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Abstract

We propose a computational model for the task-specific guidance of visual attention in real-world scenes. Our model emphasizes

four aspects that are important in biological vision: determining task-relevance of an entity, biasing attention for the low-level visual

features of desired targets, recognizing these targets using the same low-level features, and incrementally building a visual map of

task-relevance at every scene location. Given a task definition in the form of keywords, the model first determines and stores the

task-relevant entities in working memory, using prior knowledge stored in long-term memory. It attempts to detect the most relevant

entity by biasing its visual attention system with the entity�s learned low-level features. It attends to the most salient location in the

scene, and attempts to recognize the attended object through hierarchical matching against object representations stored in long-

term memory. It updates its working memory with the task-relevance of the recognized entity and updates a topographic task-

relevance map with the location and relevance of the recognized entity. The model is tested on three types of tasks: single-target

detection in 343 natural and synthetic images, where biasing for the target accelerates target detection over twofold on average;

sequential multiple-target detection in 28 natural images, where biasing, recognition, working memory and long term memory

contribute to rapidly finding all targets; and learning a map of likely locations of cars from a video clip filmed while driving on

a highway. The model�s performance on search for single features and feature conjunctions is consistent with existing psychophysical

data. These results of our biologically-motivated architecture suggest that the model may provide a reasonable approximation to

many brain processes involved in complex task-driven visual behaviors.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

There is an interesting diversity in the range of hypo-
thetical internal scene representations, including the

world as an outside memory hypothesis that claims no

photographic memory for visual information (O�Regan,

1992), the coherence theory according to which only one

spatio-temporal structure or coherent object can be rep-
0042-6989/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.visres.2004.07.042

* Corresponding author. Tel.: +1 213 740 3527; fax: +1 213 740

5687.

E-mail addresses: navalpak@usc.edu (V. Navalpakkam), itti@usc.

edu (L. Itti).
resented at a time (Rensink, 2000), a limited memory of

three or four objects in visual short-term memory (Irwin

& Andrews, 1996; Irwin & Zelinsky, 2002), and finally,
memory for many more previously attended objects in

visual short-term and long-term memory (Hollingworth,

2004; Hollingworth & Henderson, 2002; Hollingworth,

Williams, & Henderson, 2001). Together with studies

in change detection (Kanwisher, 1987; Rensink, 2000,

2002; Rensink, O�Regan, & Clark, 1997; Watanabe,

2003), this suggests that internal scene representations

do not contain complete knowledge of the scene. To
summarize, instead of attempting to segment, identify,

represent and maintain detailed memory of all objects

in a scene, there is mounting evidence that our brain
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Fig. 1. Overview of current understanding of how task influences visual attention: Given a task such as ‘‘find humans in the scene’’, prior knowledge

of the target�s features is known to influence low-level feature extraction by priming the desired features. These low-level features are used to compute

the gist and layout of the scene as well as the bottom-up salience of scene locations. Finally, the gist, layout and bottom-up salience map are somehow

combined with the task and prior knowledge to guide attention to likely target locations. The present study attempts to cast this fairly vague overview

model into a more precise computational framework that can be tested against real visual inputs.
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may adopt a need-based approach (Triesch, Ballard,

Hayhoe, & Sullivan, 2003), where only desired objects

are quickly detected in the scene, identified and

represented.

How do we determine the desired objects, and isolate
them from within around 108 bits of information bom-

barding our retina each second? In this section, we pro-

vide a brief overview of some crucial factors. A detailed

review of relevant literature can be found in Section 2.

Studies of eye movements, physiology and psychophys-

ics show that several factors such as bottom-up cues,

knowledge of task, gist of the scene, 1 and nature of

the target play important roles in selecting the focus of
attention (see Fig. 1 for current understanding). Bot-

tom-up processing guides attention based on image-

based low-level cues. Such processes make a red ball
1 An abstract meaning of the scene that refers to semantic scene

category, such as indoor office scene, outdoor beach scene etc.
more salient among a set of black balls. Gist and lay-

out 2 guide attention to likely target locations in a top-

down manner, e.g., if the task is to find humans in the

scene and the gist is an outdoor beach scene, humans

can be found by focusing attention near the water and
the sand. Prior knowledge of the target also accelerates

target detection in visual search tasks and this suggests

that our visual system biases the attentional system with

the known target representation so as to make the target

more salient. Further, the classic eye movement experi-

ments of Yarbus (1967) show drastically different pat-

terns of eye movements over a same scene, depending

on task. To summarize, task (with the aid of the gist
and knowledge of the target) plays an important role

in the selection of the focus of attention. As a conse-

quence, eye movements vary depending on the task
2 Division of the scene into regions in space based on semantic or

visual similarity, e.g., a typical beach scene consists of three regions––

sky on top, water in the middle, and sand at the bottom.
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and humans attend to scene locations that are salient

and relevant to their task.

Our goal in this paper is to model how task influ-

ences attention and to develop a better computational

understanding of how different factors such as bottom-

up cues, knowledge of task and target influence the guid-
ance of attention. However, the neural implementation

of several visual processes, such as computation of the

gist and layout; object recognition; working of the short

term memory and others is largely unknown. Rather

than proposing a solution to each such open problem,

we develop a working system to further our understand-

ing of how these components may interact and interplay

as a whole to fulfill task demands. To make such a large-
scale integration feasible, we have focused on a few core

issues, providing non-biological or black-box implemen-

tations for other components. In particular, we focus on

four outstanding questions, namely determining task-

relevance, biasing, recognizing, and memorizing, further

introduced below.

Given a task and a visual scene, our model first deter-

mines what to look for. For this, we parse the task spec-
ification using an ontology (i.e., a knowledge base

containing entities and their relationships) to yield the

task-related entities and their relationships. Then, we

determine the relevance of the task-related entities and

simply look for the most task-relevant entity in the vis-

ual scene.

To detect a given target quickly and reliably in the

scene, our model biases the low-level visual system with
the known features of the target so as to make the target

more salient, i.e., the bottom-up salience of the target is

modulated in a top-down manner (hence, a combination

of bottom-up and top-down attention). The most salient

scene location is then chosen as the focus of attention.

Due to biasing, the salience of the target should increase,

making it more likely to draw attention.

Biasing is followed by the problem of recognition of
the entity at the focus of attention. We employ a simple

recognition model that shares its resources with the

attention model by using the same pre-attentive fea-

tures. Thus, an important aspect of our approach is to

employ a common set of low-level visual primitives for

bottom-up attention, object representation, top-down

attention biasing, and object recognition. Further, we

achieve recognition in a hierarchical manner wherein
matching proceeds from a general representation of

the object to a specific instance or view of the object.

Having detected and recognized the target in the

scene, our model memorizes it for the purposes of scene

understanding. We address an important problem in

memorization and scene representation, which is the de-

sign and maintenance of an interface between symbolic

knowledge of task-relevant targets and low-level visual
representations based on retinotopic neural maps. For

this, we propose a two-dimensional topographic map
called the task-relevance map (TRM) that encodes the

relevance of the scene entities. To memorize a target,

the corresponding area or location in the TRM is high-

lighted with the target�s relevance, and the target�s visual
features are stored in the visual working memory along

with links to the symbolic knowledge of task-relevant
targets. The TRM is dynamic and can be learned easily,

and can be used to predict object properties such as their

likely locations and sizes in a scene. To summarize, we

propose, partially implement and test a computational

model for the task-specific guidance of attention in vis-

ual scenes. An important aspect of the model is that

its architecture is independent of the type of environ-

ment or task which it will face.
2. Motivation and related work

Visual attention has been often compared to a virtual

spotlight through which our brain sees the world

(Weichselgartner & Sperling, 1987). Attention has been

classified into several types based on whether or not it
involves eye movements (overt vs. covert attention),

and whether its deployment over a scene is primarily

guided by scene features or volition (bottom-up vs.

top-down attention) (for review, see Itti & Koch,

2001a). The first biologically plausible architecture for

controlling bottom-up attention was proposed by Koch

and Ullman (1985). In their model, several feature maps

(such as color, orientation, intensity) are computed in
parallel across the visual field (Treisman & Gelade,

1980), and combined into a single salience map. Then,

a selection process sequentially deploys attention to

locations in decreasing order of their salience. We en-

hance this architecture by modeling the influence of task

on attention.

At the early stages of visual processing, task modu-

lates neural activity by enhancing the responses of neu-
rons tuned to the location and features of a stimulus

(Buracas, Albright, & Sejnowski, 1996; Haenny & Schil-

ler, 1988; Moran & Desimone, 1985; Motter, 1993,

1994a, 1994b; Treue & Maunsell, 1996; Wurtz, Gold-

berg, & Robinson, 1980). For example, area MT+ is

more active during a speed discrimination task whereas

area V1 shows increased activation during a contrast

discrimination task (Huk & Heeger, 2000). In addition,
psychophysics experiments have shown that knowledge

of the target contributes to an amplification of its sali-

ence, e.g., white vertical lines become more salient if

we are looking for them (Blaser, Sperling, & Lu,

1999). A recent study even shows that better knowledge

of the target leads to faster search, e.g., seeing an exact

picture of the target is better than seeing a picture of the

same semantic type or category as the target (Kenner &
Wolfe, 2003). These studies demonstrate the effects of

biasing for features of the target. Other experiments
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(e.g., Treisman & Gelade, 1980) have shown that search-

ing for feature conjunctions (e.g., color · orientation

conjunction search: find a red-vertical item among red-

horizontal and green-vertical items) are slower than

‘‘pop-out’’ (e.g., find a green item among red items). 3

These observations impose constraints on the possible
biasing mechanisms and eliminate the possibility of gen-

erating new composite features on the fly (as a combina-

tion of simple features).

A popular model to account for top-down feature

biasing and visual search behavior is Guided Search

(Wolfe, 1994). It has the same basic architecture as pro-

posed by Koch and Ullman (1985), but in addition, it

achieves feature-based biasing by weighing feature maps
in a top-down manner. For example, with the task of

detecting a red bar, the red-sensitive feature map gains

more weight, hence making the red bar more salient.

However, it is not clear how the weights are chosen in

that model. In our model, we learn a vector of feature

weights (one weight per feature) from images containing

the target (see Section 5). Further, we use the same fea-

ture vectors for attentional biasing, short-term memory
representation, and object recognition. Thus, our model

differs from Guided Search in that we learn internal tar-

get representations from images, and use these learned

representations for top-down biasing. Our choice for

target representation is influenced by the following three

factors.

