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Abstract

Integration of goal-driven, top-down attention and
image-driven, bottom-up attention is crucial for visual
search. Yet, previous research has mostly focused on models
that are purely top-down or bottom-up. Here, we propose a
new model that combines both. The bottom-up component
computes the visual salience of scene locations in different
feature maps extracted at multiple spatial scales. The top-
down component uses accumulated statistical knowledge of
the visual features of the desired search target and back-
ground clutter, to optimally tune the bottom-up maps such
that target detection speed is maximized. Testing on 750
artificial and natural scenes shows that the model’s predic-
tions are consistent with a large body of available litera-
ture on human psychophysics of visual search. These results
suggest that our model may provide good approximation of
how humans combine bottom-up and top-down cues such as
to optimize target detection speed.

1. Introduction

State of the art in object detection: Traditional models
of object detection use a sliding window across the image
and apply a binary classifier at each window to detect the
presence or absence of the desired target object [17, 13].
While this approach has been successfully applied to de-
tecting rigid objects such as faces and cars [20, 22, 29] and
even pedestrians [17, 30], it is slow and computationally
expensive as each classifier (corresponding to every object)
is run independently at every window within the image.

Role of attention in accelerating detection speed: Recent
models of object detection overcome the speed bottleneck
of the sliding window approach by using a generic attention
operator to quickly select a few interest points in the image
[7, 2]. This area has received much interest recently, with
several systems using attention as a front-end to accelerate
detection speed [10], to reduce complexity of automated

multi-target detection and tracking [31], and to enable
automated learning and recognition of objects in cluttered
scenes [21]. However, most such models are either purely
goal-driven (top-down) [19] or image-driven (bottom-up)
[9, 27].

Need to integrate top-down and bottom-up attentional
influences: There have been few attempts to integrate both
top-down and bottom-up attention [16]. Such integration
is crucial for robot navigation, visual surveillance and any
realistic visual search. For instance, in visual surveillance,
it is important to detect goal-relevant targets like suspects,
and to simultaneously notice unexpected visual events like
gun shots or sudden explosions. Similarly, robot navigation
requires top-down detection of landmarks and road signs,
as well as bottom-up detection of unexpected obstacles
and accidents. In this paper, we present a new model
that combines both top-down and bottom-up influences to
guide attention during visual search for a target object in
distracting clutter.

Need to consider knowledge of the target and dis-
tracting background: One of the central challenges in
integrating bottom-up and top-down attention is to find the
optimal top-down influence on bottom-up processes such
that detection speed is maximized. This is an unsolved
challenge as yet, since most models of top-down attention
are sub-optimal heuristics and driven by knowledge of the
desired target only [32, 19, 13, 10], while ignoring the
contribution due to knowing the distracting background.
Few top-down models consider the distractors [23], by
using global features representing the scene context. But
they do not consider the local features of the background,
that are known to facilitate search [11, 3].

Current open challenges: Further progress in building
fast, next generation target detection systems requires a
thorough investigation of how statistical knowledge of
the local features of the target and distracting background
yields optimal top-down attentional signals that combine



with bottom-up attention to maximize detection speed.

Highlight of our approach: We propose a new model that
combines both bottom-up as well as top-down attentional
influences. Our proposed model first computes the naive,
bottom-up salience of every scene location for different
local visual features (e.g., different colors, orientations and
intensities) at multiple spatial scales. Next, the top-down
component uses learnt statistical knowledge of the local
features of the target and distracting clutter, to optimize
the relative weights of the bottom-up maps such that the
overall salience of the target is maximized relative to the
surrounding clutter. Such optimization renders the target
more salient than the distractors, thereby maximizing target
detection speed [33].

