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Abstract. Previous experiments have shown that human attention is influenced
by high level task demands. In this paper, we propose an architecture to estimate
the task-relevance of attended locations in a scene. We maintain a task graph and
compute relevance of fixations using an ontology that contains a description of
real world entities and their relationships. Our model guides attention according
to a topographic attention guidance map that encodes the bottom-up salience and
task-relevance of all locations in the scene. We have demonstrated that our model
detects entities that are salient and relevant to the task even on natural cluttered
scenes and arbitrary tasks.

1 Introduction

The classic experiment of Yarbus illustrates how human attention varies with the na-
ture of the task [17]. In the absence of task specification, visual attention seems to be
guided to a large extent by bottom-up (or image-based) processes that determine the
salience of objects in the scene [11, 6]. Given a task specification, top-down (or voli-
tional) processes set in and guide attention to the relevant objects in the scene [4, 1].
In normal human vision, a combination of bottom-up and top-down influences attract
our attention towards salient and relevant scene elements. While the bottom-up guid-
ance of attention has been extensively studied and successfully modelled [13, 16, 14, 8,
5, 6], little success has been met with understanding the complex top-down processing
in biologically-plausible computational terms.

In this paper, our focus is to extract all objects in the scene that are relevant to a
given task. To accomplish this, we attempt to solve partially the bigger and more gen-
eral problem of modelling the influence of high-level task demands on the spatiotempo-
ral deployment of focal visual attention in humans. Our starting point is our biological
model of the saliency-based guidance of attention based on bottom-up cues [8, 5, 6].
At the core of this model is a two-dimensional topographic saliency map [9], which
receives input from feature detectors tuned to color, orientation, intensity contrasts and
explicitly encodes the visual salience of every location in the visual field. It biases atten-
tion towards focussing on the currently most salient location. We propose to extend the
notion of saliency map by hypothesizing the existence of a topographic task-relevance
map, which explicitly encodes the relevance of every visual location to the current task.
In the proposed model, regions in the task-relevance map are activated top-down, cor-
responding to objects that have been attended to and recognized as being relevant. The
final guidance of attention is derived from the activity in a further explicit topographic



map, the attention guidance map, which is the pointwise product of the saliency and
task-relevance maps. Thus, at each instant, the model fixates on the most salient and
relevant location in the attention guidance map.

Our model accepts a question such as “who is doing what to whom” and returns all
entities in the scene that are relevant to the question. To focus our work, we have not
for the moment attacked the problem of parsing natural-language questions. Rather, our
model currently accepts task specification as a collection of object, subject and action
keywords. Thus, our model can be seen as a question answering agent.

2 Related Work

Attention and identification have been extensively studied in the past. A unique behav-
ioral approach to attention is found in [12] where the authors model perception and
cognition as behavioral processes. They guide attention using internal models that store
the sequence of eye movements and expected image features at each fixation. Their
main thrust is towards object recognition and how attention is modulated in the pro-
cess of object recognition. In contrast, we model human attention at a level higher than
object recognition.

The Visual Translator (VITRA) [3] is a fine example of a real time system that
interprets scenes and generates a natural language description of the scene. Their low
level visual system recognises and tracks all visible objects and creates a geometric
representation of the perceived scene. This intermediate representation is then analysed
during high level scene analysis to evaluate spatial relations, recognise interesting mo-
tion events, and incrementally recognise plans and intentions. In contrast to VITRA,
we track only those objects and events that we expect to be relevant to our task, thus
saving enormously on computation complexity. The drawback of the VITRA project is
its complexity that prevents it from being extended to a general attention model. Unlike
humans that selectively perceive the relevant objects in the scene, VITRA attends to all
objects and reports only relevant ones.

A good neural network model for covert visual attention has been proposed by Van
der Laar [15]. Their model learns to focus attention on important features depending on
the task. First, it extracts the feature maps from the sensory retinal input and creates a
priority map with the help of an attentional network that gives the top down bias. Then,
it performs a self terminating search of the saliency map in a manner similar to our
salience model [6]. However, this system limits the nature of its tasks to pyschophysical
search tasks that primarily involve bottom-up processes and are already fulfilled by our
salience model successfully [7] (using databases of sample traffic signs, soda cans or
emergency triangles, we have shown how batch training of the saliency model through
adjustment of relative feature weights improves search times for those specific objects).

In [10], the authors propose a real time computer vision and machine learning sys-
tem to model and recognize human behaviors. They combine top-down with bottom-up
information in a closed feedback loop, using a statistical bayesian approach. However,
this system focusses on detecting and classifying human interactions over an extended
period of time and thus is limited in the nature of human behavior that it deals with. It
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Fig. 1. An overview of our architecture

lacks the concept of a task/goal and hence does not attempt to model any goal oriented
behavior.

