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Abstract

Inspired by nature’s policy of sharing resources, we have
enhanced our attention model with minimal extra hardware
to enable the twin powers of object detection and recog-
nition. With just the elementary information available at
the preattentive stage in the form of low-level feature maps
tuned to color, intensity and orientation, our model learns
representations of objects in diverse, complex backgrounds.
The representation starts with simple vectors of low-level
feature values computed at different locations on the object
(views of the object). We then recursively combine these
views to form instances, in turn combined into simple ob-
jects, composite objects, and so on, taking into account fea-
ture values and their variance. Given any new scene, our
model uses the learnt representation of the target object to
perform top-down biasing on the attention system such as
to render this object more salient by enhancing those fea-
tures which are characteristic of the object. Experimental
results verified the null hypothesis that the enhanced model
would take half the number of fixations as that taken by the
naive bottom-up model to detect all targets in a scene. Our
model is also able to recognize a wide variety of simple ob-
jects ranging from geometrical objects to soda cans, hand-
icap signs, and many others under noisy conditions. There
are few false negatives and false positives. The good per-
formance of our lightweight model suggests that the human
visual system may indeed be sharing resources extensively
and attention and object recognition may be so intimately
related that if we buy attention, we might get the other with
minimal effort!

1. Introduction

In our everyday life, each of our retinas is bombarded
with enormous amounts of information, and transmits on
the order of 102 bits/s to the thalamus for central process-
ing. Yet, our visual system keeps us largely unaware of

Laurent Itti
University of Southern California
Computer Science Department
Los Angeles, CA 90089 - USA
itti @usc.edu

the complexity of this incoming information, and helps us
localize and detect the objects that are relevant to our cur-
rent behavior, and recognize the fixations in a fairly effort-
less manner. While enormous progress has been made in
recent years towards understanding the basic principles of
information processing in visual cortex, we currently lack
a solid computational understanding of how high-level task
demands may allow us to filter out large amounts of irrel-
evant information while focusing our attention on those vi-
sual elements that are salient and relevant to the current task.

Previous work in our lab focussed on how human atten-
tion is deployed under free-examination of any visual scene
[4, 3]. We have developed a bottom-up salience model that
mimics the human attentional system by pruning the search
space and attending to the interesting scene locations. A
natural question to ask nextis “what is this interesting scene
location/fixation entity? If it is indeed interesting, how can
we learn it so that we can detect it faster and recognize it
in any future scene?“ Since nature and biology generally
exhibit sharing of resources and reuse of hardware, we are
particularly interested in knowing what the minimal extra
hardware is that would be required to enhance the human
attentional system with the twin powers of object detection
and recognition. Understanding the extent to which atten-
tion and object recognition share resources can also give us
insight into the internal representations of objects.

Apart from the desire to understand the way the visual
brain works, our motivation also stems from the enormous
potential applications of such a model. Applications range
from simple search tasks requiring single object detection
to more complex search tasks involving multiple object de-
tections and recognition such as in machine assembly and
video surveillance.

We have enhanced our bottom-up salience model to yield
a simple, yet powerful architecture to learn target objects
from training images containing the targets in diverse, com-
plex backgrounds. Our enhanced model shows promising
results and detects the target objects in half the number of
fixations as that taken by our earlier model that was purely



bottom-up and had no bias towards finding specific objects.
Further, there are few false negatives and false positives dur-
ing object recognition.

2. Related Work

In an earlier work [5], we learnt the absolute features (lo-
cal color, intensity and orientation information, at nine spa-
tial scales) of simple target objects, and biased the bottom-
up salience model with the learnt weights. There are signif-
icant differences between our current model and that previ-
ous model. Earlier, we learnt absolute features whereas now
we learn the center-surround features that are more robust
in the presence of noise or changes in absolute illumination,
since they only consider the properties of a location relative
to its neighborhood. Earlier, the model did not learn any
object hierarchy and could not generalize. Instead, it could
only detect the target instances that it had learnt. On the
other hand, our current model can generalize by combining
object classes into a more general super-class (e.g: combin-
ing individual views into instances, instances into simple
objects, and so on). Finally, our current model implements
a new object recognition model, which uses the learnt fea-
tures to recognize the fixations, unlike the earlier model.

