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Although much is known about the sources andmodulatory effects of topYdown attentional signals, the information capacity of
these signals is less known. Here, we investigate the granularity of topYdown attentional signals. Previous theories in
psychophysics have provided conflicting evidence on whether topYdown guidance is coarse grained (i.e., one gain control
term per feature dimension) or fine grained (i.e., multiple gain control terms per dimension). We resolve the conflict by
designing new experiments that disentangle topYdown from bottomYup contributions, thereby avoiding confounds existing in
previous studies. The results of our eye-tracking experiments show that subjects can selectively saccade to items belonging to
the relevant feature interval compared with irrelevant intervals within a dimension. This suggests that topYdown signals can
specify not only the relevant feature dimension but also the relevant feature interval within a dimension. We conclude that
topYdown signals are fine grained and can specify multiple gain control terms per dimension.
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Introduction

Attention is guided as a combination of
topYdown and bottomYup factors

Visual attention is guided as a combination of at least two
factors: bottomYup factors based on spatiotemporal differ-
ences in visual input (Itti & Koch, 2001) and topYdown
factors based on prior knowledge of the stimuli (Wolfe,
Horowitz, Kenner, Hyle, & Vasan, 2004). For instance, a
ripe red fruit among green leaves is bottomYup salient and
attracts attention due to the difference in color (Itti &
Koch, 2000; Li, 1999; Tsotsos et al., 1995). TopYdown
factors such as prior knowledge that the fruit is red can
further accelerate search speed by increasing the activity
of neurons tuned to the red feature (Corbetta, Miezin,
Dobmeyer, Shulman, & Petersen, 1990; Motter, 1994;
Saenz, Buracas, & Boynton, 2002; Treue & Martinez
Trujillo, 1999). Thus, both bottomYup and topYdown fac-
tors together guide attention to visually salient and rel-
evant scene locations (Navalpakkam & Itti, 2005b).

Importance of studying granularity
of topYdown signals

The natural world contains prey and predators that are
camouflaged and, hence, visually nonsalient. For instance,
a lion camouflaged in the dry savannah is hard to detect
because its golden fur has similar tint as the yellowish
grasslands. In such situations where bottomYup guidance is

minimal, the prey’s survival depends on whether topYdown
can guide attention by selecting the fine-grained target
feature (in this case, selecting the relevant shade of yellow
among different shades). Hence, the granularity of topY
down signals plays a critical role in determining visual
search performance. Despite its importance, the granularity
or information capacity of topYdown signals has been less
studied than their sources or modulatory effects on early
sensory areas (Chawla, Rees, & Friston, 1999; Chelazzi,
Miller, Duncan, & Desimone, 1993; Lee, Itti, Koch, &
Braun, 1999; Moran & Desimone, 1985; Motter, 1994;
Saenz et al., 2002; Treue & Maunsell, 1996). In an elegant
electrophysiological study, Treue and Martinez Trujillo
(1999) showed evidence for differential gains on neurons
tuned to different directions of motion, thereby demon-
strating high topYdown granularity. Here, we investigate
whether the same is true in other dimensions like intensity,
color saturation, and size. We perform an additional test of
granularity that was previously ignored in the electro-
physiological studies, namely, whether attention can
selectively enhance an intermediate feature in a dimension
while suppressing flanking distractor features. Few psy-
chophysics studies have tried to address these issues of
granularity, and their results provide conflicting evidence.
Some studies suggest that topYdown signals are coarse
grained (Figure 1a, e.g., one gain control term for the in-
tensity dimension, thereby selecting all values or intervals
of intensity; Found & Muller, 1996; Muller, Heller, &
Ziegler, 1995), whereas others suggest that topYdown sig-
nals are fine grained (Figure 1b, e.g., multiple gain control
terms within the intensity dimension, allowing selection of
a particular interval of intensity; Pomplun, 2006; see
below for a detailed literature review). Investigating the
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granularity of topYdown signals is therefore crucial for
further progress in understanding topYdown attention mod-
ulation. In the rest of this section, we present an over-
view of relevant literature.

Guided search theory

One of the most influential theories of visual search is the
guided search theory (Wolfe, 1994). It successfully
accounts for several observed phenomena in human visual
search behavior, such as pop-out versus conjunction
(Treisman & Gelade, 1980), targetYdistractor discrimina-
bility (Duncan & Humphreys, 1989; Nagy & Sanchez,
1990; Pashler, 1987; Treisman, 1991), distractor hetero-
geneity (Duncan & Humphreys, 1989), and feature
priming (Maljkovic & Nakayama, 1994; Wolfe, Butcher,
& Hyle, 2003). It suggests a two-stage model of visual
processing. In the preattentive stage, feature maps are
computed in parallel in several feature dimensions (e.g.,
red, blue, green, and yellow feature maps in color hue
dimension; steep, shallow, left, and right maps in the
orientation dimension). In the second stage, topYdown
multiplicative gains are applied on these bottomYup maps,
and the weighted feature maps are combined additively to
form an activation map that eventually guides visual at-
tention in a sequential manner. Thus, during search for a
red item, the theory suggests that the weight on the red
feature may be increased, resulting in increased activity of
all red items in the scene. Although the theory includes
topYdown guidance through a multiplicative gain control
mechanism, it does not directly address the issue of
granularity of topYdown guidance. For some dimensions
like orientation, it explicitly states that there may be mul-
tiple gain control terms for steep, shallow, left, and right
features. However, for other dimensions like intensity,
size, and color saturation, it does not comment on the
granularity.