Related work: Previously, Navalpakkam and Itti derived
a theory of top-down guidance for simplified stimuli
defined within one feature dimension only [15]. Here,
we present a new model (theory and implementation) that
combines bottom-up and top-down attention and considers
complex targets and distracting objects that are defined as
a conjunction of different features across multiple feature
dimensions. Our model is applicable to natural scenes as
well as artificial search arrays. Unlike the former study that
assumes an ideal observer with complete prior knowledge
of the target and distractors, our model allows realistic ob-
servers with different beliefs (ranging from no knowledge
to complete knowledge), thereby allowing significantly
higher prediction power that captures the performance of a
novice to an expert.

Our contribution: In section 2, we formally derive the
optimal theory of top-down and bottom-up attention. In
section 3, we describe the model’s implementation and
its results on 750 synthetic search arrays and natural
scenes. With little computational cost in the form of
multiplicative top-down gains on bottom-up saliency
maps, we show that our model can predict many reported
bottom-up [25, 18, 5, 14, 24, 32, 6, 1] and top-down effects
[5, 34, 28, 8] on human visual search behavior. Systematic
evaluation of different models with varying degrees of
knowledge reveals that knowledge of the local features of
the distracting background, in addition to the target, yields
better search performance.

2. Theory

Relevant objective function to be optimized: Consider
searching for a fruit in the trees. While a ripe red fruit
readily captures our attention due to its high visual salience,
an unripe green fruit does not capture our attention due
to its low salience relative to the distracting leaves, and is

hard to detect. Thus, the detection speed depends on the
ratio between the strength of signal detecting the target
(i.e., target salience), over that detecting the distracting
background (i.e., distractor salience) [33]. Here, we will
refer to this ratio as the search’s signal-to-noise ratio SNR.
The relevant goal for maximizing object detection speed is
to maximize SNR.

Formalizing visual search: As shown in figure 1, let
the perceived salience of the target, ST (A) be a function
of the input search array A, which is a function of the
visual features of the target Θ|T (sampled from probability
density functions P (Θ|T )). A is also a function of the
relative locations or spatial configuration of the target and
distractors (C). Since C and Θ|T are random variables, so
is ST (A). ST (A) is also influenced by noise in neural re-
sponse, η. Similarly, the salience of the distractors, SD(A),
depends on the distractor features Θ|D, configuration C
and internal noise η. Thus, we define SNR as the ratio
of expected salience of the target over distractors, with the
expectation taken over random variables Θ|T, Θ|D, C, η.
SNR = EΘ|T,C,η[ST (A)]/EΘ|D,C,η[SD(A)].

Computing salience within a dimension: The over-
all perceived salience (combined top-down and bottom-up
salience), Sj , for a feature dimension j is computed as a
linear combination of the bottom-up saliences sij for fea-
tures (values) within that dimension (figure 1). To simulate
human like behavior, we assume that the feature responses
are modulated in a top-down manner by multiplicative gain
modulation [26, 12].

Sj(x, y, A) =
n∑

i=1

gijsij(x, y, A) (1)

Combining salience across dimensions: To combine in-
formation across N feature dimensions, we integrate lin-
early across all dimensions to obtain the overall perceived
salience S (as suggested by the Guided Search theory, [32]).

S(x, y, A) =
N∑

j=1

gjSj(x, y, A) (2)

Salience of the target and distractors: The expected
salience of the target (ST ) can be computed in terms of its
salience sijT , i ∈ {1...n}, j ∈ {1...N} in each of the n
saliency maps within the N feature dimensions. Further, as-
suming that η, C, and Θ are independent random variables,



Figure 1. Overview of our model: Let the in-
coming visual scene A contain target and dis-
tractors sampled from probability density func-
tions P (Θ|T ) and P (Θ|D). Our model assumes
that the visual input is analyzed in different fea-
ture dimensions by a population of neurons with
broad and overlapping tuning curves. Bottom-up
saliency maps sij(A) are extracted for the ith fea-
ture within the jth dimension, i ∈ {1...n}, j ∈
{1...N}. Prior knowledge of the target and dis-
tractors is used to compute the top-down gains gij

and gj . The bottom-up maps sij(A) are then mul-
tiplicatively weighted by the top-down gains gij

and are summed to yield Sj(A), the saliency map
for the jth dimension. The resulting saliency maps
Sj(A) are again weighted by top-down gains gj

and summed across different feature dimensions
to form the overall saliency map S(A). The goal
here is to choose optimal top-down weights that
maximize the target’s salience relative to the back-
ground, thereby maximizing the speed of detecting
the target.