Among the well known models of visual search is the
guided search model [13]. The author provides a good dis-
cussion on top-down biasing of visual search. In [14] the
authors discuss preattentive object files as bundles of ba-
sic shapeless features. This seems to suggest that object
recognition may be difficult at this stage. Interestingly, our
model also uses the information available at the preattentive
stage, but, despite the lack of explicit encoding of shape,
our model still performs good detection and recognition of
a wide range of geometrical objects varying in shapes and
size.

Another interesting attentional model for visual search
can be found in [10]. The authors use iconic scene repre-
sentations to guide attention during visual search. But their
model does not consider variability in the object appearance
and hence cannot generalize.

There are several models of object recognition but most
of them do not use the attention system or use non-
preattentive information to perform recognition [9, 11].
However, we use only the elementary information available
at the preattentive stage and reuse the attention system to
perform object detection/recognition.

To summarize, we are not aware of any complete im-
plementation that integrates attention and object detec-
tion/recognition systems.

3. Architecture

The general architecture of our model is as shown in fig-
ure 1. We maintain 7 types of features, for which wide ev-
idence exists in the mammalian visual systems. One fea-
ture type encodes for on/off image intensity contrast [6],
two encode for red/green and blue/yellow double-opponent
channels [7, 2], and four encode for local orientation con-
trast [1, 12]. Each feature is computed in a center-surround
structure akin to visual receptive fields and we compute six
feature maps for each type of feature[3].

3.1. Top-down Biasing for detecting the target ob-
jects

Attention is deployed according to the bottom-up
salience model [3]. During the learning phase, the model
is guided by a binary target mask that highlights the targets
in the input image. When the model hits the target, a few
locations are chosen around the salient location using covert
attention. Each chosen location is called a view. For each
view, we learn the center-surround features (after a normal-
ization) at multiple scales. Specifically, a 42-component
feature vector represents a view (Six center-surround scale
pairs, for four orientation, two color opponent, and one in-
tensity feature types). Thus, we obtain a “bunch” of views
(each view being represented by a feature vector) contained
in the current instance of the target. Next, we gain a sin-
gle, general representation of the instance by combining
the views in a manner discussed below (assuming that each
view is independent and equally likely). We repeat this pro-
cess to gain a single, general representation of the object by
combining the various instances (assuming each instance is
independentand equally likely). In general, we have the fol-
lowing rules for combination of several classes z; to form a
general representation of the super-class Z. Let each class
be a random variable with normal distribution N (y;, %;)
where i denotes the it* class; u; denotes a vector of the
mean of the sub-class features and X; denotes the covari-
ance matrix whose diagonals are the variance of sub-class
features. Due to our assumption that the different features
are mutually independent, %; is a diagonal matrix. We de-
fine Z such that an observation z comes from Z if it comes
from any of its sub-classes z;. Using Bayes rule, we have:

P(X]2) ZP(Xlzi)P(Zz’)

Y P(X|z) *w;

where

w; =1/n
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Figure 1. General architecture of the visual attention system studied here. Early visual features are extracted in parallel in several
multi-scale “feature maps”, which represent the entire visual scene. Such feature extraction is achieved through linear filtering
for a given feature type (e.g., intensity, color or orientation), followed by a center-surround operation which extracts local spatial
discontinuities for each feature type. If the target object’s feature weights are already learnt, then they are used to weight the feature
maps that are subsequently combined into a unique “saliency map.” After such combination is computed, a maximum detector selects
the most salient location in the saliency map and shifts attention towards it. This location is subsequently suppressed (inhibited), to

allow the system to focus onto the next most salient location.

where n is the number of object classes.

—(x—p) T2 (X —p;)
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The mean and variance of Z are as follows (the proof is
not shown here but is easy to demonstrate):

H:Zwi*ﬂi )

The variance of the jt* feature is:

26,9) = Y wi (546,9) + m)) - 2L 2

> w;

In general, Z has a multi-modal distribution. But as a
first approximation and to achieve recursiveness in our im-
plementation, we approximate this multi-model distribution

by a normal distribution N (u, X). That is, we consider only
up to the second moment and discard information contained
in higher moments.