First, experiments have revealed several pre-attentive

features, including orientation (Julesz & Bergen, 1983;
DeValois, Albrecht, & Thorell, 1982; Tootell, Silver-

man, Hamilton, De Valois, & Switkes, 1988; Wolfe,

Priedman-Hill, Stewart, & O�Connell, 1992), size (Treis-
man & Gelade, 1980), closure (Enns, 1986; Triesman &

Souther, 1986), color (hue) (Bauer, Jolicoeur, & Cowan,

1996; Engel, Zhang, & Wandell, 1997; Luschow &

Nothdurft, 1993; Nagy & Sanchez, 1990, 1992), inten-

sity (Beck, Prazdny, & Rosenfeld, 1983; Leventhal,
1991; Treisman & Gormican, 1988), flicker (Julesz,

1971), direction of motion (Driver, McLeod, & Dienes,

1992; Nakayama & Silverman, 1986). In our current

implementation, we use orientation, color and intensity.

Second, while within-feature conjunctions are consid-

ered inefficient, color · color and size · size conjunc-

tions are efficient in a part-whole setup (e.g., find a

red house with yellow windows among red houses with
blue windows and blue houses with yellow windows)

(Bilsky & Wolfe, 1994). Low-level visual neurons with

center-surround receptive fields and color opponence

can help support such observations. If we represent

the target in terms of center-surround features, informa-

tion about the part can be obtained from the center, and
3 For interpretation of colours in all figures, the reader is referred to

the web version of this article.
information about the whole can be obtained from the

surround. Besides, using center-surround features can

make the system more robust to changes in absolute

feature values that are typically associated with chang-

ing viewing conditions. This motivates us to represent

the target by a vector of center-surround feature
weights. Third, maintaining a pyramid of feature maps

at different spatial scales is known to provide a compact

image code (Burt & Adelson, 1983). Hence, we are moti-

vated to maintain feature responses at multiple spatial

scales.

In summary, our current implementation uses seven

center-surround feature types: on/off image intensity

contrast, red/green and blue/yellow double opponent
channels, and four local orientation contrast (for imple-

mentation details, please see previous papers (Itti &

Koch, 2000)). We compute the feature maps at six differ-

ent pairs of center and surround spatial scales (Itti &

Koch, 2000), yielding 42 feature maps in all. Non-linear

interactions and spatial competition occur in each of

these feature maps (see Section 2.4 in Itti & Koch,

2001b) before the maps are linearly combined into a sali-
ence map. This is a very important (though often over-

looked) aspect of our previously proposed bottom-up

attention model, also used here in the new model. The

operational definition of salience implemented in this

model is such that a feature map which is active at many

locations is not considered a strong driver of attention

(since one would not know to which of the active loca-

tions attention should be directed), while a feature
map active at only one location is a strong driver. This

is implemented in the bottom-up model (Itti & Koch,

2000, 2001b) as non-classical surround inhibition within

each feature map, whereby neighboring active locations

cancel each other out, while a unique active location

would not be affected (or even is amplified in our model).

Finally, in order to find the focus of attention, we

deploy a Winner-Take-All (WTA) spatial competition in
the salience map that selects the most salient location in

the salience map (Itti, Koch, & Niebur, 1998).

Having selected the focus of attention, it is important

to recognize the entity at that scene location. Many rec-

ognition models have been proposed that can be classi-

fied based on factors including the choice of basic

primitives (e.g., Gabor jets (Wiskott, Fellous, Krüger,

& von der Malsburg, 1997), geometric primitives like
geons (Biederman, 1987), image patches or blobs (We-

ber, Welling, & Perona, 2000), and view-tuned units

(Riesenhuber & Poggio, 1999)), the process of matching

(e.g., self-organizing dynamic link matching (Lades

et al., 1993), probabilistic matching (Weber et al.,

2000)), and other factors (for reviews, see Arman &

Aggarwal, 1993; Riesenhuber & Poggio, 2000). In this

paper, we explore how the pre-attentive features used
to guide attention may be re-used for object representa-

tion and recognition. Since we represent the target as a



Fig. 2. We hypothesize the existence of different kinds of salience maps

that encode different nature of information about the scene. In

particular, we hypothesize that the posterior parietal cortex may

encode a visual salience map, the pre-frontal cortex may encode a top-

down task-relevance map, and the superior colliculus may store an

attention guidance map that guides the focus of attention.
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single feature vector, we do not handle complex or com-

posite objects in the current model.

Recognition is followed by the problem of memoriza-

tion of visual information. A popular theory, the object

file theory of trans-saccadic memory (Irwin, 1992a,

1992b; Irwin & Andrews, 1996), posits that when atten-
tion is directed to an object, the visual features and loca-

tion information are bound into an object file

(Kahneman & Treisman, 1984) that is maintained in vis-

ual short term memory across saccades. Psychophysics

experiments have further shown that up to three or four

object files may be retained in memory (Irwin, 1992a;

Irwin & Zelinsky, 2002; Luck & Vogel, 1997; Pashler,

1988; Sperling, 1960). Studies investigating the neural
substrates of working memory in primates and humans

suggest that the frontal and extrastriate cortices may

both be functionally and anatomically separated into a

‘‘what’’ memory for storing the visual features of the

stimuli, and a ‘‘where’’ memory for storing spatial infor-

mation (Courtney, Ungerleider, Keil, & Haxby, 1996;

Wilson, O Scalaidhe, & Goldman-Rakic, 1993). Based

on the above, in our model, we memorize the visual rep-
resentation of the currently attended object by storing

its visual features in the visual working memory. In

addition, we store symbolic knowledge such as the logi-

cal properties of the currently attended object and its

relationship with other objects, in the symbolic working

memory with help from the symbolic long-term mem-

ory. To memorize the location of objects, we extend

the earlier hypothesis of a salience map (Koch & Ull-
man, 1985) to propose a two-dimensional topographic

task-relevance map that encodes the task-relevance of

scene entities. Our motivation for maintaining various

maps stems from biological evidence. Single-unit record-

ings in the visual system of the macaque indicate the

existence of a number of distinct maps of the visual envi-

ronment that appear to encode the salience and/or the

behavioral significance of targets. Such maps have been
found in the superior colliculus, the inferior and lateral

subdivisions of the pulvinar, the frontal-eye fields and

areas within the intraparietal sulcus (Colby & Goldberg,

1999; Gottlieb, Kusunoki, & Goldberg, 1998; Kustov &

Robinson, 1996; Thompson & Schall, 2000). Since these

neurons are found in different parts of the brain that

specialize in different functions, we hypothesize that they

may encode different types of salience: the posterior
parietal cortex may encode a visual salience map, while

the pre-frontal cortex may encode a top-down task-rele-

vance map, and the final eye movements may be gener-

ated by integrating information across the visual

salience map and task-relevance map to form an atten-

tion guidance map possibly stored in the superior colli-

culus (Fig. 2).

Our analysis so far has focused on the attentional
pathway. As shown in Fig. 1, non-attentional pathways

also play an important role; in particular, rapid identifi-
cation of the gist (semantic category) of a scene is very

useful in determining scene context, and is known to
guide eye movements (Biederman, Mezzanotte, & Rabi-

nowitz, 1982; Chun & Jiang, 1998; De Graef, Christia-

ens, & d�Ydewalle, 1990; Henderson & Hollingworth,

1999; Palmer, 1975; Rensink, 2000; Torralba, 2003). It

is computed rapidly within the first 150ms of scene onset

(Thorpe, Fize, & Marlot, 1996), and the neural correlate

of this computation is still unknown. Recently, Oliva

and Torralba (2001) proposed a holistic representation
of the scene based on spatial envelope properties (such

as openness, naturalness etc.) that bypasses the analysis

of component objects and represents the scene as a

single identity. This approach formalizes the gist as a

vector of contextual features (Torralba, 2003). By

processing several annotated scenes, these authors

learned the relationship between the scene context and

categories of objects that can occur, including object
properties such as locations, size or scale, and used it

to focus attention on likely target locations (Torralba,

2002, 2003). This provides a good starting point for

modeling the role of gist in guiding attention. Since
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the gist is computed rapidly, it can serve as an initial

guide to attention. But subsequently, our proposed

TRM that is continuously updated may serve as a better

guide. For instance, in dynamic scenes such as traffic

scenes where the environment is continuously changing

and the targets such as cars and pedestrians are moving
around, the gist may remain unchanged and hence, it

may not be so useful, except as an initial guide.

The use of gist in guiding attention to likely target

locations motivates knowledge-based approaches to

modeling eye movements, in contrast to image-based ap-

proaches. One such famous approach is the scanpath

theory which proposes that attention is mostly guided

in a top-down manner based on an internal model of
the scene (Norton & Stark, 1971). Computer vision

models have employed a similar approach to recognize

objects. For example, Rybak, Gusakova, Golovan,

Podladchikova, and Shevtsova (1998) recognize objects

by explicitly replaying a sequence of eye movements

and matching the expected features at each fixation with

the image features. In the present study, we focus on

bottom-up guidance of attention and its top-down bias-
ing, but we do not model such knowledge-based directed

eye movements.

An interesting model for predicting eye movements

during a search and copying task has been proposed

by Rao, Zelinsky, Hayhoe, and Ballard (2002). These

authors use iconic scene representations to predict eye

movements during visual search. They compute salience

at a given location based on the squared Euclidean dis-
tance between a feature vector containing responses of a

bank of filters at that location, and the memorized vec-

tor of target responses. They validate their model

against human data obtained in a search task and cop-

ying task and demonstrate some interesting center of

gravity effects. This model is very interesting in that it

suggests a highly efficient mechanism by which salience

could be biased for the detection of a known target.
However, this approach suffers from two shortcomings

addressed by our model. First, since salience is com-

puted as the distance between observed and target fea-

tures, this model does not provide a mechanism by

which attention could be directed in a purely bottom-

up manner, when no specific target is being looked

for. Hence, this model cannot reproduce simple pop-

out, where a single vertical bar is immediately found
by human observers within an array of horizontal bars,

even in cases where observers had no prior knowledge of

what to look for. Second, when target features are

known, we will see in Section 7 that such template-based

approach would predict that conjunction searches (Tre-

isman & Gelade, 1980) should be as efficient as pop-out

searches, which differs from empirical observations in

humans. The biasing mechanism proposed in our model
is less efficient but in better agreement with human data

(see Section 7).
To summarize, we have motivated the components of

our model which we believe are crucial for scene under-

standing. Ours is certainly not the first attempt to ad-

dress this problem. For example, one of the finest

examples of real-time scene analysis systems is The Vis-

ual Translator (VITRA) (Herzog & Wazinski, 1994), a
computer vision system that generates real-time verbal

commentaries while watching a televised soccer game.