we obtain:

E[ST (A)] = EΘ|T,C,η




N∑
j=1

gjSjT (A)




= EΘ|T,C,η




N∑
j=1

gj

n∑
i=1

gijsijT (A)




=
N∑

j=1

gj

n∑
i=1

gijEΘ|T [EC [Eη[sijT (A)]]]

Similarly for distractors. Thus, we have,

SNR =

PN
j=1 gj

Pn
i=1 gijEΘ|T [EC [Eη[sijT (A)]]]PN

j=1 gj

Pn
i=1 gijEΘ|D[EC [Eη[sijD(A)]]]

(3)

Maximizing SNR to obtain the optimal gains: To maxi-
mize SNR, we differentiate it wrt gij and gj and obtain the
following:

∂

∂gij
SNR =

SNRij

SNR − 1
αij

(4)

∂

∂gj
SNR =

SNRj

SNR − 1
αj

(5)

where αij , αj are positive normalization terms and

SNRij =
EΘ|T [EC [Eη[sijT (A)]]]
EΘ|D[EC [Eη[sijD(A)]]]

(6)

SNRj =
EΘ|T [EC [Eη[SjT (A)]]]
EΘ|D[EC [Eη[SjD(A)]]]

(7)

The sign of the derivative ∂
∂gij

SNR determines whether
gij should increase, decrease or remain at the baseline
(gij = 1), in order to maximize SNR. Eqn. 4 yields:

SNRij

SNR < 1 ⇒
„

∂

∂gij
SNR

«
gij=1

< 0 ⇒ gij < 1

= 1 ⇒
„

∂

∂gij
SNR

«
gij=1

= 0 ⇒ gij = 1

> 1 ⇒
„

∂

∂gij
SNR

«
gij=1

> 0 ⇒ gij > 1

Thus gij increases as SNRij

SNR increases. We simplify this
monotonic relationship by assuming proportionality. With
an added constraint that the gains cannot increase indiscrim-



inately, but must sum to a constant,
∑n

i=1 gij = n, we get:

gij =
SNRij

1
n

∑n
k=1 SNRkj

(8)

gj =
SNRj

1
N

∑N
k=1 SNRk

(similarly) (9)

Interpretation of the result: Thus, the top-down weight on
the ith visual feature in the jth feature dimension depends
on its signal-to-noise ratio SNRij , over the mean in that
dimension. Similarly, the top-down gain on the jth feature
dimension depends on its signal-to-noise ratio SNRj , over
the mean across all dimensions. In other words, a feature is
relevant and receives a high weight if it renders the target
more salient than the distractors, and is irrelevant otherwise.

Ideal observer vs. real observer: The current analysis con-
siders an ideal observer who knows the true underlying dis-
tribution of the target and distractor features (θ|T, θ|D). But
in reality, the observer may possess incomplete knowledge
or a different belief (θb|T, θb|D). This belief may be learnt
through observation of several displays (bottom-up priming
[11]), or through explicit verbal instruction such as “find
the red object” [34, 28]. Our model captures such top-
down influences in the following manner: A forward in-
ternal model translates the observer’s belief in feature space
(θb|T, θb|D) into a belief in salience of the target and dis-
tractors (Sb

T , Sb
D), which is then used to derive the belief

in signal-to-noise ratio (SNRb). Top-down gains are cho-
sen according to eqns. 8 and 9, thereby optimizing SNRb.
These gains gij are then applied to the bottom-up saliency
maps (sij) within each feature dimension to compute the
biased saliency maps Sj , which are multiplied by the gains
gj to obtain the overall saliency map S. Thus, the bottom-
up saliency maps are combined with the optimal top-down
gains to yield a saliency map where the target’s salience is
maximized relative to the distractors. This saliency map is
now used to guide attention to likely target locations.