3 Architecture

Our attention model consists of 4 main components: the visual brain, the working mem-
ory, the long term memory (LTM) and the agent. The visual brain maintains three maps,
namely the salience map, task-relevance map and attention guidance map. The salience
map (SM) is the input scene calibrated with salience at each point. Task-Relevance Map
(TRM) is the input scene calibrated with the relevance at each point. Attention Guid-
ance Map (AGM) is computed as the product of SM and TRM. The working memory
(WM) creates and maintains the task graph that contains all entities that are expected to
be relevant to the task. In order to compute relevance, the WM seeks the help of the long
term memory that contains knowledge about the various real-world and abtract entities
and their relationships. The role of the agent is to simply relay information between the
visual brain and the WM; WM and the LTM. As such, its behavior is fairly prototyped,
hence the agent should not be confused with a homunculus.

The schema of our model is as shown in figure 1. The visual brain receives the input
video and extracts all low level features. To achieve bottom-up attention processing, we
use the salience model previously mentioned, yielding the SM [8, 5, 6]. Then, the visual
brain computes the AGM and chooses the most significant point as the current fixation.
Each fixation is on a scene segment that is approximately the size of the attended object
[2]. The object and action recognition module is invoked to determine the identity of the
fixation. Currently, we do not yet have a generic object recognition module; it is done by
a human operator. The agent, upon receiving the object identity from the visual brain,
sends it to the WM. The WM in turn communicates with the LTM (via the agent) and
determines the relevance of the current fixation. The estimated relevance of the current
fixation is used to update the TRM . The current fixation is inhibited from returning in
the SM. This is done to prevent the model from fixating on the same point continuously.
The visual brain computes the new AGM and determines the next fixation. This process
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runs in a loop until the video is exhausted. Upon termination, the TRM is examined to
find all the relevant entities in the scene.

The following subsections describe the important new components of our model in
detail. The basic saliency mechanism has been described elsewhere [8, 5, 6].

3.1 LTM

The LTM acts as the knowledge base. It contains the entities and their relationships.
Thus, for technical purposes, we refer to it as ontology from now on. As stated earlier,
our model accepts task specification in the form of object, subject and action keywords.
Accordingly, we have the object, subject and action ontology. In our current implemen-
tation, our ontology focusses primarily on human-related objects and actions. Each on-
tology is represented as a graph with entities as vertices and their relationships as edges.
Our entities include real-world concepts as well as abstract ones. We maintain extra in-
formation on each edge, namely the granularity and the co-occurrence. Granularity of
an edge ( ���������
	 where �����
��	 is an edge) is a static quantity that is uniquely determined
by the nature of the relation. The need for this information is illustrated with an exam-
ple. While looking for the hand, fingers are considered more relevant than man because����������������������� �"!#	%$&��������������'(�)�*	 . Co-occurrence of an edge ( + �������
	 ) refers to the
probability of joint occurrence of the entities connected by the given edge. We illus-
trate the need for this information with another example. While looking for the hand,
we consider pen to be more relevant than leaf because + ������������,��-�*	.$ + �����������
/��#�
��	 .
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Fig. 3. To estimate the relevance of an entity, we check the existance of a path from entity to the
task graph and check for property conflicts. While looking for a hand related object that is small
and holdable, a big object like car is considered irrelevant; whereas a small object like pen is
considered relevant.

Each entity in the ontology maintains a list of properties apart from the list of all its
neighbours. These properties may also serve as cues to the object recognition mod-
ule. To represent conjunctions and disjunctions or other complicated relationships, we
maintain truth tables that store probabilities of various combinations of parent entities.
An example is shown in figure 3.

3.2 WM

The WM estimates the relevance of a fixation to the given task. This is done in two steps.
The WM checks if there exists a path from the fixation entity to the entities in the task
graph. If yes, the nature of the path tells us how the fixation is related to the current task
graph. If no such path exists, we declare that the current fixation is irrelevant to the task.
This relevance check can be implemented using a breadth first search algorithm. The
simplicity of this approach serves the dual purpose of reducing computation complexity
(order of number of edges in task graph) and still keeping the method effective. In the
case of object task graph, we perform an extra check to ensure that the properties of
the current fixation are consistent with the object task graph (see figure 3). This can be
implemented using a simple depth first search and hence, the computation complexity
is still in the order of the number of edges in task graph which is acceptable.

Once a fixation is determined to be relevant, its exact relevance needs to be com-
puted. This is a function of the nature of relations that connect the fixation entity to the
task graph. It is also a function of the relevance of neighbours of the fixation entity that
are present in the task graph. More precisely, we are guided by the following rules: the
mutual influence on relevance between any two entities u and v decreases as a function
of their distance (modelled by a ��������� �	�
����
�� that lies between 0 and 1). The influence
depends directly on the nature of the edge ��������� that is in turn determined by the gran-
ularity ( ����������� ) and co-occurrence measures ( ����������� ). Thus we arrive at the following
formula for computing relevance ( � ).

