. Methods

2.1. Surprise in brief

Although the mathematical details of the surprise model are gi-
ven in Appendix A, we provide here an intuitive example for illus-
tration. The complete surprise system subdivides into individual
surprise models. Each of these individual models is defined by its
feature (color opponencies, Gabor wavelet derived orientations,
intensity), location in the image and scale. The respective feature
values will be maintained over time, in the current state, at each
location in the image, by feeding the observed value to a surprise
model at that location. That is, every image location, feature and
scale has its own surprise model. New data coming into surprise
models can then by compared with past observations in a reen-
trant manner (Di Lollo, Enns, & Rensink, 2000) whereby observed
normalcy by the models can guide attention when there is a statis-
tical violation of it. Different frequencies of surprising events are
accounted for with several time scales by feeding the results of
successive surprise models forward.

Imagine that we present the system initially with the image of a
yellow cat. If the system is continuously shown pictures of yellow
cats, many surprise models will begin to develop a belief that what
they should expect to see are features related to yellow cats. How-
ever, not all models will develop the same expectation. Models in
the periphery will observe the corners or edges of the image, which
in a general sample would be more likely to contain background
material such as grass or sky. If after several pictures of yellow cats
a blue chair is shown, surprise will be largest with models which
had been locally exposed more often to the constant stimuli of
the yellow cats. Additionally, surprise should be enhanced more
for models which measure color, than for models which measure
intensity or line orientations since, in this example, color was more
constant prior to the observation of the blue chair. Finally, surprise
can be combined across different types of features (channels),
scales and locations into a single surprise metric. This combination
can either be hardwired (Einhäuser et al., 2007b) or optimized for
the prediction task (the present paper).
As is typical for Bayesian models, there is an initial assumption
about the underlying statistical process of the observations. Since
we wish to model a process of neural events, which should bring
us closer to a neurobiological like event of surprise, a Poisson/Gam-
ma process is used as the basis. The Gamma process is used since it
gives the probability distribution of observing Poisson distributed
events with refractoriness such as neural spike trains (Ricciardi,
1995). Surprise is then extended into a visually relevant tool by
combining its functioning with an existing model of visual saliency
[see also another saliency model: (Li, 2002)]. As a less abstract
example, the Gamma process can be used to model the expected
waiting time to observe event B after event A has been observed.
If events A and B are neural spikes, then we can see how it is useful
in gauging the change in firing rates related to alterations in visual
features.

Here the Gamma process is given with the standard a and b
hyperparameters which are updated with each new frame and
are part of a conjugate prior over beliefs (Fig. 1). Abstractly, a cor-
responds to the expected value of visual features while b is the var-
iance we have over the features as we gather them. Since we have a
conjugate prior, the old a and b values are fed back into the model
as the current best estimate when computing the new a and b (de-
noted a

0
and b

0
) values for the next frame. In a sense, the new ex-

pected sample value and variance are computed by updating the
old expected sample value and variance with new observations.
This gives us a notion of belief as we gather more samples since
we can have an idea of confidence in the estimate of our parame-
ters. Additionally, as observations are added, so long as our beliefs
are not dramatically violated, surprise will tend to relax over time.
To put this another way, metaphorically speaking, the more things
a surprise model sees, the less it tends to be surprised by what it
sees.

2.2. Using surprise to extract image statistics from sequences

With RSVP image sequences, each image is fed like a movie into
the complete surprise system one at a time. As the system observes
the images, it formulates expectations about the values of each fea-
ture channel over the image frames. Like with the yellow cat exam-
ple, images presented in series that are similar, tend to produce
low levels of surprise. High peaks in surprise then tend to be ob-
served when a homogeneous sequence of images gives way to a
rather heterogeneous one. However, the term homogeneous is
used loosely since repetitions of heterogeneous images are in
terms of surprise homogeneous. That is, certain patterns of change
can be expected, and believed to be normal. Even patterns of 1/f
noise have an expected normalcy and as such should not necessar-
ily be found to be surprising.

It should also be noted that surprise is measured not just be-
tween images, but within images as well. We suggest that an im-
age can stand on its own with its inherent surprise. As a result,
surprise is a combination of the spatial surprise within an image
and the temporal surprise between images in a sequence. From
the surprise system we can analyze surprise for different types of
features as well. This is possible since the surprise model extracts
initial feature maps in a manner identical to the saliency model of
Itti and Koch (2001). So for instance, for any given frame, we can
tell how surprising red/green color opponents are because we have
a map of the red/green1 color opponency for each frame. A surprise
model is then created just to analyze the surprise for the red/green
color opponents. The entire surprise system thus contains models
of several feature channels which can be taken as a composite in
o



Fig. 1. With an image sequence, we run each frame through the surprise system. Feature maps such as orientation and color are extracted from the original images in the
sequence (noted with ‘‘�”). Each feature map is then processed by surprise for both space and time. In spatial surprise, a locations’ beliefs about what its value should be are
described in the Gamma probability process with the hyperparmeters a0p; b

0
p . This is compared with its surround (ap, bp) within the current frame in the surprise model (noted

with the box ‘‘!”) (for details see Appendix A Eqs. (16)–(18)). In temporal surprise, each new location (a0t ; b
0
t) is compared with the same location in a previous old frame (at, bt)

using the same update and surprise computation as space. Both space and time have their own a and b hyperparameters. Spatial and temporal surprise for each location
within the same frame are merged in a weighted sum ‘‘R”. Additionally, the a0t ; b

0
t and a0p;b

0
pare successively fed forward into models several times (six times in the current

model) to give it sensitivity to surprise at different time scales. Here the time scales are used to create sensitivity to recurring events at different frequencies. The complete
surprise for each frame of the same feature is the product (shown with the box ‘‘P”) of merged spatial/temporal surprise for each time scale.
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much the same way as the Itti and Koch saliency model does. A large
number of features are supported within the surprise system but we
use here intensity, red/green, blue/yellow color opponencies and Ga-
bor orientations at 0�, 45�, 90� and 135�.

Once surprise has been determined for each model (color, Gabor
orientations, etc.) in the surprise system, each image in the RSVP
sequence is automatically labeled in terms of surprise statistics
(Fig. 2). If desired, the resolution of surprise can be as fine grained
as individual pixels. This can, as mentioned, be further parsed into
the surprise system along each feature type. However, advantage
may be gained in using broader aggregate descriptions of surprise.
Fig. 2. The top row of images are three from a sequence of 20 that were fed into the syste
gives an indication of the statistical surprise the models find for each image in the sequ
which corresponds to a location in the original image. Basic statistics are derived from th
surprise map as well as the distance between maximum surprise among images givin
computed from each feature type independently, so while computing surprise we hav
independent image as expressed in the surprise map may look like a poor quality salienc
images that precede it. This causes the spatial surprise component to be less visible in t
That is, for each RSVP image, we here obtain a single maximum or
minimum value for surprise. This would simply be the maximum
or minimum value of surprise given all the surprise values over
all the model results for a frame.