3. Results

In this section, we present a systematic evaluation of
the model’s predictions for different observer beliefs, and
search tasks on artificial search arrays and natural scenes.

Computing salience: For computing bottom-up saliency
maps, we use the Itti and Koch saliency model [9]. We
use the following set of biologically inspired, low-level
visual features: 6 hues within the color dimension, 4 inten-
sities within the luminance dimension, and 4 orientations
(0◦, 45◦, 90◦, 135◦) within the orientation dimension. The
input visual scene is analyzed in all feature dimensions
in parallel and for each of the above features, feature
maps (topographic maps of feature responses at all scene

locations) are extracted in 6 different spatial scales (down-
sized by a factor of 1, 2, 4, 8, 16, and 32). After local
center-surround feature contrast operations, and global
nonlinear interactions in space, these maps are weighted
by the top-down gains (whose baseline is unity) and are
linearly combined into a conspicuity map for that feature
dimension. The conspicuity maps are also weighted by
top-down gains (default weight is 1) and are combined
linearly to obtain the overall saliency map. The active
locations in this map indicate likely target locations.

Interpreting SNR: The SNR in the overall saliency
map may be high and search may be efficient due to high
bottom-up salience of the target relative to the distractors
(e.g., a green target pops out among red distractors [25] as
sijT >> sijD in at least one saliency map i in dimension
j), or due to efficient top-down guidance to the target (e.g.,
a green target among randomly colored distractors becomes
easy to find once subjects know that the target is green [4]
since gij >> 1 on the green feature), or both.

Comparison of four models: We test the predictions of
the above theory by implementing four different models:
T0D0, T1D0, T0D1 and T1D1, where T and D refer to the
target and distractors. T0D0, the naive, bottom-up model
[9] does not know T or D (hence, uses default top-down
weights of 1). T1D0 combines bottom-up salience with
knowledge of T only. Hence, it computes top-down weights
based only on target salience sijT , while ignoring D by
considering sijD to be some constant. T0D1 combines
bottom-up salience with knowledge of D only. T1D1
combines bottom-up salience and top-down knowledge of
both T and D. It chooses weights according to eqns. 8 and 9.

Training and test data: We compare the performance of
the above models on synthetic search array stimuli used in
psychophysics tasks (to study human behavior in a con-
trolled and simplified environment), as well as in real-
world natural scenes with complex stimuli. For each
search condition with the synthetic stimuli, the model learns
the belief in salience (Sb

T , Sb
D) from 50 training images,

computes the mean salience of the target and distractors
(EΘ|T,C,η[Sb

T (A)], EΘ|D,C,η[Sb
D(A)]) and uses it to com-

pute gains (gij , gj), that are subsequently applied on 100
new, previously unseen test images. In each of these im-
ages, the target and distractors can occur randomly at any
cell within the 9x9 grid, and their location within the cells
is further jittered by upto 10 pixels (thereby changing C).
Noise in stimulus features is also added, in the form of jitter
in orientation (upto 5◦), and jitter in color values (upto 20
in R,G and B), thereby changing Θ|T, Θ|D. Internal neural
noise η is added by the saliency model. Results are reported
in figure 2a-i.
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Figure 2. Simulation results: This
figure shows the results of testing on
750 artificial search arrays and natu-
ral scenes. Each row shows a differ-
ent search task with different targets and
distractors. The first column shows a
sample test scene. The second column
shows the SNR (in decibels) predicted
by four different models described in
section 3. The third column shows the
distribution of optimal top-down gains
derived from knowledge of the target
and distractors, as computed by model
T1D1. The dotted blue lines are the de-
fault gains (1) used by model T0D0. The
first plot shows the gains on the intensity
(I), color (C) and orientation (O) dimen-
sions. The subsequent plots show the
gains within these dimensions (in the or-
der of intensity, color and orientation).
The final column shows some remarks.
As described in section 3.1, these results
are consistent with bottom-up and top-
down effects reported in psychophysics
experiments. Across all search tasks,
model T1D1 performed atleast as good
as or better than T1D0, T0D1, which
performed better than T0D0. These re-
sults suggest that knowledge of both the
target and the distracting background
plays an important role in improving
search speed.