Their low-level visual system recognizes and tracks all

visible objects from an overhead (bird�s eye) camera

view, and creates a geometric representation of the per-

ceived scene (the 22 players, the field and the goal loca-

tions). This intermediate representation is then analyzed

by series of Bayesian belief networks which evaluate
spatial relations, recognize interesting motion events,

and incrementally recognize plans and intentions. The

model includes an abstract, non-visual notion of salience

which characterizes each recognized event on the basis

of recency, frequency, complexity, importance for the

game, and other factors. The system finally generates a

verbal commentary, which typically starts as soon as

the beginning of an event has been recognized but may
be interjected if highly salient events occur before the

current sentence has been completed. While this system

delivers very impressive results in the specific application

domain considered, due to its computational complexity

it is restricted to one highly structured environment and

one specific task, and cannot be extended to a general

scene understanding model. Indeed, unlike humans

who selectively perceive the relevant objects in the scene,
VITRA attends to and continuously monitors all objects

and attempts to simultaneously recognize all known ac-

tions. Our approach differs from VITRA not only in

that there is nothing in our model that commits it to a

specific environment or task. In addition, we only mem-

orize those objects and events that we expect to be rele-

vant to the task at hand, thus saving enormously on

computation complexity.
3. Overview of our architecture

In this section, we present a summary of our architec-

ture which can be understood in four phases (Fig. 3).

3.1. Phase 1: eyes closed

In the first phase known as the ‘‘eyes closed’’ phase,

the symbolic working memory (WM) is initialized by

the user with a task definition in the form of keywords

and their relevance (any number greater than baseline

1.0). Given the relevant keywords in symbolic WM, voli-

tional effects such as ‘‘look at the center of the scene’’

could be achieved by allowing the symbolic WM to bias
the TRM so that the center of the scene becomes rele-

vant and everything else is irrelevant (but our current



Fig. 3. Phase 1 (top left): Eyes closed, Phase 2 (top right): Computing, Phase 3 (bottom left): Attending, Phase 4 (bottom right): Updating. Please

refer to Section 3 for details about each phase. All four panels represent the same model; however, to enable easy comparison of the different phases,

we have highlighted the components that are active in each phase and faded those that are inactive. Dashed lines indicate parts that have not been

implemented yet. Following Rensink�s (2000) terminology, volatile processing stages refer to those which are under constant flux and regenerate as

the input changes.
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implementation has not explored this yet). For more
complex tasks such as ‘‘who is doing what to whom,’’

the symbolic WM requires prior knowledge and hence,

seeks the aid of the symbolic long-term memory

(LTM). For example, to find what the man in the scene

is eating, prior knowledge about eating being a mouth

and hand-related action, and being related to food items

helps us guide attention towards mouth or hand and

determine the food item. Using such prior knowledge,
the symbolic WM parses the task and determines the

task-relevant targets and how they are related to each

other. Our implementation explores this mechanism

using a simple hand-coded symbolic knowledge base
to describe long-term knowledge about objects, actors
and actions (Section 4). Next, it determines the current

most task-relevant target as the desired target (Section

4). To detect the desired target in the scene, the visual

WM retrieves the learned visual representation of the

target from the visual LTM and biases the low-level vis-

ual system with the target�s features (Section 5).

3.2. Phase 2: computing

In the second phase known as the ‘‘computing’’

phase, the eyes are open and the visual system receives

the input scene. The low-level visual system that is
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biased by the target�s features computes the biased sali-

ence map (Section 5). Apart from such feature-based

attention, spatial attention may be used to focus on

likely target locations, e.g., gist and layout may be used

to bias the TRM to focus on relevant locations (but this

is not implemented yet). Since we are interested in
attending to locations that are salient and relevant, the

biased salience and task-relevance maps are combined

by taking a pointwise product to form the attention-

guidance map (AGM). To select the focus of attention,

we deploy a Winner-take-all competition that chooses

the most active location in the AGM (Itti et al., 1998).

It is important to note that there is no intelligence in this

selection and all the intelligence of the model lies in the
WM.
3.3. Phase 3: attending

In the third phase known as the ‘‘attending’’ phase,

the low-level features or prototype objects are bound

into a mid-level representation (in our implementation,

this step simply extracts a vector of visual features at
the attended location). The object recognition module

determines the identity of the entity at the currently at-

tended location (Section 6), and the symbolic WM esti-

mates the task-relevance of the recognized entity

(Section 4).
3.4. Phase 4: updating

In the final phase known as the ‘‘updating’’ phase, the

WM updates its state (e.g., records that it has found the

man�s hand). It updates the TRM by recording the rele-

vance of the currently attended location (Section 4). The

estimated relevance may influence attention in several

ways. For instance, it may affect the duration of fixation

(not implemented). If the relevance of the entity is less

than the baseline 1.0, it is marked as irrelevant in the
TRM, and hence will be ignored by preventing future

fixations on it (e.g., a chair is irrelevant when we are try-

ing to find what the man is eating. Hence, if we see a

chair, we ignore it). If it is somewhat relevant (e.g.,

man�s eyes), it may be used to guide attention to a more

relevant target by means of directed attention shifts

(e.g., look down to find the man�s mouth or hand; not

implemented). Also if it is relevant (e.g., man�s hand),
a detailed representation of the scene entity may be cre-

ated for further scrutiny (e.g., a spatio-temporal struc-

ture for tracking the hand; not implemented). The

WM also inhibits the current focus of attention from

continuously demanding attention (inhibition of return

in SM). Then, the symbolic WM determines the next

most task-relevant target, and the visual WM retrieves

the target�s learned visual representation from visual
LTM, and uses it to bias the low-level visual system.
This completes one iteration. The computing, attend-

ing and updating phases repeat until the task is

complete. Upon completion, the TRM shows all task-

relevant locations and the symbolic WM contains all

task-relevant targets.

As mentioned earlier (Section 1), our focus in this pa-
per is on determining task-relevance, biasing, recogniz-

ing, and memorizing. Accordingly, we have designed

symbolic LTM and WM modules for estimating task-

relevance (Sections 4.1 and 4.2) and also for computing

and learning task-relevant locations in a TRM (Sections

4.2 and 7); visual WM and LTM modules for learning

object representations (Section 5.1), reusing the learned

target representations to compute the biased saliency
map for object detection (see Section 5.2), and matching

against learned representations for object recognition

(see Section 6). Implementation of other components

(such as gist, layout, object trackers) and their interac-

tions is still under progress and we do not include their

details in this paper.
4. Estimating the task-relevance of scene entities

In this section, we propose a computational frame-

work for estimating the task-relevance of scene loca-

tions. This is essentially a top-down process requiring

prior knowledge about the world and some semantic

processing. Hence, we recruit symbolic LTM and WM

modules. Our current architecture is based on research
in artificial intelligence and knowledge representation

(Brachman & Levesque, 1985) and is not biological.

4.1. Symbolic long-term memory (LTM)

The symbolic LTM acts as a knowledge base. It con-

tains entities and their relationships. For consistency

with the vocabulary used in knowledge representation
research, we refer to it as ontology from now on. We

currently address tasks such as ‘‘who is doing what to

whom’’ and accept task specifications in the form of ob-

ject, subject and action keywords. Hence, we maintain

object, subject and action ontologies. Each ontology is

represented as a graph with entities as vertices and their

relationships as edges. Our entities include real-world

concepts as well as abstract ones. In our current imple-
mentation, we consider simple relationships such as is a,

includes, part of, contains, similar, and related. The fol-

lowing examples motivate the need to store more infor-

mation in the edges. Consider the case when we want to

find a hand. Suppose we find a finger (hand contains fin-

ger) and a man (hand is part of man), how should we

determine which of them is more relevant? Clearly, the

finger is more relevant than the man because if the finger
is found, it implies that the hand has been found.

However, if the man is found, we still require a few



4 Path length between two nodes A and B of a graph is calculated as

the number of edges in the path between A and B.
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eye movements before finding the hand within the man.

To incorporate this, we create a partial order on the set

of relationships by ranking them according to the prior-

ity or granularity of a relationship g(r(u,v)), where r(u,v)

is the relationship between entity (u and v). In general,

• g(contains) > g(partof),

• g(is a) > g(includes),

• g(related) > g(similar).

Let us consider another case where we still want to

find the hand, but we find a pen and a leaf instead,

and wish to estimate their relevance. This situation is

unlike the previous one since both entities are hand-
related objects and hence, share the same relationship

with the hand. Yet, we consider the pen to be more rel-

evant than the leaf because in our daily lives, the hand

holds a pen more often than it holds a leaf (unless we

are considering gardeners!). Thus, the probability of

joint occurrence of entities seems to be an important fac-

tor in determining relevance. Hence, we store co-occur-

rence of the entities c(u,v).
Apart from storing information in the edges, we also

store information in the nodes. Each node maintains a

list of properties in addition to the list of all its neigh-

bors. To represent conjunctions and disjunctions or

other complicated relationships, we maintain truth

tables that describe the probabilities of various combi-

nations of parent entities. An example is shown in Fig.

4. Currently, our ontology is not learnable. For the pur-
poses of testing the model, we have hand-coded the

ontology with hand-picked values of co-occurrence

and granularity.

4.2. Symbolic working memory (WM)

The symbolic WM creates and maintains task graphs
for objects, subjects and actions that contain task-rele-

vant entities and their relationships. After the entity at

the current fixation (fixated entity) is recognized, sym-

bolic WM estimates its task-relevance as follows. First,

it checks whether the fixated entity is already present

in the task graph, in which case, a simple lookup gives

the relevance of the fixated entity. If it fails to find the

fixated entity in its task graph, then it seeks the help
of symbolic LTM in the following: the symbolic WM re-

quests the symbolic LTM to check whether there exists a

path in the ontology from the fixated entity to any of the

entities in the task graph. If so, the nature of the path

reveals how the fixation is related to the current task

graph. If no such path exists, the fixated entity is de-

clared to be irrelevant to the task. In the case of the ob-

ject task graph, an extra check is performed to ensure
that the properties of the fixated entity are consistent

with the object task graph (see Fig. 5 for examples). If

the tests succeed and the fixated entity is determined
to be relevant, the symbolic LTM returns the discovered

paths (from the fixated entity to the entities in the task

graph) to the symbolic WM.

The symbolic WM computes the relevance of the fix-

ated entity as a function of the relevance of its neighbor-

ing entities (in the task graph) and the nature of its
connecting relations. Let us consider the influence of en-

tity u (whose relevance is known) on entity v (whose rel-

evance is to be computed). This depends on

• the relevance of entity u (Ru),

• the granularity of the relationship r(u,v) (g(r(u,v))).

• the conditional probability P(v is relevantju is rele-

vant). For the purposes of visual scene analysis, v is
considered to be relevant if it helps us find u. Hence

the conditional probability can be estimated from

previous experience as P(u will be foundjv is found)

or P(u occursjv occurs). This is the same as c(u,v)/

P(v), where c(u,v) is the co-occurrence of u and v.