Maximum surprise is a useful metric if attention uses a maxi-
mum selector method (Didday, 1976) based on surprise statistics.
The maximum valued location of surprise should be the location
in the image most likely to be attended. By using this metric, we
can assess the likelihood that attended regions will overlap in
space from frame to frame increasing their potential interaction
(e.g. masking or enhancement). The overlap from this metric can
m one at a time. The bottom row shows the derived combined surprise maps, which
ence. Each map is a low-resolution image, which has a surprise value at each pixel,
e maximum, minimum, mean and standard deviation of the surprise values in each
g us five basic statistic types per image. As mentioned the final surprise map is
e access to the surprise for each feature. As an added note, the surprise for each
y map. However, what is surprising in each image frame is strongly affected by the
he output shown.
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only be assumed based on proximity. That is, the closer a maxi-
mum location is between frames, the more likely two surprising
locations are to overlap. However, as a spatial metric this is some-
what limiting as it does not give us a metric of the true spatial ex-
tent and distribution of surprise within a frame, for that we use the
mean and standard deviation of surprise. So, within a frame, we
use the point of maximum surprise to figure the attended location,
but mean and standard deviation are used as a between image sta-
tistic to show the power and tendency to overlap that indicates to
what extent natural images are competing (or co-operating) with
each other.

The three statistics (maximum, mean and standard deviation)
combined; ideally will yield a basic metric of the attentional cap-
ture an image in a sequence exhibits. Additionally, it will allow
us to consider whether attention capture is competitive (Keysers
& Perrett, 2002). It is then useful to analyze surprise by its overlap
between images. We do this because attention capture may be
more parasitic along similar feature dimensions or along more
proximal spatial alignment. Put another way, interaction or inter-
ference between locations in image frames may be stronger if they
are spatially overlapping or their feature statistics are highly sim-
ilar. Closer spatial, temporal and feature proximity between two
locations naturally lends itself to more interaction.

2.3. Performance on RSVP and its relationship with surprise

The psychophysical experiments used here to exercise the sys-
tem were described in detail in (Einhäuser et al., 2007b). In brief:
for the first experiment, eight human observers were shown
1000 RSVP sequences of 20 natural images. Half of the sequences
contained a single target image, which was a picture of an animal.
The observers’ task was to indicate whether a sequence contained
an animal or not. The speed of presentation at 20 Hz, yielded a
comparably low performance, which was, however, still far above
chance with a desirable abundance of misses (no target reported
despite being present) as compared to false alarms (target reported
despite not being present). This large number of missed target se-
quences is particularly convenient when we account for the se-
quences in which no subject is able to spot the target, 29 in all.
This is a large enough set to allow for statistical contrast with se-
quences which subjects perform superior on.

Here we refine the utility of observer responses to assign a dif-
ficulty to all of the 500 target-present sequences. If one or none of
Fig. 3. (A) Mean surprise produced by each image in an example RSVP sequence is shown
target. By rearranging the image order, we can create a hard condition in which none of t
order which produced surprise peaks both before and after the target image at ±50 ms wi
at the target (we also refer to this as a ‘‘W” shape in the case of easier sequences or M–W
absolute value. A slight downward slope is observed since surprise can tend to relax ove
gain of mean surprise for all hard and easy sequences combined is observed. In this illu
the eight observers detected the target in a particular sequence,
then it is classified as hard. If seven or eight of the human observers
correctly spotted the target, the sequence is classified as easy. All
other sequences are classified as intermediate. That is, if the target
in a sequence of images can be spotted more often, then something
about that sequence makes it easier. Note that this definition is dif-
ferent from (Einhäuser et al., 2007b), where only targets detected
by either all or none of the observers were analyzed. By the present
definition, there were 73 hard, 188 easy, and 239 intermediate se-
quences. As will be seen, partitioning image sequences in such a
way yields a visible contrast between sequences labeled as easy
and those labeled as hard. For visibility and clarity of illustration,
intermediate sequences will be omitted from the graphs of the ini-
tial analysis, but will be included again in the neural network mod-
el that follows. This is reasonable since the intermediate sequences
yield no additional insight into the workings of surprise, but in-
stead make the important aspects illustrated more difficult to visu-
ally discern for the reader.

3. Results

Initial experiments showed a cause and effect relationship be-
tween surprise levels in image sequences and performance of
observers on the RSVP task. Specifically, as can be seen in the
example in Fig. 3A, flanking a target image with images that regis-
ter higher surprise make the task more difficult for observers.
Experimental support for a causal role of surprise is provided by
experiment 2 in (Einhäuser et al., 2007b), in which re-ordering im-
age sequences according to simple global surprise statistics signif-
icantly affects recall performance. To improve the power of
prediction and augmentation in an RSVP task, we need to analyze
the individual features to see if they yield helpful information be-
yond the combined surprise values such as those seen in Fig. 3B.
This is because it has remained open whether prediction perfor-
mance could be improved further by extracting refined spatio-tem-
poral measures from the surprise data. In particular, does a
feature-specific surprise system rather than an aggregate measure
over all features further enhance prediction? Optimal feature bias-
ing in a search (Navalpakkam & Itti, 2007) or feature priming might
lend more power to certain types of features.

Analysis was carried out on all image sets which contained an
animal target (‘‘target-present” sequences). From each image in
each sequence, surprise statistics were extracted for each feature
. The sequence on the top is easy and all 8 of 8 observers manage to spot the animal
he eight observers spot the animal target. This was achieved by placing images in an
th relative surprise dips at ±100 ms creating a strong ‘‘M” shape in the plot centered
for both). Note that the strength in the graphs shown is in the gain and not just the

r time given similar images. (B) The M–W shape can be seen more clearly when the
stration, the average over all gains for mean surprise is shown.
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channel, such as color opponencies and Gabor wavelet line re-
sponses. A mean surprise is computed by taking the average of
the surprise values from all locations within a frame for any given
feature channel. Mean surprise of individual Gabor wavelet chan-
nels exhibit the ‘‘W” or ‘‘M” shaped interference from flanking
images to the target (Fig. 4) that was also characteristic for the full
Fig. 4. Mean surprise for each frame per feature type is shown for RSVP sequences which
aligned similar to Fig. 3 for analysis so that the animal target offset is frame 0. (D) is labe
masking within this feature since surprise is very high for difficult sequences. �100 ms is
We see at ±50 ms strong masking by elevated surprise. The effect at this interval is the
higher for this frame in easy sequences. All plots show the characteristic ‘‘W” and ‘‘M” s
obviously more power for vertical orientation features. Additionally, the red/green opp
yellow does not exhibit the M–W pattern (at least not significantly). Oddly, it is notable t
would be expected for simple bottom-up feature effects. Also, the lag sparing is seen in al
have been Bonferroni corrected for multiple t-tests.
system. The M–W shape is itself very similar to forms seen in
masking studies as a bi-modal enhancement of Type-B masking
functions (Breitmeyer & Öğmen, 2006; Cox & Dember, 1972; Re-
eves, 1982; Weisstein & Haber, 1965). The important thing to no-
tice is that the ‘‘W” pattern is seen with target enhancement
while the ‘‘M” pattern is seen with target masking. The significance
observers found easy vs. sequences observers found hard. All sequences have been
led to show the properties of all the sub-graphs in Fig. 4. At �250 ms we see strong
the lag-1 sparing interval and as such we should expect to see no effect at this frame.
most common. At +250 we see forward priming or enhancement since surprise is
hapes centered at the target, but are most visible in (C) and (D). However, there is
onent channel gives M–W results like the Gabor feature channels. However, blue/
hat surprise is significantly different at both ±250 ms (five frames), far beyond what
l sub-graphs at �100 ms, even in C highlighting the strength of the effect. Error bars