Linear separability effect

A popular effect observed in visual search behavior
suggests that search is easier when the target can be
separated from the distractors by a line in feature space. For
instance, in the intensity dimension, search for the brightest
item is easier than search for a medium-bright item among
brighter and darker items. This effect has been reported in
several dimensions such as color (D’Zmura, 1991),
chromaticity (Bauer, Jolicoeur, & Cowan, 1996), lumi-
nance (Bauer et al., 1996; Hodsoll & Humphreys, 2001),
and size (Hodsoll & Humphreys, 2001; Treisman, 1988;
Wolfe & Bose, 1991, unpublished data). Inefficient search
for a MID interval target seems to suggest that topYdown
cannot select the MID interval within a feature dimension.
Hence, these results seem to support the hypothesis that
topYdown guidance is coarse grained. However, the above

experiments varied both the target and the distractor
stimuli across the search conditions, thereby varying both
bottomYup and topYdown guidance and making it difficult
to tease apart the topYdown contribution. For instance, in
the HIGH search condition, their subjects searched for a
single HIGH intensity target among many MID and LOW
intensity distractors, whereas in the MID condition,
subjects searched for a single MID intensity target among
many LOW and HIGH intensity distractors. Thus, both the
target and distractor stimuli varied across search con-
ditions, leading to changes in both bottomYup and topY
down effects. Indeed, bottomYup guidance alone suffices
to account for the previous resultsVsearch for the MID
intensity target is slower as the target is not bottomYup
salient (due to its similarity to both LOW and HIGH
intensity distractors), whereas search for the HIGH
intensity target is faster as it is more bottomYup salient
(due to the large difference from the LOW intensity dis-
tractors). Due to the entangling of topYdown and
bottomYup effects, the above experiments cannot reveal
the role of topYdown guidance. We overcome this
confound by maintaining the background stimulus con-
stant while varying only the target across the search
conditions. Thus, bottomYup factors remain nearly con-
stant, whereas the topYdown factor varies, allowing us to
infer its role unambiguously.

Subset search

Classical conjunction searches (e.g., search for a red
vertical bar among green vertical and red horizontal bars)
were known to be hard (Treisman & Gelade, 1980).
However, later experiments revealed a distractor-ratio
effect (Bacon & Egeth, 1997; Egeth, Virzi, & Garbart,
1984; Kaptein, Theeuwes, & van der Heijden, 1995; Shen,
Reingold, & Pomplun, 2000; Zohary & Hochstein, 1989);
that is, subjects tend to search in a dimension defined by
the smaller subset of distractors (i.e., if there are fewer red
horizontal bars than green vertical bars, then subjects
focus on the color dimension and search through the red
items). Thus, conjunction search can become efficient if
subjects search through the smaller subset. Although these
experiments demonstrate that subjects can selectively
attend to feature within a dimension (e.g., red within
color dimension), they do not indicate whether subjects
can select an intermediate feature in a dimension.

Dimension weighting

Several studies in the past investigated topYdown
guidance to feature dimensions. Their results show that
prior knowledge of the target dimension can facilitate
search (Found & Muller, 1996; Kumada, 2001; Muller
et al., 1995; Treisman, 1988). A prominent theory is the
dimension-weighting account (Found & Muller, 1996;
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Muller et al., 1995). It suggests that during search for a
target, feature dimensions are weighted so that the known
target dimension is promoted. The experimental paradigm
was as follows: In a within-dimension condition, the target
dimension was known and remained constant across trials,

but its value varied within that dimension, whereas in the
cross-dimension condition, the target dimension varied
across trials. Treisman observed shorter reaction times (RTs)
in the within-dimension condition than the cross-dimension
condition. Muller et al. observed such within-dimension

Figure 1. Testing the hypotheses: Consider searching for a MID intensity target (marked by a yellow circle for illustration purposes) among
LOW, MID, and HIGH intensity distractors. Let the display be processed by neurons that are tuned to LOW, MID, and HIGH intensity
intervals. The feature maps corresponding to the LOW, MID, and HIGH intensity intervals are added to form a saliency map that
subsequently guides attention. (a) If topYdown guidance were coarse, the gains on LOW, MID, and HIGH intensity intervals would be equal,
resulting in equal salience of all items, thereby yielding equal number of fixations on all intervals. (b) In contrast, if topYdown guidance were
fine grained, the gain on the relevant MID intensity interval would be higher than that on LOWand HIGH intensity intervals, resulting in higher
salience of items in the MID interval, thereby yielding higher number of fixations on the MID interval than on the LOW or HIGH interval.
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facilitation even between successive trials. This led to a
dimension-weighting account, suggesting that the known
target dimension receives a higher weight compared with
other unknown dimensions, thereby increasing the target’s
activity in the master map, resulting in faster search for the
target. Although these studies suggest weights on feature
dimensions (e.g., intensity), they do not suggest weights
within a dimension. Here, we wish to investigate the
granularity of weights. For instance, is there one weight
per dimension or one weight per feature interval within a
dimension? In other words, can the coarse feature
dimension-weighting account be extended to a finer feature
interval-weighting account?