To model the decaying influence with increasing path

length 4 between the entities, we introduce a decay_fac-
tor that lies between 0 and 1. Thus we arrive at the fol-

lowing expression for computing relevance of entity v

(Rv):

Rv ¼ max
u:ðu;vÞ is an edge

ðRu � gðrðu; vÞÞ � cðu; vÞ=PðvÞ

� decay factorÞ ð1Þ

The relevance of a new entity depends on the task-

relevant entities already present in the task graph.

Hence, creation of the initial task graph is important.

In our implementation, the initial task graph consists

of task keywords and their relevance as input by the
user. For instance, given a task specification such as

‘‘what is the man catching’’, the user inputs ‘‘man’’ as

the subject keyword and ‘‘catch’’ as the action keyword,

along with their relevance (any number greater than

baseline 1.0). After adding these keywords to the task

graph, we further expand the task graph through the

is a relation. Our new task graph contains ‘‘man is a

human’’, ‘‘catch is a hand-related action’’. As a general
rule, upon addition of a new entity into the task graph,

we expand it to the related entities (entities connected

through the related relation). In this example, we expand

the initial task graph to ‘‘hand-related action is related

to hand and hand-related object’’. Thus even before

the first fixation, we know that we are looking for a

hand-related object, i.e., we have an idea about what

entities are expected to be relevant. Such expansion of
the task into task-relevant targets allows the model

to compute the relevance of fixated entities in the man-

ner explained above. For example, if the fixation is



Fig. 4. Sample ontology, as used to represent long-term knowledge in our model. The relations include is a, includes, part of, contains, similar, related.

While the first five relations appear as edges within a given ontology, the related relation appears as edges that connect the three different ontologies.

The relations contains and part of are complementary to each other as in Ship contains Mast, Mast is part of Ship. Similarly, is a and includes are

complementary. Hand-picked co-occurrence measures are shown on each edge and the conjunctions, disjunctions are shown using the truth tables. In

the figure, RO refers to related object.
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recognized as an object belonging to the car category,

then it is determined to be irrelevant as it is not a

hand-related object (Fig. 5).

To summarize, our proposed architecture expands a

given task into task-relevant entities and determines

the task-relevance of scene entities. Once the task-
relevant entities or targets are known, the next step is

to efficiently detect them in the scene.
5. Top-down biasing for object detection

With just the elementary information available at the

pre-attentive stage in the form of low-level feature maps
tuned to color, intensity and orientation, our model

learns representations of objects in diverse, complex

backgrounds. The representation starts with simple vec-

tors of low-level feature values computed at different

locations on the object, called views. We then recursively

combine these views to form instances, in turn combined

into simple objects, composite objects, and so on, taking

into account feature values and their variance. Given
any new scene, our model uses the learned representa-

tion of the target object to perform top-down biasing

on the attentional system, such as to render this object

more salient by enhancing those features that are char-

acteristic of the object. The details of how our model

learns and detects targets are explained in the following
subsections.

5.1. Learning the object representation

During the learning phase, the model operates in a

free-viewing mode. That is, in the absence of any task,

there are no top-down effects, the TRM is uniform

(baseline 1.0 everywhere), and the AGM is the same as
the salience map. Thus, in the absence of task, our

model deploys attention according to the bottom-up

salience model (Itti & Koch, 2000). To guide the model

to the location of the target, we use a binary target mask

that serves as a location cue by highlighting the targets

in the input image. It should be noted that we do not

use the target mask to segment the target from its back-

ground. In fact, we attempt to learn not only the object



Fig. 5. To estimate the relevance of an entity, we check the existence of a path from the entity to the task graph and check for property conflicts. To

find ‘‘what is the man catching’’, we are looking for a hand related object that is small and holdable, hence a big object like car is considered

irrelevant; whereas a small object like pen is considered relevant.
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properties, but also local neighborhood properties. This

is useful since in several cases, the object and its back-

ground may co-occur and hence, the background infor-

mation may aid in the detection of the object.

When the model attends to the target, a few locations

are chosen around that salient location (currently, the
model chooses nine locations from a 3 · 3 grid of fixed

size centered at the salient location). For each chosen

location, the visual WM learns the center-surround fea-

tures at multiple spatial scales and stores them in the vis-

ual LTM. The coarser scales include information about

the background while the finer scales contain informa-

tion about the target. Specifically, a 42-component fea-

ture vector extracted at a given location represents a
view (red/green, blue/yellow, intensity and four orienta-

tions at six center-surround scales). Thus, we obtain a

collection of views contained in the current instance of

the target.

The visual WM combines the different views obtained

above to form a more stable, general representation of

an instance of the object that is robust to noise. It re-

peats this process by retrieving the stored instances from
the visual LTM and combining them to form a general

representation of the object and so on. The following

rules are used for combination of several object classes
(equally likely, mutually exclusive) to form a general

representation of the super-object class. Let Xi be the

event that the ith object class occurs, where i 2 1,

2,. . . ,n. Let Y be the event that the super-object class oc-

curs. We define Y as follows:

Y ¼
[
i

X i ð2Þ

In other words, an observation is said to belong to the

super-object class if and only if it belongs to any of

the object classes (e.g., an observation belongs to an ob-

ject category if and only if it belongs to any of the object
instances).

Let O be the random variable denoting an observa-

tion and O = o be the event that the value o is observed.

P(O = ojXi) refers to the class conditional density, i.e.,

the probability of observing O = o given that the ith ob-

ject class has occurred. Let P(O = ojXi) follow a normal

distribution N(li,Ri) where li = (li1li2 � � �li42)T, i.e., a
vector of the mean feature values, and Ri is the covari-
ance matrix. Due to our assumption that the differ-

ent features are independent, the covariance matrix

reduces to a diagonal matrix, whose diagonal entries

equal the variance in feature values, represented as

r2
i ¼ ðr2

i1 r
2
i2 � � � r2

i42Þ
T
.
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Our aim is to find the distribution of OjY. As shown

in Appendix A, we obtain the following:

P ðO ¼ o j Y Þ ¼
X

i
P ðO ¼ o j X iÞwi ð3Þ

where wi ¼P ðX iÞ
X

j
P ðX jÞ

.
ð4Þ

¼1=n ðsince X i are equally likelyÞ ð5Þ
l ¼E½O j Y � ð6Þ
¼
X

i
wili ð7Þ

r2 ¼E½ðO j Y Þ2� � ðE½O j Y �Þ2 ð8Þ
¼
X

i
wiðr2

i þ l2
i Þ � l2 ð9Þ

In general, OjY has a multi-modal distribution. But as a

first approximation and to achieve recursion in our

implementation, we consider only up to the second mo-

ment and approximate this multi-modal distribution by
a normal distribution N(l,r2).

By processing several images containing different

poses and sizes of an object, the visual WM, along with

the help of visual LTM, learns the representation of the

views, instances and combines them to form a represen-

tation of the object (Fig. 6).
5.2. Object detection using the learned visual

representation

To detect a specific target object in any scene, the vis-

ual WM uses the learned representation stored in the
visual LTM to bias the combination of different feature

maps to form the salience map. A feature f is considered

to be relevant and reliable if its mean feature value is

high and its feature variance is low. Hence, we determine

the weight by which this feature will contribute to the

salience map (feature weight) as R(f).

Rðf Þ ¼ relevance of feature f ¼ lðf Þ
1þ rðf Þ

where

lðf Þ ¼ mean response to feature f ;

r2ðf Þ ¼ variance in response to feature f

We compute several classes of features in several visual

processing channels (Section 2) and create a channel

hierarchy H as follows. H(0) (leaves): the set of all fea-

tures at different spatial scales; H(1): the set of subchan-

nels formed by combining features of different spatial
scales and the same feature type; H(2): the set of chan-

nels formed by combining subchannels of same modal-

ity; . . . H(n): the salience map (where n is the height of

H). In order to promote the target in all the feature

channels in the channel hierarchy, each parent channel

promotes itself proportionally to the maximum feature

weight of its children channels.
8p 2
[n
k¼0

HðkÞ; RðpÞ / max
c2childrenðpÞ

ðRðcÞÞ

For instance, if the target has a strong horizontal edge at

some scale, then the weight of the 0� subchannel increases
and so does the weight of the orientation channel. Hence,

those channels that are irrelevant for this target are

weighted down and contribute little to the salience map

(e.g., for detecting a horizontal object, color is irrelevant

and hence the color channel�s weights are decreased). At

each level of the channel hierarchy, weighted maps of the

children channels (Mapc) are summed into a unique map

at the parent channel (Mapp), resulting in the salience
map at the root of the hierarchy.

8p 2
[n
k¼0

HðkÞ; Mappðx; yÞ ¼ f
X

c2childrenðpÞ
RðcÞ �Mapcðx; yÞ

 !

where f refers to the spatial competition. For details

regarding its implementation, please see Section 2.4 in Itti

and Koch (2001b); as mentioned earlier, its role is to

prune those feature maps where many locations are

strongly active (and hence none may be considered a

stronger attractor of attention than any other), while pro-
moting maps where a single or a few locations are active

(and tend to pop-out). This aspect of the saliency model

(Itti & Koch, 2001b; Itti et al., 1998) is also further dis-

cussed in Section 7 and Figs. 11 and 12. In the salience

map thus formed by biasing the combination of all fea-

ture maps, all scene locations whose local features are

similar to the target�s relevant features become more

salient and likely to draw attention (Fig. 7). The false
positives at this stage can be removed at the recognition

stage.
6. Using attention for object recognition

Our current implementation for object recognition is

aimed at re-using pre-attentive features used to guide

attention. Hence, we adopt the simplest approach and

treat the object as a feature vector, with no explicit rep-

resentation of structure. While this imposes limitations

on the complexity of objects that our model can recog-
nize, it is fast and may serve to prune the search space,

thus acting as a filter that may feed into more complex,

slower recognition systems.

To recognize an object, our model attends to any loca-

tion in the object, and extracts the center-surround fea-

ture vector from that location. We try to recognize the

entity at the current fixation by matching the extracted

feature vector (f) with those already learned
(O = {o1,o2 . . .on}) and stored in the visual LTM (see

Fig. 8). We use a maximum likelihood estimation tech-

nique to find the match between f andO, i.e., find the ob-

ject oi that maximizes P(fjoi). Let Match(f,k) denote the



Fig. 6. Learning a general representation of an object. The model uses a binary target mask (target is 1 and background is 0) to serve as a location

cue. The model learns the views by extracting the center-surround feature vectors at different spatial scales from a few locations within the target.