Table 1
The significance of the gain of surprise for the target frame (0 ms) over the flanking frames (�50 ms and 50 ms) is presented. For each feature type and the combined surprise
map, the mean of the two flanking images are combined and compared against the mean of the target. The combined mean surprise map statistics are the same as the ones
presented in Fig. 3B. From the two means for the target and flankers, the t value is presented. For P values which are non-significant, the field is left blank. It is notable that mean,
standard deviation and spatial offset of surprise spikes for easy sequences at the target frame. The peak is strongest for easy sequences, but is also notable for hard sequences.
While this helps to validate the presence of the M–W pattern, it also suggests that the ‘‘W” pattern for easy targets is stronger than the ‘‘M” pattern for hard targets.

Feature t Hard P t Easy P

Mean Combined 2.961297 0.005 3.747544 0.001
Gabor 0� 1.595949 � 2.08278 0.05
Gabor 45� 0.290076 � 4.720356 0.001
Gabor 90� 3.785376 0.001 4.855656 0.001
Gabor 135Q 0.454917 � 4.137201 0.001
Red/green 0.2679 � 2.815474 0.005
Blue/yellow 1.152454 � 1.311841 �

Stdev Combined 1.704888 � 7.921573 0.001
Gabor 0� 2.158931 0.05 2.709357 0.005
Gabor 45� 0.486151 � 8.054697 0.001
Gabor 90� 4.216503 0.001 5.774448 0.001
Gabor 135� 1.161105 � 6.014868 0.001
Red/green 0.341483 � 6.308344 0.001
Blue/yellow 1.251205 � 2.577544 0.01

Space Combined 0.385937 � 1.170551 �
Gabor 0� 0.990172 � 1.088986 �
Gabor 45� 0.281247 � 4.254909 0.001
Gabor 90� 1.056511 � 2.018851 0.05
Gabor 135� 0.162157 � 2.526581 0.01
Red/green 0.739866 � 2.390607 0.05
Blue/yellow 0.352024 � 0.036651 �
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of the M–W jump pattern for each feature types is presented in Ta-
ble 1. For most feature types, and in particular, for easy sequences,
mean surprise jumps significantly for the target frame when com-
pared with the flanking frames. For targets which are difficult,
there is also a significant drop in surprise compared with the flank-
ing frames, but it is less profound.

As can be seen, Gabor surprise is increased before and after the
target for ‘‘hard” as compared to ‘‘easy” sequences (Fig. 4). That is,
surprise produced by edges in the image interferes with target
detection. However, the difference in surprise between easy and
hard targets is only significant for vertical orientations (P < .005
in both flanking images; Fig. 4C) and diagonal orientations (for
the image following the target P < .01 and .005, respectively;
Fig. 4B and D) at time ±1 frame (i.e. ±50 ms) from the target
frame. The vertical orientation results clearly show a stronger sig-
nificant probability. Horizontal orientations do not exhibit signif-
icant effects (P P .05 for any image in the sequence; Fig. 4A). We
can also see that there is significance in the red–green color
opponencies2 (For the image following the target P < .01; Fig. 4E).
It is notable that the effect for vertical lines not only holds for
the immediate flankers of the target, but also for images that pre-
cede the target by as much as 250 ms (P < .005 for vertical and
diagonal orientation). Conversely, there is evidence for long term
backwards enhancement at 250 ms following the target which is
significant for the 135� orientation channel (P < .005; Fig. 4D). Thus,
within the sequences viewed by the observers, vertical line statis-
tics when plotted and analyzed, seem to stand out more when
observers are watching for animals among natural scenes. Interest-
ingly, the significant jumps in surprise at ±250 ms illustrates that
the effects of surprise seem too prolonged to be constrained to
early visual cortex (Schmolesky et al., 1998).

Using the same analysis as for Fig. 4, a similar pattern can also
be seen in Fig. 5 with the standard deviation of surprise within an
image. However, the significance is concentrated on the target im-
age itself. That is, if surprise values form a strong peak which gives
2 Color opponencies are derived using H2SV2 color space which is described in
Mundhenk et al. (2005) with source code at: http://ilab.usc.edu/wiki/index.php/
HSV_And_H2SV_Color_Space.
a greater spread of surprise values in an image, then observers are
more likely to experience that a target is easy to find. Again, the
vertical line statistics yield a smaller probability value (For the tar-
get image, P < .001; Fig. 5C) than the horizontal line statistics (For
the image after the target, P < .05; Fig. 5A) and red/green color
opponents are significant as well (P < .05 for the target image
and .01 for the image following the target; Fig. 5E).

That the target image benefits most from a high standard devi-
ation of surprise is due to strong peaks in surprise which give a
wider spread of values. That is, the target image may draw more
attention by having basic large peaks in surprise, while masking
images gain from having a broader (larger area) generally high va-
lue. In more basic terms, attention is drawn to stronger singular
surprise values, while it is blocked more effectively by flanking
images with a wider surprising area. One may speculate that this
reflects the locality of attention: wider surprise surfaces have a
better chance to overlap with the target and are thus more likely
to mask it.

This hypothesis is borne out by observing the spatial informa-
tion from the surprise metric. If the point of maximum surprise
in the target image is offset more from the points of maximum sur-
prise in the flanking images, observers find the target easier to spot
(Fig. 6). Thus, to summarize, a more peaked surprise, with more
spatial offset in the target image seems to aid in the RSVP task.
Additionally, different types of features, within a given sequence,
may have more power than others. However, the red/green color
opponent acts differently in this particular metric. It appears that
it exhibits some attentional capture within the target image itself
directed away from the animal target. That is, the red/green chan-
nel shows distraction behavior within the target image itself if it is
not blocked by the flanking frames.