By running the model on several images containing dif-
ferent instances of an object, we can learn the representation
of the instances and combine them to form a representation
of an object, and so on. Thus we have a general rule for
combining representations at any stage of the object hierar-
chy where views are the leaves (level 0), instances are level
1, simple objects are level 2, composite objects are level 3,
etc.

When we want to detect a specific target object (say Z)
in any scene, we bias the visual cortex with the learnt fea-
tures. A feature is considered to be relevant if its mean fea-
ture value is high and its feature variance is low. Hence, we
determine the feature weight as HLE In order to promote
the target in all feature channels, each channel promotes it-
self proportionally to the maximum feature weight or value

of its subchannels. For instance, if the target has a high



value of redness at some scale, then the weight of the red
channel increases and so does the weight of the color chan-
nel. Hence, those channels that are irrelevant for this target
are weighted down or not considered while contributing to
the salience (e.g., for detecting a red object, the orientation
of edges is irrelevant; so the orientation channel’s weights
are decreased so as to promote only color). The weighted
feature maps are then combined to form conspicuity maps
that are in turn combined in a weighted manner to form the
salience map. In the salience map thus formed, all scene
locations whose local features are the same as the target’s
relevant features become more salient. Thus, the target is
more likely to draw attention. However, it should be noted
that all scene locations whose relevant features are a super-
set of the target’s relevant features also become salient (e.g.,
a red ellipse also becomes salient if we are searching for a
red circle). This generates some false positives, which can
be removed at the recognition stage.

3.2. Object Recognition

We allow the model to freely examine the scene and fix-
ate on the salient locations in the scene. At each fixation,
we have the normalized center-surround features at that lo-
cation. It is interesting to ask how far we can go towards
object recognition using this elementary information. We
propose a simple, recursive architecture for object recog-
nition that shares most of its resources with the attentional
system and utilizes minimal extra resources.

As described in the earlier section, we first learn the ob-
ject hierarchy and store it in a knowledge base, which is just
a collection of all known objects. We recognize each fixa-
tion by proceeding from coarser to finer granularity while
finding the object class that gives the maximum likelihood
estimate, i.e. find the object o that maximises the chances
of occurrence of the fixation f. We recursively compute
Match(f,z) that gives the best match among all objects
from the root upto level x in the object heirarchy. Initially,
z is the highest level in our object hierarchy. There are
two important reasons for doing this. The highest level
nodes in the hierarchy have the most coarse, general levels
of representation of their finer descendent nodes; and there
are fewer nodes in the higher levels than the lower levels.
Hence, we can prune our search space by first matching the
fixation with the higher level nodes and pruning the sub-
trees rooted at those nodes that do not match.

We compare the likelihood estimates of the nodes upto
level z in an attempt to find a unique maximum which is
significantly higher than the other likelihood estimates.
If we find a unique maximum, then we declare a unique
object match. Else, we declare ambiguity. Accordingly, we
have the following two cases.

Case 1: Unique match upto level z

Since the object’s representation at level z is a coarse
generalization of its representation at lower levels, we pro-
ceed deeper into the object hierarchy to investigate if the fix-
ation indeed matches any instance or view that we have seen
in the past. Hence, we evaluate M atch(f, z—1) by compar-
ing the likelihood estimates of nodes at the next lower level
x — 1. We recurse until we hit the leaves (views); or un-
til the parent node provides a better match than its children
nodes (in which case we prune the sub-tree rooted at the par-
ent node). Thus, the algorithm is guaranteed to terminate.
Let’s suppose that we obtain a unique match at termination.
Now, there are several interesting possibilities. How should
the model react if it finds a unique match but the likelihood
estimate is low. Or how should the model react if the parent
node matches but none of the children nodes match?

Suppose we find a unique match whose likelihood
estimate is low, we declare failure to recognize the fixation.
As a future extension, we can prompt the user to reveal the
identity of the fixation entity and add it to our knowledge
base. Suppose that at the end of the recursion, we find
that there is a unique match at some object level y that is
higher than the level of views or instances, then we declare
that the fixation is recognized. Since none of the children,
i.e., no instance or view matches, as a future extension, we
can seek the user’s guidance to tell us if this fixation entity
should be added to our knowledge base.