Visual guidance in complex scenes

A recent study (Pomplun, 2006) investigates visual
guidance to low-level features in complex natural scenes.
The experiment consists of the following paradigmV
subjects first preview a target patch (74 � 74 pixels)
extracted from the image and subsequently search for the
target in the image. Analysis of eye-movement data
reveals that subjects saccade to image regions that have
similar intensity, contrast, spatial frequency, and orienta-
tion as the target. For instance, if the target has MID
intensity, there are more saccades to MID intensity re-
gions of the image than to LOW or HIGH intensity re-
gions. This difference in saccadic selectivity was assumed
to reflect topYdown guidance. The author proceeded to
compare the strength of guidance to different feature
dimensions, showing decreasing order of guidance for
intensity, contrast, spatial frequency, and orientation. The
clever experiment design allowed the author to break up
each dimension into smaller intervals and infer the spread
of guidance through the distribution of saccades as a
function of distance from target interval. However, the
above experiment suffers from the same confound as
experiments on linear separability. Across the LOW, MID,
and HIGH search conditions, the author varied not only
the target but also the background image. Hence, the
measured guidance reflects a combination of both topY
down and bottomYup effects, making it difficult to tease
apart the contribution of topYdown guidance. Indeed,
bottomYup effects were not controlled in that experiment.
It was not verified whether the regions similar to the target
were bottomYup salient or not. Although the proportion of
LOW, MID, and HIGH intensity regions was equal when
pooled over all images, the proportion was not controlled
within a given search condition. It may have been possible
that during search for the MID interval target, there were
fewer MID interval regions, thereby increasing their
bottomYup salience and yielding higher saccadic selectiv-
ity. Indeed, the author confirms this by reporting feature-
ratio effects; that is, a feature that is present in smaller
proportion or ratio in the image attracts higher number of

saccades. Such bottomYup effects need to be controlled to
allow unambiguous inference on the role of topYdown
guidance. We achieve this by varying the target stimulus
while keeping the background constant. This alteration in
the experimental design allows us to investigate topYdown
guidance without any bottomYup confounds. More details
are given in the next section.

Design and analysis
of experiments

Contending hypothesis

In this article, we investigate the granularity of topY
down signals by comparing two competing hypotheses:
(a) topYdown guidance is coarse grained versus (b) it is
fine grained. As mentioned earlier, the coarse-grained
hypothesis is supported by several existing visual search
theories. For instance, the dimension-weighting account
(Found & Muller, 1996; Muller et al., 1995) of visual
search behavior suggests coarse-grained topYdown guidance
of one gain control term per feature dimension (i.e., the
gains on all intervals within that dimension are equal, see
Figure 1a). The competing hypothesis is that topYdown
guidance is fine grained and contains several gain control
terms per feature dimension (see Figure 1b; Pomplun,
2006).

Testing the hypotheses

To test these hypotheses, we designed visual search ex-
periments (see Figure 1) where subjects searched for a
target belonging to a fine-grained feature interval among
distractors belonging to many intervals within a feature
dimension (e.g., within the intensity dimension, search for
a medium intensity target among distractors of low, me-
dium, and high intensities). Assuming that attention is
guided by a saliency map formed by summing feature
maps, the coarse- and fine-grained hypotheses generate
contradictory predictions on search behavior: According
to the coarse-grained hypothesis, the gains on all intervals
are equal. Hence, all feature maps contribute equally to
the saliency map, resulting in equal salience of items of all
intervals, yielding equal number of fixations on each in-
terval. In contrast, the fine-grained hypothesis predicts
higher gain on the relevant interval, leading to an in-
creased contribution of the relevant feature map, resulting
in higher salience of items of the relevant interval, thereby
yielding higher number of fixations. Thus, the fine-grained
hypothesis predicts that items of the relevant fine-grained
interval should be preferentially fixated. To test these
hypotheses, we design the following experiments.
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Experiment 1: Intensity

This section describes the design and analysis of eye
movements to determine whether topYdown guidance can
selectively enhance the relevant interval within the inten-
sity dimension.