4. A neural network model to predict RSVP performance

So far we have considered statistical measures pooled over
many sequences and obtained a hypothesis on how surprise mod-
ulates recall. If the hypothesis holds true, a basic computational
system should be able to predict observer performance on the
RSVP task. Ideally, the system predicts, given a sequence of images,

http://ilab.usc.edu/wiki/index.php/HSV_And_H2SV_Color_Space
http://ilab.usc.edu/wiki/index.php/HSV_And_H2SV_Color_Space


Fig. 5. The standard deviation of surprise per frame like the mean, also seems to be significant for hard vs. easy image sequences with the M–W pattern. However, significants
seems more concentrated on the target image rather than the distractor images. Again, vertical lines are more prominent. Error bars have been Bonferroni corrected for
multiple t-tests.
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how well observers will detect and report them. Additionally, the
system can be agnostic to whether or not a target image is in a se-
quence to determine if a sequence might have intrinsic memorabil-
ity for any image for our given sequences. To do this, we added a
test where we increased the difficulty for the system by testing
to see if it can predict the difficulty of a sequence without knowing
which image in the sequence contains the target. We added this as
a comparison to our standard system which has knowledge of
which frame contains the target. This also allows us to test the
importance of knowing the target offset, which the evidence sug-
gests is quite helpful in the prediction of observer performance.

Training our algorithm to predict performance on the RSVP task
required three primary steps. Each step is outlined below. These in-
clude the initial gathering of human observer data on the RSVP
task, processing of the image sequences to obtain surprise values,
and training using back propagation on a feed-forward neural net-
work, which attempts to give an answer as to how difficult a given
sequence should be for human observers.



Fig. 6. Here the mean spatial offset of maximum surprise from one frame to the next (illustrated in Fig. 2) is shown for both easy and hard sequences. Frame 5 (�250 ms) is
left out since it is always zero in a differential measurement. An M–W pattern is visible, but much less so than for Figs. 4 and 5. It is notable that in three of the feature types,
easy sequence targets have maximum surprise peaks further in distance from the peaks in the flanking images than hard sequences do. Again, like with mean and standard
deviation of surprise, the greatest power seems to be in the vertical orientation statistics. Red/green color results for space seem to be inverted suggesting that it has priming
spatial effects to some extent even though strong mean red/green surprise blocks as seen in Fig. 4. Error bars have been Bonferroni corrected for multiple t-tests.
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4.1. Data collection

RSVP data were collected from two different experiments
where image sequences were shown to eight observers (Einhäuser
et al., 2007b). From the two experiments, we obtained a total of
866 unique sequences of images which were randomly split into
three balanced equal sized sets of 288 sequences for training, test-
ing and final validation (two sequences were randomly dropped to
maintain equal sizing for all three sets). As mentioned, each se-
quence could be given a rank based on how many observers cor-
rectly identified the target as being present in the sequence. The
rank of difficulty was a number from zero to eight, rather than just
easy, intermediate and hard. This matched how many observers
managed to spot the animal target. This is used, as a training value,
where the output of a network is its prediction as to how many
observers in a new group of eight should correctly identify the tar-
get present in a given sequence. The control image sequences, the
ones without animal targets, were not included for training since
we are testing a computational model of bottom-up attention,
which has no ability to actually identify an animal. The result of
including non-target sequences in the system will only yield a pre-
diction of how likely an observer is to spot a non-target which from
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an attentional standpoint is the same as asking an observer to spot
the target.

4.2. Surprise analysis

Each sequence was run through an algorithm, which extracted
the statistics of surprise or for comparison, contrast. The contrast
model (Parkhurst & Niebur, 2003), a common statistical metric
which measures local variance in image intensity over 16 � 16 im-
age patches, was used as a baseline measure. Thus, we created and
trained two network models with the same image sets for contrast
and surprise. The statistics were obtained by running the same set
of 866 sequences through each of the systems (surprise or con-
trast), which returned statistics per frame.

4.3. Training using a neural network

Training was accomplished using a standard back-propagation
trained feed-forward neural network (Fig. 7). The network was
trained using gradient descent with momentum (Plaut, Nowlan,
& Hinton, 1986). The input was first reduced in dimension to about
1/3 the original size from 528 features (listed in Fig. 7) to 170 using
Principal Component Analysis (PCA) derived from the training set
(Jollife, 1986). The input layer to the neural network had 170 nodes
and the first hidden layer had 200 nodes. This was a number ar-
rived at by trying different sizes in increments of 50 neurons (the
validation set was not used in any way during fitting). A network
with 150 hidden units has a very similar, but slightly larger error,
while 250 neurons has an error which is a few percentage points
larger. A second hidden layer had three nodes. For comparison, a
two-layer network model was also tested. The output layer for
all networks had one node. Tangential sigmoid transfer functions
were used from the hidden layers. The output layer had a standard
Fig. 7. The network uses the mean, standard deviation and spatial offset for maximum su
in a given RSVP sequence. This is taken from 22 input frames along eight different featu
judgment about how difficult an image sequence should be for human observers.
linear transfer function. Training was carried out for 20,000 epochs
which is sufficient for the model to converge without over fitting.
Training, testing and validation were done using three disjoint ran-
dom sets with 288 samples of sequences each. The training set was
used for training the network model. The testing set augmented
the training set to test different meta parameters (e.g. number of
neurons, PCA components). Only after all possible meta-parameter
tuning was concluded, the validation set was used to evaluate per-
formance. All results shown are from the final validation set, which
was not used during training or for adjusting any of the meta-
parameters (network size, PCA components, etc.).

As noted, the final output from the neural network was a num-
ber from zero to eight which represented how many observers it
predicted should be able to correctly identify the target on the in-
put sequence. That is, if of the eight observers, four registered a ‘hit’
on that sequence, then the target value was four. A single scalar
output (a number 0–8) is used because it seems to exhibit resis-
tance to noise in our system compared with several different net-
work types with eight or nine outputs (e.g. a binary code using a
normalized maximum). To keep the output from the neural net-
work consistent, the output value was clamped (bounded) and
rounded so that the final value given was forced to be an integer
between zero and eight.

4.4. Validation and results of the neural network performance

Performance evaluation used a validation set with 288 se-
quences, which had not been used at any time during training or
parameter setting. The idea was to try and predict how observers
should perform on the RSVP task. This was done by running the
validation set and obtaining general predicted performance of
observers on the RSVP task. As mentioned, this was a number from
zero to eight for each image sequence, depending on how many
rprise per feature type (the same which were illustrated in Figs. 4–6) for each image
re types. The features are then reduced in dimension using PCA. The output is the
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people the trained network expected to correctly recognize the
presence of a target animal in the sequence. To make this a mean-
ingful output, we needed to define a bound for testing the null
hypothesis. In this case, we should see that the network and Sur-
prise account for a large proportion of RSVP performance. The null
hypothesis would predict that information prior to image sequence
processing would be at least as sufficient as surprise for the task.

To do this, we transformed the sequence prediction into a proba-
bility. The idea was to ascertain how well the network would per-
form if it was asked to tell us for each image whether it expected
an observer to correctly identify a target. Basically, we will compare
the results of different systems, such as Surprise to that of an ideal
predictor. So for instance, if the network output the number six for
a sequence, then 75% of the time we would predict that an observer
should notice the target (six out of eight times). Error is specified
from this as how often the network will predict a hit compared with
how often it should be expected to if it is an ideal predictor. This gives
us an error with an applied utility since it can be used directly to
measure how often our network should correctly predict subject
performance. An RMSE (Root Mean Square Error) gives us a good
metric for network performance, but it does not provide a direct pre-
diction of expected error against subjects in this case.