Case 2: Ambiguity upto level z

Due to the lack of certainty upto this level, we proceed
to the next lower level, seeking better matches that will help
us resolve ambiguity. We evaluate Match(f,z — 1) and so
on until we hit the leaf or until the parent node provides a
better match than its children nodes. At termination, if we
cannot find a unique match at any level, we declare failure
to recognize. As a future extension, we intend to seek the
user’s guidance to know the identity of the unknown object
and add it to our knowledge base.

4. Experimental Results

We ran our model on databases of training images that
ranged from artificial images of simple geometrical objects
like squares, circles at different orientations and sizes to nat-
ural images of more complex objects like coke cans, traffic
signs, handicap signs in diverse backgrounds. The model
learnt the features of the different training objects and orga-
nized the information in a hierarchical manner with objects
composed of instances that are in turn composed of views.

Next, we tested our model’s ability to search/detect a sin-
gle learnt object in a new scene. To verify our results, we



postulated 3 hypotheses. The null hypothesis Hy predicted
that the enhanced model would take half the number the
fixations taken by the naive bottom-up model to detect the
targets. The alternative hypothesis H; postulated that the
enhanced model would take more than half the number of
fixations as the naive and the last alternative hypothesis Hs
predicted that the enhanced model would take less than half
the number of fixations as the naive model. We considered
the significance scores for a significance level of 0.05. Re-
sults confirmed the null hypothesis in most cases. In a few
other cases, results supported H» that indicated even bet-
ter performance. An example of a comparison between the
number of fixations taken by the two models are shown in
figure 2. Our model efficiently detected the target even in
scenes with poor resolution. In all of nearly 300 test images,
our model detected the targets efficiently.

To test the ability of our model to recognize arbitrary fix-
ations, we ran it on the same test images mentioned previ-
ously. But this time, the model was task-free and fixated ac-
cording to the bottom-up salience of locations in the scene.
There were few false negatives and false positives (see fig-
ure 3).

5. Discussion

Our main contribution in this paper is to highlight the
extent to which attention and object recognition might share
resources. We are already able to achieve substantial perfor-
mance in object recognition even with the elementary infor-
mation available at the preattentive stage.

With minimal extra hardware, we have enhanced our ex-
isting architecture for deploying attention to perform object
detection and recognition of simple objects in complex nat-
urally cluttered scenes. Our model can learn representations
of the object from different locations (views) within an in-
stance, combine these views to form representations of ob-
ject instances, and further combine these instances to form
the general object representation. Thus, we have a simple
recursive scheme to obtain the general representation of a
super-class as a combination of representations of classes
that are composed of sub-classes and so on. Our simple,
biologically plausible architecture shows a remarkable im-
provement in performance during object detection in di-
verse complex scenes when compared to the naive bottom-
up model. Detection of single targets is real time and the
model can recognize objects ranging from simple geometri-
cal objects like squares, triangles to more complex ones like
coke cans, handicap signs, traffic signs etc.

The good performance of this lightweight model sug-
gests that we may not require any sophisticated machin-
ery demanding complex dedicated filters or explicit encod-
ing of shape in order to provide a first rapid detection and
some recognition of even fairly complex objects in cluttered

scenes. Sharing of resources and reuse of hardware seems
to be the guide to understanding the way the visual brain
works.

The potential applications of our model range from tasks
demanding visual search for single targets to sequential
searches for multiple targets. For instance, our model can
be used in a task like machine assembly where the target
components are to be detected in a strict sequence. A po-
tential application in daily life is by running the model on
mobile robots that can serve their masters better by finding
the tooth-brush and tooth-paste in the morning, followed by
the coffee mug and the dress and shoes and briefcase before
the master leaves for his work. In video surveillance, our
model can serve to detect single suspicious targets in video
sequences.

Apart from commercial applications, the model can also
be used to compare performance against human observers
to give us insight into how the human visual system might
detect and recognize objects.