3.1. Artificial search arrays

Pop-out search: Figure 2a shows an example of a pop-out
search with a green target among red distractors. The naive
bottom-up saliency model T0D0 predicts that SNR will
be reasonably high (1.3±0.1dB), indicating that search will
be fast [25]. Consistent with psychophysics experiments
on “priming of pop-out” [11], knowledge of the target and
distractors allows the relevant features to be primed and
hence increases SNR to 7.7±0.2 dB, leading to a faster
search. The distribution of optimal gains shows that the
gain on the color dimension increases while suppressing
intensity and orientation; and within color, the target’s
green feature is maximally boosted while the distracting
red feature and other irrelevant features are suppressed.

Distractor heterogeneity: Figure 2b shows an example of
search for a green target among heterogeneous distractors
of different colors. As observed in human visual search
behavior [5], the naive model T0D0 predicts a hard search
(SNR is -0.4±0.1 dB). But psychophysics experiments
[5] also show that this hard search becomes efficient if the
target is known, consistent with the prediction of models
T1D0 and T1D1. Note that in both figures 2a and 2b, the
target and distractor features are well separated in feature
space, hence, the optimal gains reduces to increased gain
on target features and suppression of others.

Poor target-distractor discriminability: Figure 2c shows
an example of search for an orange target that is less dis-
criminable from the red distractors. The naive model T0D0
correctly predicts a very hard search [18, 5, 14, 24, 32]
(SNR is -4.6±0.5 dB). Simply knowing the target feature
is not so helpful, since boosting the target’s red feature also
activates all the distractors that share that feature. Instead,
model T1D1 that knows both the target and distractors
performs better as it promotes the yellow feature that
selectively activates the target, while suppressing the red
feature that activates the distractors.

Conjunction search: Figure 2d shows conjunction search
for a green-horizontal target among green-vertical and
red-horizontal distractors. The naive model T0D0 correctly
predicts a very hard search [25] (SNR is -5.8±0.4 dB).
Extra knowledge allows model T1D1 to slightly improve
search by promoting the target’s horizontal feature, while
suppressing the distractor’s red feature. But consistent with
psychophysics experiments, search remains hard.

Linearly separable target: Figure 2e shows search for a
bright target among medium-bright and dark distractors.
Search is easy (SNR is 7.1±0.3 dB), confirming earlier
reports of easy search for a target that can be separated
from distractors by a line in feature space [6, 1]. T1D1

Figure 3. Example training data

suggests higher gain on intensity dimension, and within
intensity, higher gain on the high intensity values than
others.

Non-linearly separable target: Figure 2f shows search
for a medium-bright target among dark an bright distrac-
tors. The naive model T0D0 predicts hard search (SNR
is -2.5±0.4 dB) confirming the “linear-separability effect”
[6, 1] that search for a medium-type target that cannot be
linearly separated from distractors is harder than when the
target is linearly separable (as shown in 2e). Consistent with
previous experiments, there is a top-down effect of knowl-
edge leading to faster search [8]. In this case, model T1D1
suggests increased gain in the medium intensity value and
suppression of high and low intensity values (corresponding
to boosting the target and suppressing the distractors).

3.2. Natural scenes

Training and testing: To test the model’s performance on
natural scenes, we train it on 10 images containing different
views of the target, appearing at different locations in the
scene. Some examples are shown in figure 3. The learned
top-down gains are subsequently applied on 50 new test
scenes where the target can appear in slightly different
backgrounds, different locations, views and sizes.