To compute error (see Fig. 8), we find the empirical error given
the network output difficulty rating and how many hits should be
expected given how the network classified the sequence’s diffi-
culty. This gives us an error of expected hits by the network com-
pared with expected hits given the actual target value for all trials
in the validation set. Here, the neural network performance is com-
pared with that of the ideal predictor. As an example, for all trials
in which 4 out of 8 observers correctly spotted the target animal (a
difficulty of 4), our most reasonable expectation is that observers
Fig. 8. An error metric is derived as how well we should be able to predict a ninth new o
compute the predicted hits for each image from the output of the neural network base
between the network prediction and that of an ideal predictor.
should have a 50% chance of spotting the target. Ideally, if the neu-
ral network predictor is accurate, then it should also predict that
subjects will hit on those targets 50% of the time. If however it
rates some of the ‘‘50%” targets as ‘‘100%” (gives them a difficulty
of 8), then the model will be too optimistic and predict a greater
than 50% chance of hits for the ‘‘50%” targets.

To do this (Fig. 8), the output from the network is sorted into an
n �m confusion matrix of hits where the rows represent the ex-
pected prior target output t and the columns represented the ac-
tual network output y. Thus, if a target in a sequence had six out
of eight hits from the original human observers, this would give
it a difficulty, and a target value of six. If the neural network then
ranked it as a five, then it would incrementally go into cell bin
(i, j) = (5, 6). Where j is the prior observed for how easy this target
was for subjects:

0 6 i 6 8; 0 6 j 6 8 ð1Þ

Expected hits by the network per cell is given by the product of
the number of hits binned in a cell NY

ij by the probability that the
hits will be observed given the prior observed difficulty j as P(j):

PðjÞ ¼ j=8; 0 6 PðjÞ 6 1 ð2Þ

Symbolically we will also assume that:

i ¼ j$ PðiÞ ¼ PðjÞ ð3Þ

NY
ij is how many sequences were binned by the network into

each cell bin in the confusion matrix N at cell i, j. Summing the col-
umns of the expected hits gives the number of expected hits from
the neural network given the prior determined difficulty class j and
the network determined difficulty i. Note that this must be less
than the total number of trials which is 288.
bserver’s RSVP performance for the image sequences we already have data for. We
d on the difficulty rank it gave to each sequence. The final error is the difference
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PY ðhits jj Þ ¼
X8

i¼0

NY
ij � PðiÞ; 0 6 PYðhits jj Þ 6 288 ð4Þ

Also note that the sum of the expected hits must be less than (or
equal to) the total number of trials:

0 6
X

j

PYðhits jj Þ 6 288 ð5Þ

For comparison, we take the prior target data and compute its
expected values given the difficulty as well:

PTðhits jj Þ ¼ NT
j � PðjÞ; 0 6 PTðhits jj Þ 6 288 ð6Þ

A final sum error is derived by subtracting the number of ex-
pected hits as determined by the neural network y (4) with the ex-
pected number of hits from the real targets t (6). That is divided by
the total number of possible hits which yields the final empirical
error Ewhich is the number of expected hits in error divided by
the total number of trials.

E ¼
P

j PY ðhits jj Þ � PTðhits jj Þ
���

���P
jN

T
j

ð7Þ

If E is 0, then the system being tested performs the same as an
ideal predictor. It should be noted, that the ideal predictor in this
case is highly ideal since it is assumed to have perfect knowledge
of sequence difficulty.

Baseline conditions for testing the null hypothesis were created
by generating different sets of Nu. The condition Nnaive was created
by putting the same number of hits into each bin. Thus, it is the
output one would expect given a random uniform guess by the
neural network. Nbayes was created by binning hits at the mean
(mean number of hits for all sequences which is 5.44 out of 8). That
is, in the absence of additional information, we will tend to guess
each sequence difficulty as the mean difficulty. Metaphorically
speaking, this is particularly important since neural networks can
learn to guess the mean value when they cannot understand
how to produce the target value from the input features.

It should be noted that Nbayes is not naïve. It still uses prior infor-
mation to determine the most likely performance for sequences in
the absence of better evidence. It is used as a null hypothesis since
it is the best guess for observer performance prior to image pro-
cessing but knowing the summary distribution of observer perfor-
mance. Additionally, it presents a strong challenge to any models
performance since as a maximum likelihood estimate; it has the
potential to do very well depending on the nature of observer per-
formance variance.

In addition to the surprise system, a contrast system was also
trained in the same way. A range of error was computed by train-
ing both the contrast and surprise systems 25 times and computing
the final validation error each time. This gives a representation of
the error range produced by the initial random weight sets in the
neural network training. The error is the standard 5% error over
the mean and variance of the validation set error for 25 runs. It
should be noted that we attempted to maintain as close a parity
as possible between the training of the contrast system and the
surprise system. However, there is enough difference between
the two systems such that there is room for broader interpretation
as to performance comparison. Since, we introduce the contrast
system as a general metric and this paper is not a model compar-
ison paper the results should not be interpreted as a critique of it.

Fig. 9 shows the expected error from both the contrast system
and surprise system compared with the worst possible predictions.
It can be seen that the surprise system (77.1% correct, error bars
shown in figure) performs better than the contrast system (74.1%
correct) and that the differences are significant within the bounds
of the neural network variance. The surprise and contrast data can
be combined by feeding both data sets in parallel into the network.
If performance of the two combined is better than the surprise sys-
tem by itself, then it suggests that the contrast system contains ex-
tra useful information which the surprise system alone does not
have. However, the combined model (76.6% correct) does not per-
form better than the original surprise system. Its performance ap-
pears slightly worse, but is not significantly different than the
surprise system alone.

Both the contrast and surprise systems perform much better
than the worst possible Naïve model (67.1% correct) and notice-
ably better than the null hypothesis Bayes model (71.7% correct).
It is important to note that while neither the surprise nor con-
trast systems perform perfectly, they should not be expected
to do so since they have no notion of the difficulty of actually
recognizing the particular animal in a target image. They are
only judging difficulty based on simple image statistics for atten-
tion in each sequence. Additionally, as mentioned, the task was
made more difficult by withholding knowledge of the position
of the target in the sequence, from the training system. It can
be seen that when the target frame is known, the model per-
forms its best at 79.5% correct.

We can put this performance in perspective by using the Naïve
model as a baseline. We compute a standard performance increase
f 0bayes as the difference between the performance of the Naïve model
fnaive and the Bayes model fbayes.

f 0bayes ¼ fbayes � fnaive ð8Þ

The same metric for the surprise system is:

f 0surprise ¼ fsurprise � fnaive ð9Þ

The gain of the surprise system over the Bayes model is com-
puted as:

gsurprise ¼
f 0surprise

f 0bayes

ð10Þ

This tells us that the performance increase of the surprise sys-
tem is 2.7 times that of the Bayes model.