Next, it combines the views to form instances. The instances are in turn combined to form a general representation of the object.
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set of nodes that provide a good match among all nodes

from the root (level 0) to some desired level k of specific-

ity. We compute it progressively in increasing levels of

specificity by first finding Match(f, 0), then finding

Match(f, 1), and so on up to Match(f,k), i.e., by first

comparing against general object representations and

then comparing against more specific representations
such as a particular object or instance or view. At each

level, we narrow our search space and improve the speed

of recognition by pruning those subtrees rooted at nodes

that do not provide a good match, and selectively

expanding those nodes that provide a good match. We

find a good match among a set of nodes by comparing
the likelihood estimates of the nodes to find a unique

maximum which is twice higher than the second maxi-

mum. If we find a unique maximum, the corresponding

node provides a good match. Else in the presence of

ambiguity, all nodes whose likelihood estimates are

greater than or equal to the mean likelihood estimate

are considered to provide a good match. Given
Match(f,x), we find Match(f,x + 1) as follows:

6.1. Case 1: jMatch(f,x)j = 1: Unique match at level x

If level x is the deepest level in the object hierarchy,

then we have successfully found the most specific



Fig. 7. Top-down biasing model for object detection. To detect a specific target object in any scene, we use the learned target representation to bias

the linear combination of different feature maps to form the salience map. In the salience map thus formed, all scene locations whose features are

similar to the target become more salient and are more likely to draw attention.
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representation that matches the fixated entity. We output
Match(f,x) and terminate our search. Else, given that the

general object representation at level x provides a good

match, we proceed deeper into the object hierarchy to

find a better match among more specific representations.

We accomplish this by expanding the matching node at

level x into its children nodes at level x + 1. If the parent

node provides a better match than the children nodes

(e.g., a gray stimulus may match the gray parent better
than its white or black children), we prune the subtree

rooted at the parent node and Match(f,x + 1)

= Match(f,x). Else, Match(f,x + 1) equals the set of chil-

dren nodes that provide a good match.

6.2. Case 2: jMatch(f,x)j > 1: Ambiguity at level x

If level x is the deepest level in the object hierarchy,
then we declare ambiguity in recognition and output
the node that provides the best match among
Match(f,x). Else, we resolve the ambiguity at this level

by seeking better matches at the next level x + 1. We ex-

pand each matching node at level x into its children

nodes at level x + 1, taking care to prune the subtree if

the parent node matches better than its children. Among

the nodes thus obtained, Match(f,x + 1) equals the set

of nodes that provide a good match.

Although simple and limited, this object recognition
scheme has proven sufficiently robust to allow us to test

the model with complex natural scenes, as described in

the following section.
7. Results

As a first test of the model, we consider a search task
for a known target and wish to detect it as fast as possible.



Fig. 8. Architecture for object recognition. Our model recognizes the object at the attended scene location by extracting a center-surround feature

vector from that location and finding the best match by comparing it against representations stored in the object hierarchy.

V. Navalpakkam, L. Itti / Vision Research 45 (2005) 205–231 219
This test aims at evaluating our model�s efficiency

against a naive bottom-up model by comparing the

speed of detection and the salience of the target. We

allowed our model to learn the visual features of the tar-

get from training images (12 training images per target

object on average, 24 target objects) and their corre-
sponding target masks (the target mask highlighted

the target and served as a location cue for training

only). To detect the target in a new scene, the visual

WM biased the bottom-up attentional system to en-

hance the salience of scene locations that were similar

to the target. Attention was guided to locations whose

biased salience was high. We tested the model on 343

new scenes and measured the improvement in perform-
ance of our top-down biased model over the naive, bot-

tom-up model (Itti & Koch, 2000). There was a

significant improvement in detection and in the salience

of the target in many but not all cases, verified as fol-

lows by statistical testing for a significance level of

0.05 (Fig. 9). The null hypothesis H0 (mean improve-

ment of 2.00 in target salience normalized by maximum

salience in the image) was compared to alternate
hypotheses H1 (mean improvement in normalized target

salience <2.00) and H2 (mean improvement in normal-

ized target salience >2.00). In some scenes, the distrac-

tors were similar to the target, making the search

tasks difficult (e.g., detect a circle among ellipses). In

such cases, biasing for the target led to an increase in

salience of the target as well as the distractors that

shared the target�s features. Due to the spatial competi-
tion that followed, the salience of the target was modu-

lated and there was no significant improvement in

detection time or salience of the target, hence support-

ing the alternative hypothesis H1. A particularly inter-

esting case occurred when we tried to detect a circle
among circles with vertical bars. The bottom-up salience

of the circle was very low and biasing improved its sali-

ence by a large factor. But biasing also boosted the

salience of all the circles with vertical bars and due to

the spatial competition, the biased salience of the target

became low and hence it did not pop-out (just like this
search is always difficult for humans, whether or not

they know the target (Treisman & Gormican, 1988)).

But in the opposite case where we tried to detect a circle

with a vertical bar among circles, biasing did not affect

the performance since the target was already the most

bottom-up salient item and popped out. In most scenes,

despite interference from the distractors, biasing im-

proved target salience and detection time (data sup-
ported H0 or H2). For example, biasing accelerated

the detection of a square among rectangles 15.56-fold

on average. An example of a comparison between the

number of fixations taken by the biased vs. unbiased

models is shown in Fig. 10.

This first set of results suggested that the spatially

global (Saenz, Buracas, & Boynton, 2002) (one weight

per feature map) biasing mechanism implemented here
and similar in spirit to Guided Search (Wolfe, 1994)

may or may not improve search performance, depending

on the presence of shared features between target and

distractors. To further explore the validity of such a

mechanism, we compared our biased model�s predic-

tions with existing psychophysical data and other mod-

els such as a random model, the bottom-up or unbiased

model (Itti & Koch, 2000), and the top-down search
model proposed by Rao et al. (2002). As mentioned in

Section 2, Rao et al.�s model assumes a much stronger

biasing mechanism, whereby salience at every location

reflects similarity between the local low-level features

and the target features provided top-down (with



Fig. 9. Our model�s results for top-down biasing results for a sample from our database of objects. The first column is the target object that we biased

the model for; the second column shows the distractor object when in a search array setup, or ‘‘natural’’ means that a natural cluttered scene was the

background or distractor; the third column shows the 95% confidence interval for improvement in target salience normalized by maximum salience in

the display (biased over naive models); the fourth column shows the 95% confidence interval for improvement in detection time (naive over biased

models); the fifth column shows the 95% confidence interval for improvement in number of attentional shifts before detection of the target (naive over

biased models); the sixth column shows the hypothesis supported by the salience data. The null hypothesis H0 (mean improvement in normalized

target salience = 2.0) or alternative hypothesis H2 (mean improvement in normalized target salience >2.0) was supported by a majority of the target

objects. In some cases where the distractors were very similar to the target, the alternative hypothesis H1 (mean improvement in normalized target

salience <2.0) was supported. The final column shows some remarks on the effect of biasing on detection time. Note that in the case of pop-out,

improvement in normalized target salience is approximately 1.0 because the target is already the most salient item in the display (hence, target

salience normalized by maximum salience equals 1.0), and biasing maintains the target as the most salient item.

Fig. 10. The example on the left shows the attentional trajectory during free examination of this scene by the naive, bottom-up salience model (yellow

circles represent highly salient locations, green circles represent less salient locations, red arrows show the scanpath). Even after 20 fixations, the

model did not attend to the coke can, simply because its salience was very low compared to that of other conspicuous objects in the scene. Displayed

on the right is the attentional trajectory after top-down biasing for the coke can object class (built from instances and views of the coke can from

other photographs containing the can in various settings). Our model detected the target as early as the third fixation.
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similarity is based on the Euclidean distance between

feature vectors).

To develop an intuitive understanding of the compar-

ison between both models, consider a conjunction

search array with red and blue vertical and horizontal

elements (and a single red-vertical target) like in Fig.
11. In our model, biasing for the features of the target

means giving a high weight to red color (the red/green

feature maps) and to vertical orientation (the vertical

feature maps). Because each of these feature maps con-

tains many active locations (the target, but also half of
Fig. 11. Difference between our biased model and Rao et al.�s model.

Consider searching for a red-vertical item among red-horizontal and

blue-vertical items. Rao�s model computes salience of each scene

location based on the Euclidean distance between the target and that

location in feature space, by progressively considering the information

at coarse-to-fine scales. The corresponding salience maps obtained for

the first three fixations are shown here. As early as the third fixation,

the salience map including the finest scale clearly shows the target to be

the single most salient location in the scene. Thus, Rao�s model

predicts that conjunction searches are efficient (see Section 7 for details

on our re-implementation of that model). On the other hand, in our

model, biasing promotes the red and vertical features. In the resulting

color feature map, the target as well as red-horizontal distractors

become active. Similarly, in the orientation feature map, the target as

well as blue-vertical distractors become active. Due to spatial

interactions within each feature map, the target and the distractors

cancel each other. In the resulting salience map, the salience of the

target and the distractors are comparable, hence, leading to an

inefficient search.
the distractors), the spatial competition in each feature

map (Itti & Koch, 2001b) is expected to drive those

maps to zero, no matter how strongly biased they may

be (remember that the spatial competition tends to pro-

mote maps which contain a unique active location and

to demote those which contain many active locations).
In the end, biasing is rather ineffective because it in-

creased the weights of feature maps that were basically

noise and not attractors of attention. It is not totally

ineffective, though, because the target is amplified twice

(once in the red/green maps and once in the vertical

maps) and hence exhibits slightly increased salience,

though still very low. In contrast, a template matching

algorithm like that of Rao et al. would predict that bias-
ing for the target should render it salient, since the target

will exhibit a feature distance near zero (perfect match

between local features and top-down biasing features,

corresponding to highest salience), while distractors will

exhibit non-zero distances (mismatch in at least one fea-

ture value). Whether the difference between target and

distractor salience values is sufficient to yield pop-out

can be controlled in Rao et al.�s model by a softmax
parameter, k, which determines how dominantly the

location of maximum salience attracts attention com-

pared to locations of lesser salience. To decide on a fair

value for k, we chose the one which barely allowed our

re-implementation of Rao et al.�s model to find the tar-

get in constant time on simple pop-out search arrays

(red-vertical bar among red-horizontal distractors, and

red-vertical bar among blue-vertical distractors). To fur-
ther allow a fair comparison, our re-implementation of

Rao et al.�s model used the same set of features and cen-

ter-surround scales as our model.