Design of the stimuli

The details of our experiments are as follows: The intensity
dimension is divided into fine-grained feature intervals: LOW,
MID, and HIGH. The target and distractor stimuli belong to
one of LOW, MID, or HIGH intervals, and the distractors are
L shaped, whereas the target is rotated by 180-. This rotation
enables recognition of the target but disables preattentive
guidance (control experiments reveal a search efficiency of
23 ms/item, indicating that the rotated L target is preatten-
tively indistinguishable from the upright L distractors).

Search conditions

There are three search conditions: LOW, MID, and HIGH,
based onwhether the target interval belongs to LOW,MID, or
HIGH intervals within that dimension, respectively. To avoid
confounds due to stimulus-driven bottomYup factors, we
maintain the same background stimulus (equal numbers of
LOW, MID, and HIGH intensity distractors) across all three
search conditions and vary only the target. For example, in the
MID condition, subjects search for a MID intensity target
among equal numbers of LOW, MID, and HIGH intensity
distractors, whereas in the HIGH condition, they search for a
HIGH intensity target among equal numbers of LOW, MID,
and HIGH intensity distractors. Examples of our displays are
shown in Figures 3a, 3b, and 3c.

Additional details of stimuli

Each item is 64 � 64 pixels in size (1.2-). To avoid
spatial biasing, the target and distractors can randomly

appear anywhere in the invisible 5 � 5 grid that filled the
search array. Further, jitter is introduced by rotating each
item randomly up to 5-, and random colored noise is added
to the display. Stimuli are presented on a 22-in. computer
monitor (LaCie Corp.; 1,280 � 1,024; 60.27 Hz double-
scan; mean screen luminance, 30 cd/m2; room, 4 cd/m2).
The search array (1,024 � 1,024 pixels) is embedded on a
black background and displayed at the center of the
monitor screen (1,280 � 1,024). The display is viewed at a
distance of 80 cm, and the viewing angle is 28- � 21-.
The stimuli parameters are as follows: In the intensity
dimension, the luminance values are as follows: LOW,
4.1 cd/m2; MID, 21 cd/m2; HIGH, 112 cd/m2. These
values of LOW, MID, and HIGH intervals are chosen
according to the Weber’s law. Examples of our displays
are shown in Figure 2. To avoid any confounds in
inference due to differences in other features, our stimuli
are always designed to be identical in all irrelevant feature
dimensions and differ only in the intervals within the
relevant feature dimension. Thus, in the intensity experi-
ments, all stimuli have the same size, color, and
orientation and differ only in the luminance values.

Experimental organization

Subjects perform one search condition a day, for three
consecutive days. Each search condition lasts up to an hour
and is composed of a maximum of 10 blocks, containing
20 trials each. Subjects run as many blocks as they can (in
the range of 8Y10) within an hour. Subjects are allowed to
take a break in between blocks.

‘‘No Cheat’’ scheme for response validation

Each trial begins with a central fixation for 250 ms
followed by stimulus onset. Subjects search for the target as
fast as possible and hit a key upon finding it. Due to
boredom or weariness or other factors, subjects may falsely
report that they found the target. To avoid such false

Figure 2. This figure shows the RT for all valid trials in the LOW, MID, and HIGH search conditions within intensity, size, and color saturation
dimensions. In all feature dimensions, search was slower in the MID condition than in the LOW or HIGH condition, as demonstrated by the linear
separability theory. Note that there is no speedYaccuracy tradeoff here as the RT was only computed over valid (correct) trials.
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positives, we introduce a novel ‘‘No Cheat’’ scheme: Upon
the key press indicating that the target was found in the
display, we flash a grid of two-digit random numbers (of
size 0.6- each) for 120 ms and ask the subject to report the
random number that flashed at the target’s location. Sub-
jects could correctly report the number only if they were
fixating at the target location. Online feedback (‘‘Correct’’
or ‘‘Wrong’’) is provided to the subject based on whether
the reported number matches with the flashed number.
Only Correct trials (i.e., where the subject correctly re-
ported the number at the location of the target) are con-
sidered for analysis of eye-movement patterns. Our choice
of the ‘‘No Cheat’’ paradigm instead of traditional target
absent trials was motivated by the following reasons: Al-
though target absent trials yield more fixations per trial,
they are more time consuming. Besides, by validating the
subject’s response on a per-trial basis, the ‘‘No Cheat’’ par-
adigm provides a better guarantee that subjects are actively
biasing for the target on each and every trial. This also
minimizes data wastage by rejecting only the Wrong trials
(instead of rejecting the entire block in which it occurs).

Details of eye tracking

A nine-point eye-tracker calibration is performed at the
beginning of each block. Each calibration point consists of
fixating a central cross, then a blinking dot at a random
point on a 3 � 3 matrix. The experiment is self-paced, and
the subjects can stretch before any nine-point calibration.
Subjects fixate on a central cross and press a key to start, at
which point the trial beings. The eye tracker records from
the beginning of the display of the search array to the point
when the key is pressed. Each search array image is entirely
preloaded into memory. Eye position is tracked using a
240-Hz infrared-video-based eye tracker (ISCAN, Inc.).
All analyses are performed offline.