5. Discussion

The results shown in Figs. 3–6 are not unexpected given that
the M–W curves closely resemble the timing and shape of both
visual masking (Breitmeyer & Öğmen, 2006) and RSVP atten-
tional blink study results (Chun & Potter, 1995; Einhäuser
et al., 2007a; Keysers & Perrett, 2002; Raymond et al., 1992).
What is interesting is that surprise elegantly reveals the masking
behavior in natural images. This allows efficient use of natural
scenes in vision research since low level bottom-up masking
behavior can be accounted for and controlled. As an added note
on computational efficiency, a single threaded surprise system
will process several images a second with current hardware. This
is important since it has allowed us to extract surprise from
thousands of sequences. Since the surprise system is open source
and downloadable, other researchers should be able to take
advantage of it to create RSVP sequences with a variety of mask-
ing scenarios. Ease of use has also been factored into the sur-
prise system since it is built upon the widely used saliency
code of Itti and Koch (2001).

In addition to the basic metric of surprise, when we combine it
with neural network learning, it predicts which RSVP sequences of
natural images are difficult for observers from those that are easy.
This provides two major contributions. The first is that surprise has
been shown to deliver a good metric for visual detection and recall
experiments. Thus, a variety of vision experiments can be con-



Fig. 9. (A) is the expected error for prediction in performance for the RSVP task. Error bars represent the expected range of performance for the neural networks trained on the
task. Both the surprise system and the contrast model perform much better than the null hypothesis would predict. Combining the image surprise data and contrast data does
not yield better results. (B) shows that a three-layer network performs slightly better than a two-layer network. Additionally, as expected, when the frame offset for the target
is provided to the network, performance increases further since it can now look for the characteristic M–W patterns in the flanking images as seen in Figs. 4–6. Note that (A)
and (B) show the same type of information and can be directly compared.
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ducted, which can use surprise to gain insight into the intrinsic
attentional statistics, especially for natural images. For instance,
as we have done, surprise was successfully manipulated by re-
ordering images in sequences, to modulate recall (Einhäuser
et al., 2007b). Here we have extended on this work by creating a
non-relative metric that can compare difficulty for sequences with
disjoint sets of target and distractor images. That is, our original
work was only able to tell us if a new ordered sequence was rela-
tively more difficult than its original ordering. The current work
gives us a parametric and absolute measure based on how many
observers should be able to spot a target.

The second contribution is that a system can be created to pre-
dict performance on a variety of detection tasks. In this article, we
focused on the specific RSVP task of animal detection. However, the
stimulus which we used is general enough as to suggest that the
same procedure could be used for many other types of images
and sequences.
Fig. 10. The top row is a hypothetical summary of Figs. 4 and 5. Flanking images block
characteristic M–W pattern. A strong tail is observed as much as 250 ms prior. Notably
suggests that a two-stage model similar to (Chun & Potter, 1995) is at work. In the first s
masks are more likely to block information, while stronger surprise in an image is more
parts of images which have passed the first stage are assembled into a coherent object or
new images can help prime it and make it more distinguishable. However, information fro
coherence. This can be summarized by stating that the effects from surprise in the first sta
stages are a side effect of the result of priming, absorption or integration.
5.1. Patterns of the two-stage model

While the interaction between space, time and features is not
completely understood, the interactions within these domains
are well illustrated by our experimental results. Surprise in flank-
ing images aligned spatially and along feature dimensions block
the perception of a target particularly in a window of ±50 ms
around the target image. Additionally, the time course is consistent
at least with respect to Gabor statistics, which show the M–W pat-
tern of attentional capture and gating. However, we must note that
this study does not explicitly establish a constant time course for
any image sequence, but there is some expectation of the time
course to be bounded based on the reviewed masking, RSVP and
attentional blink experiments.

With significant peaks at widely divergent times, our results are
compatible with the two-stage model described by (Chun & Potter,
1995) (for a conceptual diagram, see Fig. 10). In the � 50 ms sur-
the target image based on increase in mean surprise within 100 ms and show the
, the flat portion at 100 ms is at the lag sparing interval for attentional blink. This
tage fierce competition creates a mask with the power of an images surprise. Wider
likely to break through a prior blocking mask even if it is wide. In the later stages,
set of objects. Once the assembly is coherent enough, subordinate information from
m the subordinate images will be absorbed if the second stage has reached a critical
ge are a result of direct competition and blocking while the effects seen in the latter

"
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rounding the target, it is easier for images with targets of higher
surprise to directly interfere with each other. Since targets can
both forward and backward mask at this interval, competition to
pass the first stage is more direct. Already present targets can be
suppressed by new more surprising ones or block less surprising
targets from entering. Then we see a period of about 100 ms where
the target image is in a sense safer, this is at the same point in time
that lag sparing is observed in attentional blink studies. After that
(P200 ms), the data shows that forward masking can block the
perception of the target. Conversely, the data indicates that back-
wards masking does not occur at this interval, but instead we see
enhancement.

The results seen here might be a result of the manner in
which the visual cortex gates and pipelines information and
may be thought of as a two or three stage model seen in
Fig. 10 (stages two and three may be the same stage, but we
parse them here for illustrative purposes). (1) Very surprising
stimuli capture attention from other less surprising stimuli at
±50 ms. Additionally, competition is spatially local allowing for
some types of parallel attention to occur. That is, some image
features can get past the first stage in parallel if they are far en-
ough apart from each other. Parallelism, while not illustrated by
the data presented here is expected based on the reviewed stud-
ies on split attention (Li et al., 2002; McMains & Somers, 2004;
Rousselet et al., 2002, 2004). (2) Stimuli is pipelined at 100 ms
to the next stage of visual processing. This leads to a lag sparing
effect or the safety period observed in Figs. 4 and 5. This is also
observed in the literature we have reviewed which illustrates
the lag-1 sparing in RSVP (Raymond et al., 1992) or a relaxed
period of masking with a Type-B function (Breitmeyer, 1984;
Breitmeyer & Öğmen, 2006; Cox & Dember, 1972; Hogben & Di
Lollo, 1972; Reeves, 1982; Weisstein & Haber, 1965). The pipe-
line may do further processing, but is highly efficient and most
importantly avoids conflicts. (3) After 150 ms, a new processing
bottleneck is encountered. Unlike (1) which is a strict attention
gate meant to limit input into the visual system, we suggest
as others have (Chun & Potter, 1995; Sperling et al., 2001) that
(3) is a bottleneck by the fact of its intrinsic limited processing
resources. Conflict can occur if an image that arrived first is
not finished processing when a second image arrives. The situa-
tion is made more difficult for the second image if the first im-
age has sequestered enough resources to prevent the second
image from processing. The second image in may be integrated
or blocked while at the same time enhancing the first image into
the third stage. That is, an image or set of targets may dominate
visual resources after �250 ms, causing new input stimuli into a
subordinate role. This later stage may also resemble strongly
several current theories of visual processing (Dehaene, Changeux,
Naccache, Sackur, & Sergent, 2006; Lamme, 2004) if it is thought
of in terms of a global workspace or as visual short term mem-
ory (Shih & Sperling, 2002).