Search for targets in natural scenes: The results for
finding a cell phone on a cluttered desk are shown in figure
2g. While the naive model T0D0 struggles to find the
non-salient phone (SNR is -1.2±0.4 dB), knowledge of
the phone and the distracting background (through training)
speeds search significantly (model T1D1 yields an SNR of
5.9±0.6 dB). Inspection of the gains reveal that color is the
useful dimension and within color, the target’s blue feature
discriminates it best from the background. Similar results



Figure 4. Comparison of saliency maps of the naive bottom-up
model T0D0 (second row) vs. T1D1 (third row) are shown during
search for a phone on a desk (first column), a coke can in a clut-
tered scene (second column), and a pen in a distracting background
(third column). Although the target is not bottom-up salient, prior
knowledge of the target and the distracting background (acquired
through training) helps in improving the SNR, thereby rendering
the target more salient and suppressing noisy activity due to the
distractors.

are shown during search for a pen (figure 2i) and coke can
(figure 2h) in distracting backgrounds. Figure 4 shows
sample saliency maps for further comparison between
the naive model (T0D0) and the combined top-down and
bottom-up model (T1D1).

4. Discussion

Summary of results: By integrating top-down, knowledge-
driven and bottom-up, image-driven approaches, we
account for a large body of visual search literature. All
models successfully account for fast search in pop-out
tasks (e.g., green target pops out among red distractors)
[25], slow search in conjunction tasks (e.g., green vertical
target among green horizontal and red vertical distractors)
[25], slow search when the target is more similar to the
distractors (e.g., orange target among red distractors)
[18, 5, 14, 24, 32], and faster search for an extreme
feature valued target than a medium valued target (e.g.,
faster search for a bright target among dark and medium
distractors, while slower search for a medium target among
dark and bright distractors) [6, 1]. In addition, knowledge
based models T1D0 and T1D1 also account for fast search
for a known target among heterogeneous distractors, while
the naive model T0D0 indicates a slow search (e.g., search
for a green target among red, yellow and blue is slow if we
dont know that the target is green, and is otherwise fast)[5].

Better knowledge leads to faster search: Systematic
comparison of different models reveals that model T1D1
performs significantly better than models T1D0, T0D1,
which perform better than T0D0. Thus, we provide a
computational correlate for the behavioral effect that better
knowledge leads to faster search [34, 28]. The gradual
progression of models from T0D0 (no knowledge), to
T1D1 (complete knowledge of both target and distractors)
allows us to capture the behavior of novices to experts,
such as due to priming [11].

Role of knowledge of the distracting background:
Contrary to previous target based approaches which assume
that knowledge of the target suffices [32, 19], we suggest
that knowledge of the distractors is also crucial. Hence,
while the former approaches suggest that the target features
always be promoted, as shown in figure 2c, our model
predicts that the target features may even be suppressed if
the distractor activates the same features. Similar examples
are also shown in figure 2h, where the blue feature in the
blue-green pen is suppressed as it activates the background.
Thus, distractors and not just the target, play an important
role in priming features so as to maximize target detection
speed.

Integration of bottom-up and top-down attentional
influences: With little computational cost incurred through
multiplicative top-down weights on bottom-up saliency
maps, our model combines both stimulus-driven and
goal-driven attention, to optimize speed of guidance to
likely target locations, while simultaneously being sensitive
to unexpected stimulus changes. As mentioned earlier,
this is an important ability for robot navigation, visual
surveillance and other active vision tasks that operate
in unconstrained environments where unexpected visual
events such as accidents may occur.

Future extensions: We currently consider simple, low-
level visual features such as intensities, hues and orienta-
tions at multiple spatial scales. But the theory derived in
section 2 is general and can be applied to any feature di-
mension, such as complex shape features.
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