6. Future work and Conclusion

We have proposed an architecture to achieve fast, reli-
able localization, detection and recognition of simple tar-
gets. We would like to extend this to enable detection and
recognition of more complex targets that are composed of
several simple targets. In particular, we would like to see
how to combine distinct simple objects into a complex com-
posite object such that the resulting representation does not
possess a high feature variance. This will take us from the
current unimodal distributions to multimodal distributions
for each feature.

We would like to make the knowledge base learnable
where the model fixates and if the fixation entity is new, it
learns the features and automatically classifies the fixation
entity into some object category and updates the knowledge
base. While searching for multiple targets in any video se-
quence, we would like to know the optimal biasing strat-
egy that will enable efficient detection of all targets. This
is a difficult task since the biasing strategy can depend on
the targets (while looking for a white and black object, it
is better to bias sequentially in some order than to combine
and look for gray!) or the nature of task (in machine as-
sembly, the strict sequence might force a sequential search
for target components; finding targetl AND target2 versus
finding targetl OR target2) or more complex factors such as
difficulty in finding the targets, probability of occurrence of
target etc.

We would also like to study how attention and recogni-
tion of parts can guide us towards recognition of the whole
object. Since, our ultimate aim is to study how task in-
fluences attention, we would like to find the task-relevant
objects in any scene and bias for them - detect and recog-



Figure 2. The example on the left shows the attentional trajectory during free examination of this scene by our bottom-up salience
model. Even after 20 fixations, the model did not attend to the coke can, simply because its salience was very low compared to that
of other conspicuous objects in the scene. Displayed on the right is the attentional trajectory after top-down biasing for the coke
can object class (built from instances and views of the coke can from other photographs containing the can in various settings). Our
model detected the target as early as the third fixation.

nize them in real time [8]. Towards this end, we would like
to conduct psychophysics experiments and compare eye
movements generated by the model versus human observers
to further our understanding of the human attentional sys-
tem.
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Target Mean Standard deviation ~ Supporting hypothesis  False positives False Negatives

1.11348 1.2115 H, 9.38 4.17
1.76267 2.96217 Hy 10.37 3.05
n 1.03295 1.62655 Hy 0 57.14
—. 2 0.00001 Hy 0 10.00
. 3.9 3.31111 Hy 0 27.59
. 0.307739 0.271301 Hy 6.25 10.94
—. 2 0.00001 Hy 0 20.00
@ 1.18122 0.762739 Hy 0 5.85
—E 2 0.00001 Hy 0 90.00
E 16.4 19.0568 H, 0.65 5.84
n 10.9 14.0263 H, 0 10.00
D 2.4 1.17724 Hy 7.14 21.43
. 2.2 1.11907 Hy 0 41.67
—= 2 0.00001 H, 0 50.00
u 21 0.00001 H, 0 5.00
—n 1.83333 0.593847 Hy 10.00 10.00
E 2.27778 1.10383 Hy 0 7.00
ﬁ 3.71429 3.55834 Hy 3.70 33.33
3.15 18.5185 Hy 23.11 8.49

Figure 3. This table shows the top-down biasing and recognition statistics of our model for a sample from our database of objects.

The first column is the target object that we biased the model for, the second column shows the mean factor of improvement (number
of fixations taken by the naive bottom-up model to detect the target over the number of fixations taken by the biased model); the
third column shows the standard deviation of the factor of improvement; the fourth column shows the supporting hypothesis for

a significance level of 0.05. While the maximum factor of improvement was as high as 20, the average improvement was around
2.5. The null hypothesis Hy (mean factor of improvement = 2.0) was supported by majority of the target objects. The subsequent

columns show the statistics for the heirarchical recognition of arbitrary fixations. As an initial implementation, we considered a
simple object heirarchy with just 3 main levels (all objects, their instances and their views) and at the 4** level was the root that

was a general class combining all the objects. We allowed the model to freely examine the scene and recognize the fixations until it
hit all the target objects. The fifth column shows the percentage of false positives (non-target locations that were falsely recognized
as the target) and the sixth column shows the percentage of false negatives (target locations that were not recognized as the target).

Despite the simplicity of the model, there were few false positives. Since we are attempting to recognize fixations by looking at just
one location on the object, we generated some false negatives.