Data cleaning

To verify whether topYdown guidance can select the rel-
evant fine-grained interval, we analyzed the eye-movement
data of three subjects with normal or corrected vision, who
participated for course credit or volunteered. Blocks with
bad eye-tracker calibration were not considered for sub-
sequent analysis (0Y4% data). Similarly, trials with too
many blinks were discarded (0Y7% data). As mentioned
previously, Wrong trials (incorrect report of the random
number flashed at the target’s location) were also dis-
carded (0Y3% data). It was very rare that subjects indeed
found the target but did not report the number correctly
(from personal communication with subjects, this error
varied between 0% and 2% for different subjects).
Subjects had to fixate on a central fixation at the beginning
of each trial (to avoid any subject biases toward specific
spatial regions). Those trials in which subjects began by

fixating more than 3- away from the center were also
discarded (0Y8% data). All subsequent analyses were
performed only on the remaining valid trials.

Reaction time

We computed RT as the time taken to find the target
(time from stimulus onset until key press). We compared
RTs across the LOW, MID, and HIGH search conditions.
As reported in earlier studies (Bauer et al., 1996; D’Zmura,
1991), the RT was significantly higher ( p G .05) in the
MID condition than in the LOW or HIGH condition (see
Figure 3a). This replicates the results of previous studies.

Saccadic selectivity

Wemeasured the saccadic selectivity toward LOW, MID,
and HIGH intensity intervals in the following manner: We
parsed the eye-movement patterns in the valid trials into
fixations and saccades and assigned each fixation to the
nearest item in the search array (sample eye traces are shown
in the first row of Figure 3). Saccadic selectivity for an
interval was computed as the total number of fixations that
were assigned to items belonging to that interval. For a
given search condition (e.g., search for LOW intensity
target), we compared saccadic selectivity across different
intervals by pooling the trials across all blocks and subjects
and performing a paired t test. Statistical analysis revealed
a significantly higher saccadic selectivity ( p G .05) toward
the relevant interval than irrelevant intervals. For instance,
in the MID condition, search for a MID intensity target
leads to more fixations on the MID intensity items than on
the LOW or HIGH intensity items. This was consistent for
all search conditions (see second row of Figure 3).

Strength of biasing

For a given search condition, we determined the strength
of biasing as a function of time by computing the
percentage of fixations on the relevant interval for each
block. The third row in Figure 4 shows a plot of the
strength of biasing as a function of time. Given that there
are equal number of items in all three intervals of
intensity, there should be a 33.3% chance of fixating each
interval. Yet, a t test reveals that the percentage of
fixations on the relevant interval is significantly higher
( p ¡ .01) than that predicted by chance (see Table 1).
This reveals a clear effect of topYdown guidance through
selective enhancement of the relevant interval. Also, the
strength of biasing seems higher in the LOW and HIGH
search conditions (95% confidence interval of [50.58,
57.9] and [53.30, 61.79], respectively) than in the MID
condition (95% confidence interval of [37.26, 44.78]).
This suggests why the RT is lower in the LOW and HIGH
conditions than in the MID condition (Figure 3). Does the
strength of biasing vary with time? To answer this

Journal of Vision (2006) 6, 1180–1193 Navalpakkam & Itti 1185



question, we performed a one-way ANOVA (Table 2).
Results show that there is no main effect of time (in units
of block number) on the strength of biasing.

Experiment 2: Size

To verify the generality of the topYdown biasing effect
observed in the intensity dimension, we repeated similar
experiments and analysis on the size dimension.

Experimental design

In the size experiments, all stimuli have the same
luminance, color saturation, and orientation and differ only
in the size values. The values for the three conditions (LOW,

0.6-; MID, 1.2-; HIGH, 2.4-) are chosen according to
Weber’s law. Other experimental details are similar to those
in intensity.

Saccadic selectivity

As seen in Figure 4, in all search conditions, there was
significantly higher saccadic selectivity (paired t test,
p G .05) toward the relevant size interval. For instance, in
the MID condition, during search for a MID sized target,
there were more fixations on the MID sized items
compared with LOW or HIGH sized items.

Strength of biasing

The percentage of fixations on the relevant size interval was
significantly higher (t test, p ¡ .01) than the baseline 33.3%

Figure 3. Results in the intensity dimension: (a) The first column shows results during search for a LOW intensity target. The sample eye
trace illustrates that subjects tend to fixate on the relevant LOW intensity distractors. Statistical analysis of all trials reveals a significantly
higher number of fixations on the relevant LOW intensity items (indicated by a yellow star) than on the MID or HIGH intensity items (paired
t test, p G .05). Statistical analysis of fixations as a function of time (in units of block number) reveals that the strength of biasing does not
change with time (see Table 2). Similar results are observed for the (b) MID and (c) HIGH conditions. As shown in the second column, when
subjects search for a MID intensity target, they selectively fixate on the MID intensity distractors, as compared with LOW or HIGH intensity
distractors. These results demonstrate that topYdown signals can guide attention to the relevant interval within the intensity dimension.
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predicted by chance. In the LOW condition, the 95%
confidence interval was as high as [54.32, 63.84], whereas
in the HIGH and MID conditions, it was [49.94, 62.23] and
[36.22, 46.78], respectively. Thus, in all conditions, the

strength of biasing was significantly higher than by chance,
thereby indicating strong effects of topYdown guidance. As
with intensity, the results of a one-way ANOVA show that
the strength of biasing did not change with time (see Table 2).