We then tested all models on 100 color-feature

searches (where the target differed from the distractors

only in color), 100 orientation-feature searches (where

the target differed from the distractors only in orienta-

tion), and 100 conjunction searches (where the target
differed from the distractors in either color or orienta-

tion). In each category, we plotted the reaction time

(time taken by the models to detect the target) against

increasing number of items in the display (density of dis-

play was maintained a constant while the display size

was varied). As shown in Fig. 12, while the random

model and Rao et al.�s model showed no difference in

performance across search categories, our biased and
unbiased models correctly predicted pop-out in single-

feature searches and confirmed the linear increase in

reaction time with increasing set size, as it typical in con-

junction searches. That is, as soon as Rao et al.�s model

was able to reliably detect pop-out targets (by tuning k),
it had become sensitive enough so as to also reliably de-

tect conjunction targets. This result casts doubt on the

fact that a template-matching computation like that
proposed in Rao et al.�s model may occur in the primate

brain. Our biased model, as expected from our intuitive



Fig. 12. Comparison between the performance of different models: This figure shows a comparison between the performance of a random model, our

unbiased model, our biased model, and a top-down model as proposed by Rao et al. The performance of the models is compared on search arrays

creating pop-out in color (first column), pop-out in orientation (second column), and serial, conjunction searches (third column). The x-axis shows

the number of items in the display and the y axis shows the reaction time (RT) measured as the number of fixations engaged by the model before

target detection. The random model assumes uniform probability of attending to each item in the display, hence, on an average, it attends to half the

total number of items in the display before finding the target. In single feature searches, our unbiased (unknown target) and biased (known target)

models, along with Rao�s model (known target) correctly predict efficient search as shown in columns 1 and 2. However, in conjunction searches as

shown in column 3, Rao�s model continues to predict efficient search (slope = 0, reaction time does not change with increasing number of items in the

display), while our unbiased and biased models show an approximately linear increase in reaction time with increasing number of items in the display,

which is typical of inefficient searches.
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analysis (target salience must increase as it was amplified

in two feature maps but distractors only in one), per-

formed slightly better in the conjunction searches than

the unbiased model.

Next, we determined our model�s ability to perform

one-shot learning. An example is shown in Fig. 13 where

the model learned a specific instance of a handicap sign

from one image and used the learned instance to detect
new handicap signs in novel poses, sizes and back-

grounds. We tested this one-shot-learning mechanism

on 28 test images and as shown by the statistics in Ta-

bles 1 and 2, the model accelerated detection over two-

fold on average. When we allowed the model to learn

all instances and combine them to form a general target

representation, it allowed for greater variance in the

possible target shapes and sizes. While, on the one hand,
increased variance in feature values allows detection and

categorization of modified targets under the same gen-

eral object category, on the other hand, it decreases
detection speed due to the uncertainty in the exact target

features. Hence, biasing for the general object represen-

tation led to a small drop in efficiency as compared to

biasing for the learned instance. Finally, when we al-

lowed the model to detect the same instance that it

had learned, it was most efficient. These results support

studies in psychophysics suggesting that better or more

exact knowledge of the target leads to better searches
(Kenner & Wolfe, 2003).

For multiple target detection, the visual WM used the

target representations previously learned and stored in

the visual LTM (as stated earlier, for learning, we used

12 training images per target object). The model biased

for the multiple task-relevant targets sequentially in

decreasing order of their relevance. As mentioned earlier

in this section (exemplified with the conjunction search
arrays of Fig. 12), biasing is likely, but not guaranteed

to make the target most salient. Hence, a less relevant

target may be detected while biasing for the most



Fig. 13. One-shot learning: the model learned a specific instance of the handicap sign from the image shown in the center and used the learned

instance to detect new handicap signs in different poses, sizes and backgrounds as shown in the other images.

Table 1

Statistics of target salience as computed by the biased model over that computed by the naive unbiased model

Operating mode l r 95% Confidence Min Max

Learned-instance 2.72 1.73 [0.91, 4.54] 0.91 5.01

General-object 2.67 1.79 [0.79, 4.54] 0.87 5.39

Exact-instance 3.47 2.45 [0.90, 6.03] 0.95 7.50

The first column states the target representation that was used for biasing (see Section 7 for details); the second column shows the mean improvement

in target salience; the third column shows the standard deviation; the fourth column shows the 95% confidence interval; the fifth and sixth columns

show the minimum and maximum improvements obtained.

Table 2

Statistics of target detection time as taken by the naive unbiased model over that taken by the biased model

Operating mode l r 95% Confidence Min Max

Learned-instance 2.24 1.27 [0.91, 3.58] 1.00 4.35

General-object 2.22 1.24 [0.92, 3.52] 1.00 4.26

Exact-instance 2.25 1.27 [0.92, 3.58] 1.00 4.35

The first column states the target representation that was used for biasing (see Section 7 for details); the second column shows the mean improvement

in target detection time; the third column shows the standard deviation; the fourth column shows the 95% confidence interval; the fifth and sixth

columns show the minimum and maximum improvements obtained.
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relevant target. Our model handles such errors by recog-

nizing the fixated entity and updating the state of the

task graph in the symbolic WM to indicate that it has

found the less relevant target, and it proceeds to detect

the most relevant target by repeating the above steps.
We tested multi-target detection and recognition on 28

new scenes containing fire hydrants and handicap signs.

Since the influence of the gist on TRM is not imple-

mented in our model yet, we placed the targets at

random locations to eliminate the role of the gist in aid-

ing the detection of the targets. Results showed that, on

average, our model was 6.20 times faster than the naive

unbiased model (95% confidence interval = [1.47,10.94],
min = 0.07, max = 28.86; Fig. 14). In these experiments,

we thus tested the top-down biasing and recognition

components involving visual WM and LTM modules,
and the symbolic WM and LTM modules for creating

and maintaining the task graph.

To further test the recognition module, we allowed

the model to recognize the entity at the attended loca-

tion by matching the visual features extracted at the fix-
ation against those stored in the object hierarchy in

visual LTM. Despite the simplicity of the model (it at-

tempts to recognize fixations by looking at just one loca-

tion in the object), it seems to be able to classify the

target in the appropriate category of objects––as shown

in Fig. 15, the contributors for false negatives and false

positives share features with the target, i.e., they are sim-

ilar to the target.
Next, we attempted to determine and learn the task-

relevant locations in the scene. The visual WM, with the

help of visual LTM, biased the attentional system for



Fig. 14. Sequential detection of multiple targets: The model initialized

the working memory with the targets to be found and their relevance

(handicap sign, relevance = 1; fire hydrant, relevance = 0.5). It biased

for the most relevant target (in this case, the handicap sign), made a

false detection, recognized the fixation (fire hydrant), updated the state

in its working memory (recorded that it found the fire hydrant), and

proceeded to detect the remaining target by repeating the above steps.

Fig. 15. Statistics for the hierarchical recognition of arbitrary fixations, for a

considered a simple object hierarchy with just three main levels (level 1: all o

root that was a general class combining all the objects. The first column is the

(number of distractors that were falsely recognized as the target, over the to

accounted for the false positives; the fourth column shows the percentage of f

over the total number of targets); the fifth, sixth and seventh column show

model (it attempts to recognize fixations by looking at just one location in t

category of objects––as shown in this figure, the contributors for false negativ

to the target.
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the task-relevant target. Initially, the model had no prior

knowledge of the scene, hence the TRM was uniform

(baseline 1.0 everywhere), and the model attended to

scene locations based on their visual salience. For each

incoming visual scene, the TRM was updated as follows:

at each fixation, the recognition module, with the help of
visual LTM, recognized the entity at the attended scene

location. The symbolic WM, with the aid of symbolic

LTM, determined the task-relevance of the recognized

entity. It marked the corresponding location in the

TRM with the estimated relevance. To learn the con-

tents of the TRM across all the incoming scenes, we

computed the average TRM in an online and incremen-

tal manner (for this purpose, we maintained the sum of
TRMs and the number of TRMs or scenes seen so far).

As shown below, we designed a task in a dynamic envi-

ronment to test the learning and working of the TRM.

The other modules that were also involved in the test in-

clude the top-down biasing and recognition modules,

the working memory and the long-term memory

modules.

For a driving task, we allowed the model to bias for
cars and attend to the salient scene locations and
sample of objects from our database. As an initial implementation, we

bjects, level 2: instances and level 3: views) and at level 0 was a dummy

target object; the second column shows the percentage of false positives

tal number of distractors); the third column shows the distractor that

alse negatives (number of targets that were not recognized as the target,

the top 3 contributors to false negatives. Despite the simplicity of the

he object), it seems to be able to classify the target in the appropriate

es and false positives share features with the target, i.e., they are similar



Fig. 16. Learning the TRM. The model learned the TRM for a driving task by attending, estimating the relevance of attended scene locations and

updating the TRM. The development of the TRM across 28 fixations is shown here (brighter shades of grey indicate locations more relevant than

baseline). Note that the TRM does not change significantly after a while and is learned to a reasonable precision within the first 5–10 fixations.
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recognize them as belonging to the car or the sky cate-

gory. Initially, the TRM was unbiased due to the lack

of any knowledge of the scene. As the model attended

and recognized locations as belonging to the car cate-

gory, the relevance of these locations was updated in

the TRM. The development of the TRM over a number

of fixations is shown in Fig. 16.

On the same scenes as used for the driving task, we
attempted to learn the scene locations that belonged to

the sky category. We repeated exactly the same steps

as above and obtained the TRM as shown in Fig. 17.
Fig. 17. On the same scenes as used for the driving task, we learned the

scene locations that belonged to the sky category. The TRM learned

after the first 28 fixations is displayed here. Those locations belonging

to the car category are clearly suppressed or marked irrelevant (dark)

compared to baseline (white). It may appear misleading that the road is

marked as relevant. Since the road was non-salient, it did not attract

any attention and hence was not marked as irrelevant and remained at

baseline.
Thus, we explored how different locations in the same

scene become relevant as the task changes.
8. Discussion

In this paper, we have designed and partially imple-

mented an overall biologically plausible architecture to
model how different factors such as bottom-up cues,

knowledge of the task and target influence the guidance

of attention. We have tested our model on a variety of

tasks including search tasks in static scenes and a driving

task in dynamic scenes. The results show that our model

can determine the task-relevant targets from a given task

definition; detect the targets amidst clutter and diverse

backgrounds; reproduce basic human visual search
behavior; recognize many targets and classify them into

their corresponding categories with few errors; learn the

task-relevant locations online in an incremental manner,

and use the learned target features as well as likely target

locations to bias the attentional system to guide atten-

tion towards the target. In the rest of this section, we dis-

cuss our main contributions in this paper, namely target

representation, target detection, recognition, and memo-
rization, followed by a brief discussion on scene repre-

sentation. Finally, we present the limitations of our

model, along with future directions.

8.1. Target representation

Our model represents the target by center-surround

features at different spatial scales, where the coarse
scales include background information and the finer
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scales contain target information. Traditional ap-

proaches attempt to segment the target from the back-

ground in order to avoid the confusion between the

target and the background. In simple cases where the

object appears in similar sizes but in different back-

grounds, our model achieves the equivalent of segmenta-
tion by determining the scales that reliably represent the

target. If the background is inconsistent or changing, its

variability is reflected in the high variance in response to

the features at coarse spatial scales. Consequently, those

features are considered unreliable and are not promoted

during biasing for the target. In other cases where the

background is consistent, the co-occurrence of the target

and its background is captured by the low variance in re-
sponse to the features at the coarse scales. Thus, our tar-

get representation provides a convenient way to include

contextual information.