To further refine what we have said, the first stage is selective
for images based more strongly on surprise and is not strictly or-
der-dependant, which is why Figs. 4 and 5 show the strong M–W
pattern. The utility of this is perhaps to triage image information
so that the most important nuggets are transported to later stages
which have limited processing capability. The third stage is selec-
tive based on more complex criteria such as order which is why we
observe the asymmetry at ±250 ms in Figs. 4 and 5. However, evi-
dence also suggests that if a second target is salient enough, it may
be able to co-occupy later stages of visual processing with the first
target allowing for detection of both targets in RSVP (Shih & Re-
eves, 2007). Importantly, the relationship between the first target
and the second target appears to be asymmetric in the later stages,
which was illustrated in Fig. 4 from the surprise system at the
±250 ms extremes.
Surprise and attention in the first stage does not necessitate
that later stages do not also contain attention mechanisms. An
attentional searchlight (Crick, 1984; Crick & Koch, 2003) theoreti-
cal model could allow for attention at many levels. That is, as infor-
mation is processed, refined and sent to higher centers of
processing, additional attention processing can allow a continua-
tion of the refinement. Selection can be pushed from the bottom-
up or pulled from top-down processes. Two-stage models which
place attention in a critical role in later stages have been proposed.
For instance, (Ghorashi, Smilek, & Di Lollo, 2007) suggest that lag
sparing in RSVP attentional blink are due to a pause while the vi-
sual system is configured for search in latter stages of processing.
While it is unclear if a pause causes lag sparing from the research
presented, significants of specific features we have illustrated from
surprise at ±250 ms might lend credence to feature specific atten-
tion in later stages,

5.2. Information necessity, attention gating and biological relevance

The results show that the gating of information in the visual
cortex during RSVP may be based on a sound statistical mecha-
nism. That is, target information which carries the most novel evi-
dence is of higher value and is what is selected to be processed in a
window of 100 ms. Target information separated by longer time
intervals may also be indirectly affected by surprise because of
interference in later stages of processing. This happens if more
than one overlapping target is able to enter later visual processing
at the same time. Since surprise effects are indirect at this stage,
surprise may never be able to account for all RSVP performance
effects.

The mechanism for surprise in the human brain we believe is
based on triage. Target information is held briefly during early
processing allowing a second set of target features in the follow-
ing stages to also be processed. Masking at the shortest interval
happens when the two sets of image data are competed against
each other. If the new target information is more surprising, it
usurps the older target information (attention capture), other-
wise it is blocked. Masking in this paradigm depends on compe-
tition within a visual pipeline. Its purpose is to create a short
competition which may even introduce a delay for the sake of
keeping the higher visual processes from becoming overloaded.
After 50 ms, if target information is still intact, it moves beyond
this staging area and out of the reach of competition from very
new visual information. Masking and the loss of target detection
after that point, might be based on how the visual system con-
structs an image from the data it has. After 150 ms, image data
is lost in assembly by virtue of an integrative mechanism in a
larger working memory or global workspace.

Interestingly, if surprise does account well for the Type-B
masking effects many have observed, it suggests that masking
in the short interval is not a result of a flaw in the visual sys-
tem, but rather it is the result of an internally evolved mecha-
nism to directly filter irrelevant stimuli. That is, in the ±50 ms
bounding a target, masking is an effect of an optimal statistical
process. The absence of masking, if it was observed, would indi-
cate that too much information is being processed by the visual
system.

5.3. Generalization of results

Returning to the topic of feed-forward neural networks, another
facet to mention is on the limitations of generalization for net-
works such as the one we used here. Validation was carried out
using images of the same type. As such, we do not necessarily
know that it will perform the same for a completely different type
of image set. As an example, one might imagine target pictures of
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http://ilab.usc.edu.

T.N. Mundhenk et al. / Vision Research 49 (2009) 1620–1637 1635
rocks with automobile distractors. However, evidence suggests
that at less than 150 ms only coarse coding is carried out by the vi-
sual system (Rousselet et al., 2002). Thus, we would expect gener-
alization to other types of images so long as coarse information
statistics are similar. Additionally, the input to the neural network
was extremely general and contained a relative lack of strong iden-
tifying information. That is, we only used whole image statistics of
mean, standard deviation and spatial offset for surprise. It is quite
conceivable that images of other types of targets, and distractors,
may very well exhibit the same basic statistics and, as a result,
the neural network should generalize.

5.4. Comparison with previous RSVP model prediction work

An important item to note here is the difference between the
system we have presented and the one presented by Serre et al.
(Serre, Oliva, & Poggio, 2007). The primary difference is that our
system is based on the temporal differentiation across images in
a sequence whereas the model by Serre et al. is an instantaneous
model. That is, it has no explicit notion of the procession of images
in a sequence, which as we have shown has effect on the perfor-
mance of RSVP. This is particularly true since the same images in
different order around the target can affect performance on the
RSVP task (Einhäuser et al., 2007b).

However, the RSVP task performed by the Serre model is suffi-
ciently different, that any real cross-comparison between the two
models is difficult on anything other than a superficial level. Indeed,
the Serre model has much better target feature granularity, which
perhaps gives it better insight into feature interactions within an im-
age. Thus, one may be able to produce an even better RSVP predictor
by combining the Serre model with the one we presented here,
thereby exploiting both sequence and fine granularity aspects.

5.5. Network performance

It is also interesting to note that with the neural network, the
contrast system performed almost as well as the surprise sys-
tem. However, when the surprise and contrast data are com-
bined, performance is not increased suggesting that the
contrast system does not contain any useful new information
that the surprise system does not already have. That is, given
that the combined surprise/contrast system performs almost ex-
actly the same as the surprise system by itself, and that the con-
trast system still performs much better than chance, suggests
that the surprise system intrinsically contains the contrast sys-
tem’s information (indeed, intensity contrast, computed with
center-surround receptive fields, is one of the features of the
surprise system which is similar but not the exact same thing
as the contrast system). Otherwise, we should expect to see an
improvement in the performance of the combined surprise con-
trast system.