Figure 4. Results in the size dimension: (a) The first column shows results during search for a LOW sized target. The sample eye trace
illustrates that subjects tend to fixate on the relevant LOW sized distractors. Statistical analysis of all trials reveals a significantly higher
number of fixations on the relevant LOW sized items (indicated by a yellow star) than on the MID or HIGH sized items (paired t test,
p G .05). Analysis of fixations as a function of time (measured in units of blocks from 1 to a maximum of 10) reveals that the strength of biasing
does not change with time (see Table 2). Similar results are observed for the (b) MID and (c) HIGH conditions. As shown in the second
column, when subjects search for a MID sized target, they selectively fixate on the MID sized distractors, as compared with LOW or HIGH
sized distractors. These results demonstrate that topYdown signals can guide attention to the relevant interval within the size dimension.

LOW MID HIGH

Intensity p G 10j26 [50.58, 57.9] p G 10j5 [37.26, 44.78] p G 10j25 [53.30, 61.79]
Size p G 10j20 [54.32, 63.84] p G 10j6 [36.22, 46.78] p G 10j12 [49.94, 62.23]
Saturation p G 10j15 [44.18, 51.36] p G 10j36 [51.96, 58.39] p G 10j17 [50.10, 59.34]

Table 1. For each dimension tested (intensity, size, color saturation), we find the strength of biasing (computed as percentage of fixations
on the relevant feature interval) in the LOW, MID, and HIGH search conditions. A t test reveals that in each search condition, the strength
of biasing is significantly higher (p ¡ .01) than the baseline 33.33% predicted by chance. The p values and 95% confidence interval
(enclosed in brackets) in strength of biasing are reported.
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Experiment 3: Color saturation

Next, we further verify the generality of the topYdown
biasing effect observed in intensity and size dimensions by
repeating similar experiments and analyses on the color
saturation dimension.

Experimental design

In these experiments, we desire all stimuli to have the
same luminance, orientation, and size and to differ only in
the color saturation values. This is trickier because the
perceived luminance value of different color saturations is
observer dependent. Hence, we run heterochromatic
photometry experiments (Pokorny, Smith, & Lutze,
1989) in which the observer adjusts the luminance values
of two chromatic lights presented in fast alternation
(15Y20 Hz) until it appears flicker-free. The stimuli thus
generated have the same luminance and size and differ
only in the color saturation (LOW: CIE x = 0.331, y = 0.363;
MID: CIE x = 0.453, y = 0.363; HIGH: x = 0.621, y = 0.363).
Other experimental details are similar to those in intensity.

Saccadic selectivity

As seen in Figure 5, in all search conditions, there was
significantly higher saccadic selectivity ( paired t test,
p G .05) toward the relevant saturation interval. For
instance, in the MID condition, during search for a MID
saturated target, there were more fixations on the MID
saturated items than on the LOW or HIGH saturated
items.

Strength of biasing

The percentage of fixations on the relevant saturation
interval was significantly higher (t test, p ¡ .01) than the
baseline 33.3% predicted by chance. In the LOW
condition, the 95% confidence interval was [44.18,
51.36], whereas in the MID and HIGH conditions, it was
[51.96, 58.39] and [50.10, 59.34], respectively. Thus, in
all conditions, the strength of biasing was significantly
higher than by chance, thereby indicating strong effects of

topYdown guidance. As with intensity and size, the results
of a one-way ANOVA show that the strength of biasing
did not change with time (see Table 2).

Control experiments
Could the observed results be due to covert
attention/recognition only?

One concern is whether the observed saccadic selectivity
for the relevant feature interval in Experiments 1, 2, and 3 is
due to serial scanning using covert attention and recog-
nition rather than due to parallel processes that provide
topYdown guidance to the relevant feature interval. While
some previous studies suggest that search is serial (Treisman
& Gelade, 1980), some others suggest that it is parallel
(Desimone & Duncan, 1995), and yet, others suggest that
it is a mixture of both (Bichot, Rossi, & Desimone, 2005;
Wolfe, Cave, & Franzel, 1989). To address this issue in
the context of our search experiments, we conducted ad-
ditional control experiments in the intensity dimension.
We hypothesized that if the observed saccadic selectivity
is due to covert serial scanning processes only, then de-
creasing the presentation time to 120 ms should eliminate
the contribution of serial processes and eye movements
(Palmer, 1994; Verghese & Stone, 1995); hence, selectiv-
ity should disappear. On the other hand, if selectivity is
due to a parallel, gain-based mechanism, then even under
brief presentation conditions, selectivity for the relevant
feature interval should be high. We tested this hypothesis
through the following control experiments.