8.2. Target detection

In our model, feature maps are computed in parallel,

non-linear interactions occur in all of them (Itti & Koch,
2001b), and they are weighted in a top-down manner be-

fore being summed into the salience map. The target is

made salient by adjusting the weights of the low-level

feature maps so as to promote the target�s relevant fea-
tures and suppress its irrelevant features. Thus, our

model provides a computational implementation of a

Guided Search mechanism (Wolfe, 1994), and it learns

the appropriate feature weights directly from training
images containing the targets. Consequently, our model

predicts that all scene locations whose features are a

superset of the target�s features or share it also become

salient, e.g., a red ellipse also becomes salient if we are

searching for a red circle. This prediction of the model

could be verified with psychophysics experiments. In

addition to top-down factors that influence target sali-

ence, bottom-up factors such as spatial non-linear inter-
actions modulate the target salience based on the

salience of the neighboring distractors (Duncan &

Humphreys, 1989; Moraglia, 1989; Nothdurft, 1992).

The winner of the spatial competition depends on the

positions and relative salience of the target and distrac-

tors. Hence, biasing is likely, but not guaranteed to

make the target most salient. In important cases like

conjunction searches (Figs. 11 and 12), we have shown
how biasing is fairly ineffective in our model, in agree-

ment with human data. This reinforces the plausibility

of the biasing approach proposed in our model, espe-

cially compared to template-matching models (Rao

et al., 2002) which seem difficult to reconcile with empir-

ical data (as they do not yield pop-out in feature search

cases when the target features are unknown, as

mentioned in Section 2, but yield pop-out in both
feature and conjunction searches alike when target

features are known, as shown in Section 7).
8.3. Target recognition

The object recognition model proposed here is simple

and shares its resources intimately with the attentional

system by re-using in target representation the pre-atten-

tive features computed for guiding attention. Hierarchi-
cal matching from general representations like object

categories to specific representations like the object, in-

stance or view allows us to terminate the search at the

appropriate level of representation, depending on our

task requirements (e.g., distinguishing between a white

and red object may not require processing down to the

level of instances such as white car, or white horse). Fur-

ther, by pruning the subtrees (in the object hierarchy)
that do not match, we can accelerate the search for the

best match. Currently, our model attempts to recognize

an object by matching any one location�s visual features
against all learned representations, hence, there are false

recognitions and limitations on the complexity of ob-

jects that can be recognized. Though it cannot recognize

complex objects, this could possibly be achieved by

decomposing the complex object into a spatial configu-
ration of simpler objects (parts) (Wiskott et al., 1997),

that could each be recognized using our proposed sche-

ma. A higher-level mechanism can then check for the

spatial relations between the parts to recognize the

whole. However, in this paper, our aim is to explore

how the pre-attentive features used to guide attention

may be re-used for object representation and recogni-

tion. Since we represent the target as a feature vector,
we do not explicitly handle complex or composite ob-

jects in the current model. Yet, our results indicate that

the model could recognize some complex objects such as

geometrical shapes including rectangles, cubes and

striped bars to a reasonable extent (see Fig. 15).

8.4. Memorization

On the one hand, we have symbolic knowledge that

deals with high-level concepts and objects. On the other

hand, there are low-level neural maps of the scene that

encode salience or other image attributes at each pixel

or image location. To bridge the gap between these ex-
treme representations, we have proposed a two-dimen-

sional topographic map called task-relevance map

(TRM) that encodes task-relevance of the scene entities.

To memorize the target, an area in the TRM corre-

sponding to the locations and approximate size and

shape of the target (Walther, Itti, Reisenhuber, & Pog-

gio, 2002) is highlighted with the target�s relevance,

and visual features are stored in visual working memory
along with links to symbolic knowledge. The TRM has

several potential uses as explained below. It helps to

prime a particular scene location by increasing its rele-

vance in the TRM, thus supporting spatial top-down

attentional modulation. The TRM also helps in object
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detection in the following manner. Non-attentional

scene representations such as gist and layout have been

shown to play an important role in object detection (Bie-

derman et al., 1982; Chun & Jiang, 1998; De Graef et al.,

1990; Henderson & Hollingworth, 1999; Palmer, 1975;

Rensink, 2000; Torralba, 2003). Our model suggests an
easy way to incrementally learn the relation between gist

and the constituent scene objects. We suggest that the

TRM may be used to learn object properties such as

locations where an object is likely to occur and its

approximate size. The relation between gist and object

properties may be learned by maintaining a loop be-

tween the gist and the TRM (via working memory).

During the feedforward loop, the quick and imprecise
gist may be used to retrieve the appropriate, previously

learned TRM and use it as an initial guide to drive the

focus of attention. Subsequently, by the slow and precise

processes of attending and updating, the TRM can be

refined and learned online in an incremental manner

within the first few fixations, and be used to drive further

fixations. Finally, the feedback loop may use the TRM

to reinforce, confirm or even update the gist. It may also
be used to store the currently learned TRM.

8.5. Scene representation

Knowledge of gist, visual features and location of the

object may be important for scene understanding and

representation, but they are not sufficient. Consider

the following example of a scene with a man, a laptop
and a cake. In order to understand the scene, we need

to know how the entities are bound or related to each

other. If the man and the laptop are bound by the �work�
action, then we can conclude that the man is working.

Else if the man and the cake are bound by the �eat� ac-
tion, we can conclude that the man is eating the cake.

To represent such relationships in our model, the sym-

bolic working memory (WM) maintains relations
among entities by seeking the help of the symbolic

long-term memory. However, we do not make any

claims on the biological feasibility of our current imple-

mentation. It is not clear to us as to how these relations

may be represented in our brain and how the entities

may be bound together into composite structures.

Our model presents the following hypothesis on how

a scene may be represented. To bind the symbolic attri-
butes of the attended object with its visual features and

its location, our model suggests the creation and mainte-

nance of a link between the object in the symbolic WM,

its visual features in the visual WM and the correspond-

ing location in the TRM. This constitutes our explicit

representation of an object file (Kahneman & Treisman,

1984). These links can be very useful in recall, e.g., an

object at a particular location may be recalled by acti-
vating that location in the TRM, that in turn activates

the link and the associated object. Similarly, where we
saw a given object may be recalled by activating the ob-

ject in the working memory that in turn activates the

link to the corresponding location.

The following discussion, though not directly tied to

the reported model, is an interesting detour that explores

the role of the links (that bind visual and symbolic prop-
erties of the stimuli) in scene representation. We propose

to use the above links for scene representation by extend-

ing Rensink�s triadic architecture (Rensink, 2000) as

follows. He proposes a coherence field where a spatio-

temporal structure is created at the focus of attention

and is lost when the focus of attention shifts. Rensink

suggests that the low level visual stages such as proto-

objects are volatile and are bound only at the focus of
attention. We extend that hypothesis and suggest that

while the low-level visual stages may be volatile, high-

level visual stages such as the WM (and, further, LTM)

may not be volatile and may store the recently attended

relevant objects, their locations and their visual features,

even though they may not be the current focus of atten-

tion (Hollingworth, 2004; Hollingworth & Henderson,

2002; Hollingworth et al., 2001). This is consistent with
studies showing that visual representation at high-level

visual stages may be impoverished and less precise than

their low level counterparts (Irwin, 1991; Phillips,

1974), but they can be maintained for longer durations

under backward pattern masking (Phillips, 1974) and

across saccades (Irwin, 1992b). Hence, in our representa-

tion, the links between the TRM and objects in short

term memory or working memory do not die when the
focus of attention shifts. But several studies have shown

that there exist strict limitations (�4) on how many

object files may coexist at any given time (Irwin, 1992a;

Irwin & Zelinsky, 2002; Luck & Vogel, 1997; Pashler,

1988; Sperling, 1960). This implies that there must be

some competition among the links so that the strong

links may survive and the weaker ones may die (see

(Schneider, 1999) for an activation level based competi-
tion). We suggest that the strength of the link depends

on the relevance of the associated object, perhaps directly

proportional. Hence, links are not established for irrele-

vant objects and, consequently, their visual features or

locations are forgotten. Older links suffer interference

from newer links and gradually weaken and die. A new

link also suffers interference from existing links and

may die if its relevance is not high. Thus, links to irrele-
vant objects/locations or those seen in the remote past

may die or disappear whereas links to the relevant ob-

jects/locations seen recently may be strong and conse-

quently, we remember the associated details.

8.6. Limitations of our current model

Our current implementation of the model has a num-
ber of limitations. For example, the model cannot yet

make directed attentional shifts. Including directed
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attentional shifts into our model would require that spa-

tial relations also be included in our ontology (e.g., look

upwards if searching for a face, but found a foot) and

would allow for more sophisticated top-down atten-

tional control. Knowledge of such spatial relationships

will also help us prune the search space by filtering out
most irrelevant scene elements (e.g., while looking for

John, if we see Mary�s face, we can also mark Mary�s
hands, legs, etc. as irrelevant provided we know the spa-

tial relationships). Several models already mentioned

provide an excellent starting point for this extension of

our model (Rybak et al., 1998). Our model also does

not support instantiation such as ‘‘John is an instance

of a man’’ where each instance is unique. The model cur-
rently uses absolute scales as a signature for an object.

This is undesirable for real vision where the scales

change with changes in viewing distance, and pose. This

issue can be addressed by using a scale invariant object

representation where all scales are considered relative to

the dominant scale. Currently, the object hierarchy

stored in the visual long-term memory is partially

hand-coded, i.e., we have to manually group a set of
images as belonging to the same object, but given an im-

age and a location cue, our model can automatically ex-

tract the views. To make the object hierarchy fully

learnable, we could allow the model to fixate arbitrarily

and if the fixated entity is new, it could learn the features

and automatically classify the new entity into some ob-

ject category and update the hierarchy (but note that

such incremental unsupervised building of object cate-
gories is a particularly difficult problem). The knowledge

base in symbolic long-term memory is also currently

hand-coded. For the purpose of testing our model, we

considered human-related objects, actions, body parts

and their relationships. Extensive research in knowledge

representation has led to several ontologies for various

contexts including the animal kingdom and behavior,

weather, ceramics, congress-related events, managing
an enterprise, and many more (Ontologies, 2003); our

ontology may be extended by importing these.