��� � !#"�$%'&�()%+* ��,.-0/21�354�687�4 �9� %;: ����������� : ���9�<�=�
� : ��������� �	�
����
���� (1)



Fig. 4. In the figure, the first column shows the original scene, followed by the TRM (locations
relevant to the task) and finally, the attentional trajectory. The shapes represent fixations where
each fixation is on a scene segment that is approximately the size of the object. The human
operator recognized fixations as car, building, road or sky. When asked to find the cars in the
scene, the model displayed results as shown in the first row. When asked to find the buildings in
the scene, the model’s results were as shown in the second row.

The relevance of a fixation depends on the entities present in the task graph. Hence,
an important phase is the creation of the intial task graph. The initial task graph consists
of the task keywords. For instance, given a task specification such as ”what is John
catching”; we have ”John” as the subject keyword and ”catch” as the action keyword.
After adding these keywords to the task graph, we further expand the task graph through
the ”is a ” relations. Our new task graph contains ”John is a man”, ”catch is a hand
related action”. As a general rule, upon addition of a new entity into the task graph,
we expand it to related entities. Here, we expand the initial task graph to ”hand related
action is related to hand and hand related object”. Thus even before the first fixation, we
have an idea about what entities are expected to be relevant. Once the initial task graph
is formed, the model fixates and the WM finds the relevance of the new fixation based
on the techniques discussed above. Upon addition of every entity into the task graph,
its relevance is propagated to its neighbours.

4 Results

We tested our model on arbitrary scenes including natural cluttered scenes. To verify
the model, we ran it on several images asking different questions on the same image and
the same question on different images. On the same scene, our model showed different
entities to be relevant based on the task specification. Two such examples are illustrated
here. On a city scene, we asked the model to find the cars. Without any prior knowledge
of a city scene, our model picked the relevant portions of the scene. On the same scene,



Fig. 5. In the figure, the first column is the original image, followed by the TRM after five at-
tentional shifts and the final TRM after twenty attentional shifts. When asked to find the faces
of people in the scene, the model displayed results as shown in the first row. When asked to de-
termine what the people were eating, the model’s results were as shown in the second row. The
human operator recognized fixations as some human body part (face, leg, hand etc) or objects
such as bottle, chandelier, plate, window, shelf, wall, chair, table.

when the model was asked to find the buildings, it attended to all the salient features
in the buildings and determined the roads and cars to be irrelevant (see figure 4). On a
natural cluttered scene, we asked the model to determine the faces of people in the scene
and find what they were eating. As expected, the model showed that the relevance of
entities in the scene varied with the nature of the task. For the first task, the model looked
for human faces and consequently, it marked human body parts as relevant and other
objects as irrelevant. While in the second task, the model looked for hand related objects
near the human faces and hands to determine what the people were eating (see figure
5). Thus, even in arbitrary cluttered scenes, our model picks up the entities relevant to
the current task.

5 Discussion and Outlook

Our broader goal is to model how internal scene representations are influenced by cur-
rent behavioral goals. As a first step, we estimate the task-relevance of attended loca-
tions. We maintain a task graph in working memory and compute relevance of fixations
using an ontology that contains a description of worldly entities and their relationships.
At each instant, our model guides attention based on the salience and relevance of en-
tities in the scene. At this infant stage, most of the basic components of our proposed
architecture are in place and our model can run on arbitray scenes and detect entities in
the scene that are relevant to arbitrary tasks.



Our approach directly contrasts with previous models (see section 2) that scan the
entire scene, track all objects and events and subsequently analyze the scene to finally
determine the task-relevance of various objects. Our aim is to prune the search space,
thereby performing as few object identifications and attentional shifts while trying to
analyse the scene. Towards this end, our salience model serves as a first filtration phase
where we filter out all non salient locations in the scene. As a second phase of filtra-
tion, we attempt to further prune the search space by determining which of these salient
locations is relevant to the current task. Thus, our approach is to perform minimal at-
tentional shifts and to incrementally build up knowledge of the scene in a progressive
manner.

At this preliminary stage, the model has several limitations. It cannot yet make di-
rected attentional shifts, nor does it support instantiation. In future, we plan to expand
the ontology to include more real-world entities and model complex facts. We also plan
to allow instantiation such as “John is an instance of a man”; where each instance is
unique and may differ from each other. Including directed attentional shifts into our
model would require that spatial relations also be included in our ontology (e.g., look
up if searching for a face but found a foot) and would allow for more sophisticated
top-down attentional control. Knowledge of such spatial relationships will also help
us prune the search space by filtering out most irrelevant scene elements (e.g., while
looking for John, if we see Mary’s face, we can also mark Mary’s hands, legs etc are
irrelevant provided we know the spatial relationships). Several models already men-
tioned provide an excellent starting point for this extension of our model [12]. Finally,
there is great opportunity within our new framework for the implementation of more so-
phisticated rules for determining the next shift of attention based on task and evidence
accumulated so far. This in turn will allow us to compare the behavior of our model
against human observers and to obtain a greater understanding of how task demands
influence scene analysis in the human brain.
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