Design of control experiments

Similar to Experiments 1, 2, and 3, we ran three search
conditions: LOW, MID, and HIGH, where subjects
searched for a target belonging to the LOW, MID, or
HIGH intensity interval, respectively. Figure 6a shows a
sample trial from the MID condition. Each trial began
with a central fixation (for 250 ms), followed by a brief
presentation of the search array (for 120 ms). The search
array consisted of a 3 � 3 grid of items including one
target (rotated L shape) and eight distractors (L shape)
belonging to different feature intervals. Pilot experiments
in this brief display paradigm revealed that the task was

LOW MID HIGH

Intensity F(8, 485) = 1.29, p = .2448 F(9, 491) = 1.16, p = .322 F(9, 442) = 1.69, p = .0912
Size F(7, 442) = 1.45, p = .191 F(8, 477) = 0.50, p = .8521 F(8, 447) = 1.35, p = .2249
Saturation F(9, 422) = 1.25, p = .2651 F(9, 461) = 0.60, p = .8004 F(8, 438) = 1.56, p = .1374

Table 2. For a given dimension (e.g., intensity, size, or color saturation) and a given search condition (e.g., search for a target of LOW,
MID, or HIGH feature interval), we determine whether the strength of biasing changes with time by performing a one-way ANOVA test.
Results across all conditions show that the strength of biasing does not change significantly ( p Q .05) with time (measured in units of block
number ranging from 1 up to a maximum of 10).
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too difficult with a set size of 5 � 5 items (used in
Experiments 1, 2, and 3) and that subjects became
frustrated (search accuracy G5%); hence, we decreased
the set size to 3 � 3 items. Other parameters such as the
size of the target and distractors and interstimulus
distance were the same as in Experiments 1, 2, and 3.
The search array was followed by a brief presentation
of a grid of random two-digit numbers (as part of the
‘‘No Cheat’’ scheme described in Design and analysis of
experiments section). Similar to Experiments 1, 2, and 3,
subjects were instructed to find the target as fast as
possible and report the number at its location. Subjects
received feedback on accuracy of target detection. This
completed one trial.

Results

Figure 6b shows the results obtained from three naive
subjects (who performed 30 blocks of 10 trials each). The
task was not easy, as reflected by the low accuracy of
target detection (computed as percentage of reports on
the target) that varied between 35% and 45% across
different search conditions and subjects. Although search
accuracy was low, all subjects showed significantly
higher number of reports on items belonging to the
relevant interval than irrelevant intervals (as determined
by a paired t test, p G .05). These results confirm that the
underlying search mechanism in our experiments is
parallel (gain based) rather than serial only.

Figure 5. Results in the saturation dimension: (a) The first column shows results during search for a target with LOW saturation. The
sample eye trace illustrates that subjects tend to fixate on the relevant distractors of LOW saturation. Statistical analysis of all trials
reveals a significantly higher number of fixations on relevant items of LOW saturation (indicated by a yellow star) than those of MID or
HIGH saturation (paired t test, p G .05). Analysis of fixations as a function of time (measured in units of blocks from 1 to a maximum of 10)
reveals that the strength of biasing does not change with time (see Table 2). Similar results are observed for the (b) MID and (c) HIGH
conditions. As shown in the second column, when subjects search for a target with MID saturation, they selectively fixate on distractors
with MID saturation, as compared to those with LOW or HIGH saturation. These results demonstrate that topYdown signals can guide
attention to the relevant interval within the intensity dimension.
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Discussion

Reaction time

As reported in earlier studies (Bauer et al., 1996;
D’Zmura, 1991; Hodsoll & Humphreys, 2001), in all
dimensions tested (intensity, size, and color saturation),
the RT was significantly slower ( p G .05) in the MID con-
dition than in the LOW or HIGH condition (see Figure 3).

For instance, search for a medium-sized target was slower
than search for a small or big target. This replicates the
results of previous studies.

Granularity of topYdown attention

In all dimensions tested (intensity, size, and color
saturation), our results indicate that subjects could selec-
tively fixate on items belonging to the relevant fine-grained

Figure 6. Control experiments and results: (a) Design of the control experiment: Search array was presented for a brief duration (120 ms
only) to minimize the role of serial scanning processes. Search array consisted of a 3 � 3 grid of equal number of items belonging to LOW,
MID, and HIGH intensity intervals. In each search condition (LOW, MID, or HIGH), the target was fixed. Subjects were instructed to search
for the known target and report the number at its location. (b) The reports were analyzed to determine the percentage of reports on items
of each intensity interval. Results of a paired t test showed a significantly higher number of reports on items of the relevant interval. For
instance, when subjects searched for a MID intensity target, there were more reports on items of the MID intensity interval than on those
of the LOW or HIGH intensity interval. These results confirm the role of parallel, gain-based guidance in our search experiments.
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interval defined by the target. These results negate the
coarse-grained hypothesis (Figure 1a), which predicts
equal number of fixations on all intervals. Instead, they
confirm the fine-grained hypothesis (Figure 1b) that,
indeed, topYdown signals can select the relevant fine-
grained interval within a dimension.