8.7. Conclusion

In this paper, we have proposed and partially imple-

mented a computational model for the task-specific guid-

ance of attention in real-world scenes. Our main
contributions in this paper are: First, providing a biolog-

ically plausible architecture for object detection, by top-

down biasing the bottom-up attentional system for the

object�s pre-attentive features so as to make the object

more salient; second, object recognition by re-using the

pre-attentive features for object representation and

matching hierarchically against stored representations;

and, third, memorization of relevant scene locations in
visual working memory by learning their locations and

approximate sizes in a topographic two-dimensional
task-relevance map. We have also proposed a non-

biological computational scheme to estimate the task-rel-

evance of scene entities using an ontology containing

entities and their relationships. Thus, given a task specifi-

cation, our model determines the task-relevant entities,

biases for the current most task-relevant entity, recog-
nizes the fixated entity, memorizes the task-relevance of

the fixated entity, updates its working memory and

repeats the process until the task is complete. The prom-

ising results of ourmodel suggest that themodel may pro-

vide a reasonable approximation to many of the brain

processes involved in complex task-driven visual behav-

iors. As part of our future work, we are planning to fur-

ther confirm the above by comparing our model�s
performance against human eye tracking data (Itti, 2004).
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Appendix A

Here, we show the derivation of the class conditional
density, P(O = ojY) of super-class Y that is formed by

combining several equally likely and mutually exclusive

object classes Xi (refer to Section 5.1).

P ðO ¼ o j Y Þ ¼P O ¼ o j
[
i

X i

 !
ðusing Eq:(2)Þ

¼P O ¼ o;
[
i

X i

 !,
P
[
i

X i

 !

ðusing Bayes ruleÞ

¼P
[
i

X i j O ¼ o

 !
P ðO ¼ oÞ
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P
[
i

X i

 !

ðusing Bayes ruleÞ
¼
X

i
P ðX i j O ¼ oÞP ðO ¼ oÞ=

X
i
PðX iÞ

ðsince X i are mutually exclusiveÞ
¼
X

i
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X
i
P ðX iÞ

ðusing Bayes ruleÞ
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X

i
P ðO ¼ o j X iÞP ðX iÞ=

X
i
P ðX iÞ

ðusing Bayes ruleÞ
¼
X

i
P ðO ¼ o j X iÞwi ð10Þ

where wi ¼P ðX iÞ=
X

j
P ðX jÞ

¼1=n ðsince X are equally likelyÞ
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The mean of OjY is derived as follows:

E½O j Y � ¼
Z
o
oP ðO ¼ o j Y Þdo ð11Þ

¼
Z
o
o
X

i
P ðO ¼ o j X iÞwi

� �
do

ðusing Eq: (10)Þ

¼
X

i
wi

Z
o
oPðO ¼ o j X iÞdo

� �

¼
X

i
wiE½O j X i�

ðsubstituting Y by X i in Eq: (11)Þ
l ¼

X
i
wili

By definition of variance,

r2
i ¼E½ðO j X i � E½O j X i�Þ2�
¼E½ðO j X tÞ2� � ðE½O j X i�Þ2

r2
i ¼E½ðO j X iÞ2� � l2

i ð12Þ
r2 ¼E½ðO j Y Þ2� � l2 ðsimilarlyÞ ð13Þ

E½ðO j Y Þ2� ¼
Z
o
o2P ðO ¼ o j Y Þdo

ðby definition of expectationÞ

¼
Z
o
o2
X

i
P ðO ¼ o j X iÞwi

� �
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ðusing Eq: (10)Þ
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X

i
wi
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o2P ðO ¼ o j X iÞdo

� �
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X

i
wiE½ðO j X iÞ2�
ðby definition of expectationÞ

¼
X

i
wiðr2

i þ l2
i Þ ðusing Eq: (12)Þ ð14Þ

r2 ¼
X

i
wiðr2

i þ l2
i Þ � l2

ðusing Eqs: (13) and (14)Þ ð15Þ
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Malsburg, C., Würtz, R. P., & Konen, W. (1993). Distortion

invariant object recognition in the dynamic link architecture. IEEE

Transactions on Computers, 42, 300–311.

Leventhal, A. G. (1991). The neural basis of visual function. Vision and

visual dysfunction (Vol. 4). Boca Raton, FL: CRC Press.

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working

memory for features and conjunctions. Nature, 390, 279–281.

Luschow, A., & Nothdurft, H. C. (1993). Pop-out of orientation but

no pop-out of motion at isoluminance. Vision Research, 33(1),

91–104.

Moraglia, G. (1989). Display organization and the detection of

horizontal line segments.Perception andPsychophysics, 45, 265–272.

Moran, J., & Desimone, R. (1985). Selective attention gates visual

processing in the extrastriate cortex. Science, 229(4715), 782–784.

Motter, B. C. (1993). Focal attention produces spatially selective

processing in visual cortical areas VI, V2, and V4 in the presence of

competing stimuli. Journal of Neurophysiology, 70(3), 909–919.

Motter, B. C. (1994a). Neural correlates of attentive selection for color

or luminance in extrastriate area V4. Journal of Neuroscience, 14(4),

2178–2189.

Motter, B. C. (1994b). Neural correlates of feature selective memory

and pop-out in extrastriate area V4. Journal of Neuroscience, 14(4),

2190–2199.
Nagy, A. L., & Sanchez, R. R. (1990). Critical color differences

determined with a visual search task. Journal of the Optical Society

of America A, 7(7), 1209–1217.

Nagy, A. L., & Sanchez, R. R. (1992). Chromaticity and luminance as

coding dimensions in visual search.Human Factors, 34(5), 601–614.

Nakayama, K., & Silverman, G. H. (1986). Serial and parallel

processing of visual feature conjunctions. Nature, 320, 264–265.

Norton, D., & Stark, L. (1971). Scanpaths in saccadic eyemovements

during pattern perception. Science, 308–311.

Nothdurft, H. C. (1992). Feature analysis and the role of similarity in

preattentive vision. Perception and Psychophysics, 52(4), 355–375.

Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A

holistic representation of the spatial envelope. International Journal

of Computer Vision, 42(3), 145–175.

Ontologies (2003). Available http://www.cs.utexas.edu/users/mfkb/

related.html, http://saussure.irmkant.rm.cnr.it/onto/link.html.

O�Regan, J. K. (1992). Solving the ‘‘Real’’ Mysteries of Visual

Perception: The World as an Outside Memory. Canadian Journal

of Psychology, 46, 461–488.

Palmer, S. E. (1975). The effect of contextual scenes on the identifi-

cation of objects. Memory and Cognition, 3, 519–526.

Pashler, H. (1988). Familiarity and the detection of change in visual

displays. Perception and Psychophysics, 44, 369–378.

Phillips, W. A. (1974). On the distinction between sensory storage and

short-term visual memory. Perception and Psychophysics, 16,

283–290.

Rao, R. P., Zelinsky, G., Hayhoe, M., & Ballard, D. H. (2002). Eye

movements in iconic visual search. Vision Research, 42(11),

1447–1463.

Rensink, R. A. (2000). The dynamic representation of scenes. Visual

Cognition, 7, 17–42.

Rensink, R. A. (2002). Change Detection. Annual Review of Psychol-

ogy, 53, 245–277.

Rensink, R. A., O�Regan, J. K, & Clark, J. J. (1997). To see or not to

see: The need for attention to perceive changes in scenes.

Psychological Science, 8, 368–373.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object

recognition in cortex. Nature Neuroscience, 2(11), 1019–1025.

Riesenhuber, M., & Poggio, T. (2000). Models of object recognition.

Nature Neuroscience, 1199–1204.

Rybak, I. A., Gusakova, V. I., Golovan, A. V., Podladchikova, L. N.,

& Shevtsova, N. A. (1998). A model of attention-guided visual

perception and recognition. Vision Research, 38, 2387–2400.

Saenz, M., Buracas, G. T., & Boynton, G. M. (2002). Global effects of

feature-based attention in human visual cortex. Nature Neuro-

science, 5(7), 631–632.

Schneider, W. X. (1999). Visual-spatial working memory, attention,

and scene representation: A neuro-cognitive theory. Psychological

Research, 62, 220–236.

Sperling, G. (1960). The information available in visual presentations.

Psychological Monographs, 74, 1–29.

Thompson, K. G., & Schall, J. D. (2000). Antecedents and correlates

of visual detection and awareness in macaque prefrontal cortex.

Vision Research, 40(10–12), 1523–1538.

Thorpe, S. J., Fize, D., & Marlot, C. (1996). Speed of processing in the

human visual system. Nature, 381, 520–522.

Tootell, R. B., Silverman, M. S., Hamilton, S. L., De Valois, R. L., &

Switkes, E. (1988). Functional anatomy of macaque striate cortex.

III. Color. Journal of Neuroscience, 8(5), 1569–1593.

Torralba, A. (2002). Contextual modulation of target saliency. In T. G.

Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural

information processing systems (Vol. 14). Cambridge, MA: MIT

Press.

Torralba, A. (2003). Contextual priming for object detection. Interna-

tional Journal of Computer Vision, 53(2), 153–167.

Treisman, A., & Gelade, G. (1980). A feature integration theory of

attention. Cognitive Psychology, 12, 97–136.

http://www.cs.utexas.edu/users/mfkb/related.html
http://www.cs.utexas.edu/users/mfkb/related.html
http://saussure.irmkant.rm.cnr.it/onto/link.html


V. Navalpakkam, L. Itti / Vision Research 45 (2005) 205–231 231
Treisman, A., & Gormican, S. (1988). Feature analysis in early vision:

Evidence from search asymmetries. Psychological Review, 95(1),

15–48.

Treue, S., & Maunsell, J. H. (1996). Attentional modulation of visual

motion processing in cortical areas MT and MST. Nature,

382(6591), 539–541.

Triesch, J., Ballard, D. H., Hayhoe, M. M., & Sullivan, B. T. (2003).

What you see is what you need. Journal of Vision, 3(1), 86–94.

Triesman, A., & Souther, J. (1986). Illusory Words: The roles of

attention and top-down constraints in conjoining letters to form

words. Journal of Experimental Psychology: Human Perception and

Performance, 14, 107–141.

Walther, D., Itti, L., Reisenhuber, M., Poggio, T., & Koch., C. (2002).

Attentional selection for object recognition––a gentle way. In

Proc., 2nd workshop on biologically motivated computer vision

BMCV2002 (pp. 472–479).

Watanabe, K. (2003). Differential effect of distractor timing on

localizing versus identifying visual changes. Cognition, 88(2),

243–257.

Weber, M., Welling, M., & Perona, P. (2000). unsupervised learning of

models for recognition. In Proc. 6th Europ. Conf. Comp. Vis.,

ECCV2000, Dublin, Ireland (June).
Weichselgartner, E., & Sperling, G. (1987). Dynamics of automatic

and controlled visual attention. Science, 238(4828), 778–780.

Wilson, F. A., O Scalaidhe, S. P., & Goldman-Rakic, P. S. (1993).

Dissociation of object and spatial processing domains in primate

prefrontal cortex. Science, 260, 1955–1958.

Wiskott, L., Fellous, J.-M., Krüger, N., & von der Malsburg, C.
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