Another network performance issue that should be mentioned
is that in one condition, the neural network performance was
hindered by forcing it to not know the target offset in each se-
quence. This was done to see if a sequence of images could be
labeled with a general metric so that we could conceivably
gauge the recall of any image in the sequence, not just the tar-
get. However, if knowing the target offset frame is a luxury one
can afford, then we illustrated that prediction performance can
be improved even further. That is, knowing which frame is the
target frame in advance, aids in prediction, but the network
can make a prediction, though less accurate, otherwise. This is
to be expected given the M–W shape for surprise as seen in
Fig. 10 where surprise from the flanking images yields the most
information to RSVP performance on the target.
5.6. Applications of the surprise system

In addition to the theoretical implications of our results there are
also applications which can be derived. For instance, the surprise
analysis could be used to help predict recall in movies, commercials
or – by adjustment of timescale – even magazine ads. Since it gives us
a good metric of where covert attention is expected, it may also have
utility in optimizing video compression to alter quality based on
where humans are expected to notice things (Itti, 2004). As long as
images are viewed in a sequence, the paradigm should hold. Even
large static images, whose scanning requires multiple eye-move-
ments, effectively provide a stimulus sequence in retinal coordinates
and will be an interesting issue for further research.

6. Conclusion

Surprise is a useful metric for predicting the performance of tar-
get recall on an RSVP task if natural images are used. Additionally,
in past experiments, we have shown that this can be used to aug-
ment image sequences to change the performance of observers. An
improved system of prediction can be made using a feed-forward
neural network, which integrates spatial, temporal, and feature
concerns in prediction, and can even be done so without knowing
the offset of the target in the sequence. Type-B and spatial masking
effects are revealed by surprise which provides further evidence
that RSVP performance is related to masking and attentional cap-
ture. This also suggests that the masking and attentional capture
are accounted for in a statistical process, perhaps as a triage mech-
anism for visual information in the first stage of a two-stage model
of visual processing.

Appendix A

Given a set M of possible models (or hypotheses), an observer
with prior distribution P(M) over the models, and data D such that:3

PðM Dj Þ ¼ PðDjMÞPðMÞ
PðDÞ ð11Þ

Notably, the data can in this case be many things such as a pixel
value or the value of the output of a feature detector. We are also
not constrained to just vision; a variety of data is useful. To quan-
titatively measure how much effect the data observation (D) had
on the observer beliefs (M), one can simply use some distance mea-
sure d between the two distributions PðM Dj Þ and P(M). This yields
the definition of surprise as (Itti & Baldi, 2005, 2006):

SðD;MÞ ¼ d½PðM Dj Þ; PðMÞ� ð12Þ

One such measure is the Kullback–Leibler (KL) distance (Kull-
back & Leibler, 1951) generically defined as:

L ¼ �
Z

pðxÞ ln
~pðxÞ
pðxÞdx ð13Þ

By combining (13) and (11) we get the surprise given the data
and the model as:

SðD;MÞ ¼ log PðDÞ �
Z

M
PðMÞ log PðD Mj ÞdM ð14Þ

http://sourceforge.net/projects/surprise-mltk
http://sourceforge.net/projects/surprise-mltk
http://ilab.usc.edu
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Surprise can have as its base a variety of statistical processes, so
long as the KL distance can be derived. In this work, we used a
Gamma/Poisson distribution since it models neural firing patterns
(Ricciardi, 1995) and since it gives a natural probability over the
occurrence of events. We can define the Gamma process as:

PðMðkÞÞ ¼ cðk;a;bÞ ¼ ka�1 bae�bk

CðaÞ for k > 0 ð15Þ

and its corresponding KL distance as:

KL c k; a0; b0ð Þ; cðk;a; bÞð Þ ¼ �a0 þ a log
b0

b
þ log

CðaÞ
Cða0Þ þ b

a0

b0

þ ða0 � aÞWða0Þ ð16Þ

Here we note that C is the gamma function (not to be confused
with the gamma probability distribution given in (15) and W is the
digamma function which is the log derivative of the gamma func-
tion C. Surprise itself in this case is the KL distance.

To make this model work, we need to know what a and b are and
how to update them to geta

0
and b

0
. Importantly, in this notation,a

0
is

just the update of a at the next time step. Given some input data d
such as a feature filter response, we can derive a

0
, which is abstractly

analogous to the mean in the normal distribution. It is given as:

a0 ¼ a � fþ d
b

ð17Þ

Here f is a decay forgetting term which has been set as 0.7 based
on earlier work that suggests this is a good value (Itti & Baldi,
2006). To reiterate, this assumes that the underlying process is
Poisson. Otherwise one must use a more complex method to com-
pute a

0
such as the Newton–Raphson method (Choi & Wette, 1969)

or use a completely different process for computing surprise such
as a Gaussian process.

The value of b
0
, which is abstractly analogous to the standard

deviation in the normal distribution can be computed as:

b0 ¼ b � fþ 1 ð18Þ

In this formulation, b is independent of new data for tempo-
ral surprise, but not for spatial surprise which computes the b
term from the image surround. (18) is sufficient for analysis of
RSVP sequences since model evidence collection can start in a
naïve state. Otherwise, for long sequences such as movies, b
should be allowed to float based on longer term changes in
the state of evidence.

To deal with different time scales which have different gains,
the results from a model are fed forward into successive models
from 1 to i where i is the ith model out of n time scales (1 6 i 6 n).
In this case, six time scales are used. For each scale we will com-
pute a different a

0
and thus a different surprise value. For each time

scale, this takes the form of:

a01 ¼ a1 � fþ
. . .

a2 �fþ
a1 �fþ

d
b1

b2

b1
ð19Þ

Over a series of images, surprise can be computed in temporal
and spatial terms. Temporal surprise is a straight forward compu-
tation with updates (17) and (18) where d is the value of a single
location in an image and a is the hyper parameter computed on
the previous frame as a

0
.

Spatial surprise is computed with d also being the value of a
single location, but a and b are treated like the Gamma mean
and variance given values of the surrounding locations in an im-
age. This makes spatial surprise the surprising difference be-
tween a location and its surround. Given the data from m
locations in the surround D and locations j (j e D) and a Differ-
ence of Gaussian (DoG) weighting kernel w, we compute a
weight sum W of the kernel as:
W ¼
Xm

j¼1

wj ð20Þ

The spatial variance �b is computed as:

�b ¼ 1
W
�
Xm

j¼1

bj �wj ð21Þ

Since this operates at multiple time scales, all bj are initialized
to 1 for the first time scale, but are set to the previous time scales
b
0

value thereafter.
The expected value at an image location �a computed from �b is:

�a ¼
�b

W2 �
Xm

j¼1

aj �wj ð22Þ

Again, aj is initialized as the data value for the surrounding im-
age locations in the first time scale, but is set to the previous value
as in (19) after that. The values �a and �b can then be plugged into
(17) and (18) for a and b respectively which allows surprise to
be computed as in (16) for space at each location in an image.

Total surprise for a feature channel S at each location is then
computed as the product of surprise for the sum of temporal t
and space p across all time scales n:

S ¼ ðSp1 þ St1 � . . . � Spn þ StnÞ1=ð3�nÞ ð23Þ

Each surprise map S for each feature type can be combined
into a single surprise map by taking a weighted average over
all the surprise maps. The combined surprise map is created
from individual surprise maps in the same way we have done
in the past with saliency maps (Itti & Koch, 2001; Itti, Koch, &
Braun, 2000; Itti, Koch, & Niebur, 1998) to create a combined
saliency map.
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