Did the target shape provide any guidance?

Although there are 25 items in the display (8 distractors
each of LOW, MID, and HIGH intervals, plus 1 target), the
average number of fixations is fairly low, between three and
six. This raises a concern of whether there was any special
guidance due to the target shape. However, pilot experi-
ments confirmed that the target was preattentively indis-
tinguishable from the distractors (RT slope, 23 ms/item,
indicating a hard search). This rules out any guidance due to
the shape of the target. Also, the low number of fixations
(three to six on average) is not an indicator of special
guidance to the target for the following reasons: Because
most fixations occur only on items of the relevant interval
(see Table 1), any model that scans randomly among the
8 items within the relevant feature interval would also pre-
dict four fixations on average, which is in agreement with
our observations. Thus, the observed results reveal a clear
effect of topYdown selectivity for the relevant feature
interval rather than special guidance to the target shape.

Reconcilitation with previous data

There seems to be an apparent contradiction between the
fine-grained hypothesis supported by our results and the
‘‘linear separability theory’’ supported by previous results
(Bauer et al., 1996; D’Zmura, 1991; Hodsoll & Hum-
phreys, 2001). The latter reports that search for a MID type
target is slower than search for LOW or HIGH type targets
(Figure 3), suggesting that topYdown signals cannot select
the MID interval. On the other hand, the pattern of fixations
observed in our results clearly indicate that topYdown can
select the MID interval. If, indeed, topYdown signals can
select the fine-grained MID interval, why is search slower?
This apparent conflict can be resolved by considering the
following model of visual processing: The incoming visual
scene is analyzed in each feature dimension by a pop-
ulation of neurons with broad and overlapping tuning
curves. The activity of each such neuron is assumed to be
modulated by a topYdown gain control (similar to Figure 1b).
According to this model, a MID type target can be found
by selectively promoting the neuron that responds max-
imally to the MID interval (henceforth referred to as MID
neuron). This results in increased salience of all items
sharing the MID interval, thereby attracting more fixations
as shown in our results. However, because the MID
neuron is broadly tuned, it not only responds to the MID
type target and distractors but also weakly responds to the
LOW and HIGH type distractors. The responses to LOW

and HIGH type distractors interfere with search for a MID
target, leading to a slow search. A direct consequence of
this model is that saccadic selectivity for the MID interval
increases as the spacing between LOW, MID, and HIGH
increases (i.e., if the LOW and HIGH intervals are widely
separated, the MID neuron will respond only to the MID
interval, thereby increasing the salience of MID interval
items relative to LOW or HIGH). This predicts faster
RTsVa prediction that is consistent with existing behav-
ioral reports (Bauer et al., 1996).

Time scale of biasing

Our results show that the strength of biasing does not
change as a function of time within a session. This suggests
that the topYdown bias that is set up initially during the
training period (first 20 trials in the session) does not
change in the rest of the session (lasting up to an hour).
However, this does not rule out short-term priming
(Maljkovic & Nakayama, 1994) where the strength of
biasing may improve within a few trials, nor does it rule
out long-term priming or perceptual priming (Bichot &
Schall, 1999) effects where the strength of biasing may
improve over a period of days.

Implications for visual search behavior
and performance

Although previous studies based on RT measures report
that search in the MID condition is slower than in the LOW
or HIGH condition, they do not reveal the underlying cause
or granularity of topYdown signals. Here, we used eye-
tracking methods to infer topYdown guidance by analyzing
whether subjects fixate on the relevant fine-grained interval
or not. On the basis of the results of our study, we conclude
that topYdown signals carry fine-grained information that
can specify the relevant feature interval rather than coarse-
grained information that can only specify the relevant
feature dimension. This holds implications for several
existing visual search theories and experiments. Theories
such as dimension-weighting accounts (Found & Muller,
1996; Muller et al., 1995), which suggest a single gain
control term per dimension, predict equal gain on LOW,
MID, and HIGH intervals within the dimension and, hence,
cannot account for the greater number of fixations on the
MID interval in our MID condition. Clearly, such theories
need to be updated from a coarse-grained, one-gain factor
per feature dimension to a fine-grained, one-gain factor per
feature interval. The conditions for efficient search should
be revised: Search should be easy not only when the target
and distractors differ in some dimension but also when they
differ in some interval within a dimension. This model also
accounts for some observed effects in search asymmetry.
For instance, faster search for a saturated red than for a
desaturated red (Treisman & Gormican, 1988) can be
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explained by the model as saturated red activates a HIGH
interval, whereas desaturated red activates the MID
interval and the background activates the LOW interval.
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