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Abstract

Survival in the natural world demands the selection of rafgwisual
cues to rapidly and reliably guide attention towards preg predators
in cluttered environments. We investigate whether ouralisystem se-
lects cues that guide search in an optimal manner. We foyrnohliain
the optimal cue selection strategy by maximizing the sigoaloise ra-
tio (SA'R) between a search target and surrounding distractors. This
optimal strategy successfully accounts for several phemanin visual
search behavior, including the effect of target-distradtscriminability,
uncertainty in target's features, distractor heteroggmand linear sep-
arability. Furthermore, the theory generates a new priedictvhich we
verify through psychophysical experiments with humansats. Our re-
sults provide direct experimental evidence that humaresseisual cues
S0 as to maximiz& N R between the targets and surrounding clutter.

1 Introduction

Detecting a yellow tiger among distracting foliage in diffat shades of yellow and brown
requires efficient top-down strategies that select relevaual cues to enable rapid and
reliable detection of the target among several distractémsr simple scenarios such as
searching for a red target, the Guided Search theory [1digi®that search efficiency can
be improved by boosting the red feature in a top-down marBwgrfor more complex and
natural scenarios such as detecting a tiger in the jungleaking for a face in a crowd,
finding the optimum amount of top-down enhancement to beiegd each low-level fea-
ture dimension encoded by the early visual system is neratrit must not only consider
features present in the target, but also those present dligtractors. In this paper, we for-
mally obtain the optimal cue selection strategy and ingasti whether our visual system
has evolved to deploy it. In section 2, we formulate cue siele@s an optimization prob-
lem where the relevant goal is to maximize the signal to n@itie (SNR) of the saliency
map, so that the target becomes most salient and quicklysdagtention, thereby mini-
mizing search time. Next, we show through simulations thigt@ptimal top-down guided
search theory successfully accounts for several observedgmena in visual search be-
havior, such as the effect of target-distractor discrirbility, uncertainty in target's fea-
tures, distractor heterogeneity, linear separabilitg arore. In section 4, we describe the
design and analysis of psychophysics experiments to testaoeinter-intuitive predictions
of the theory. The results of our study suggest that humapbdeptimal cue selection
strategies to detect targets in cluttered and distracting@ments.



2 Formalizing visual search asan optimization problem

To quickly find a target among distractors, we wish to maxantize salience of the target
relative to the distractors. Thus we can define the signabisaratio SAR) as the ratio of
salience of the target to the distractors. Assuming thatalisues or features are encoded
by populations of neurons in early visual areas, we definepiienal cue selection strategy
as the best choice of neural response gain that maximizesighal to noise ratioc§N'R).

In the rest of this section, we formally obtain the optimabicie of gain in neural responses
that will maximizeSA'R.

SN'R inavisual search paradigm: In a typical visual search paradigm, the salience of the
target and distractors is a random variable that dependsadnidcation in the search array,
their features, the spatial configuration of target andraisors, and that varies between
identical repeated trials due to internal noise in neurgppomse to the visual input. Hence,
we expressSAR as the ratio of expected salience of the target over expeaetéehce of
the distractors, with the expectation taken over all pdegiirget and distractor locations,
their features and spatial configurations, and over sevepalated trials.

SNR = Mean salience of the Target
~ Mean salience of the distractar

Search array and its stimuli: Let search arrayl be a two-dimensional display that con-
sists of one targef’ and several distractol®; (j = 1...N2-1). Let the display be divided
into an invisibleN x N grid, with one item occuring at each céll, y) in the grid. Let
the color, contrast, orientation and other target pararaétebe chosen from a distribution
P(0|T). Similarly, for each distractoD;, let its parameter8p, be sampled independently
from a distributionP (0| D). Thus, search array has a fixed choice of target and distractor
parameters. Next, the spatial configurat(@iis decided by a random permutation of some
assignment of the target and distractors toAfecells in A (such that there is exactly one
item in each cell). Thus, for a given search arréythe spatial configuration as well as
stimulus parameters are fixed. Finally, given a choice oapeterd and its spatial loca-
tion (z, y), we generate an image patte®(d) (a set of pixels and their values) and embed
it at location(x, y) in search arrayl. Thus, we generate search arcdy

Saliency computation: Let the input search arrayl be processed by a population
of neurons with gaussian tuning curves tuned to differeiniidis parameters such as
1, le, ... tin - The output of this early visual processing stage is usedtoptite saliency
mapss; (z, y, A) of search arrayd, that consist of the visual salience at every locationy)
for feature-valueg; (i = 1...n). Lets;(z,y, A) be combined linearly to forn¥ (z, y, A),
the overall salience at locatiom,(y). Further, assuming a multiplicative gajnon thei*"
saliency map, we obtain:

S(x,y,A) = Zgisxx,y,A) (1)

Salience of thetarget and distractors: Let S7(A4) be a random variable representing the
salience of the targéef’ in search arrayd. To factor out the variability due to internal
noisen, we consider, [St(A)], which is the mean salience of the target over repeated
identical presentations od. Further, letEc[ST(A)] be the mean salience of the target
averaged over all spatial configurations of a given set @fetaand distractor parameters.
Similarly, Ey[ST(A)] is the mean salience of the target over all target parametérs
mean salience of the target combined over several repesedriations of the search array
A (to factor out internal noise), over all spatial configurationS, and over all choices of



target parameteT is given below. Further, since, C' andé are independent random
variables, we can rewrite the joint expectation as follows:

E[Sr(A)] = Egr[Ec[Ey[Sr(A)]] )
Let Sp(A) represent the mean salience of distractors(j; = 1...N2-1) in search array

A. Similar to computing the mean salience of the target, we tiredmean salience of
distractors over alh, C andd|D.

Sp(A) = Ep,[sip,;(A)] 3)
E[Sp(A)] = EgplEcE;[Sp(A)]]] (4)

SN'R and its optimization: The additive salience and multiplicative gain hypothesis i
egn. 1 yields the following:

E[Sr(A)] = ) giBer[EclEylsir(A)]] (®)

i=1

E[Sp(A)] = Y giBeyr|Ec(Ey[sir(A)]] (similarly) (6)
i=1
SN'R can be expressed in terms of salience as:
2ic1 9iBor[Ec By sir(A)]]] e
> ic1 9iBe|p|Ec|Ey[sip(A)]]
We wish to find the optimal choice a@f; that maximisesSA'R. Hence, we differentiate
SNR wrt g; to get the following:

SNR

Boyr[EolEylsir ()] 2;—y 95 BerrBe(Balsyr (A
0 SNR — E@\D[EC[EH[SiDn(A)”] Ejzlng@‘D[EC[E,,[SjD(A)]]] @®
dgi S 93 BoiplBc(Bylsin (A)]]
Folp EcTBx[s:0 (A
SNR: _ q
_ s/\/n_ ©)
aZ

whereq; is a normalization term anfN'R; is the signal-to-noise ratio of th&" saliency
map.

SNRi = Eer[Ec|Ey[sir(A)]]]/Ee|pEc[En[sip(A)]] (10)

The sign of the derivative(diq_SNR) tells us whethep; should be increased, de-
9 g

gi=1
creased or maintained at the baseline activationorder to maximizeSAR.

SNR; < 1= d SNR < 0= SNRincreases ag; decreases> g; < 1 (11)
S./\/R dgi
= 1= dj SN'R =0 = SN'R does not change with;, = g; = 1 (12)
> 1= dd SNR > 0= SN'Rincreases ag; increases= g; > 1 (13)
gi

Thus, we obtain an intuitive result that increases a%% increases. We simplify this

monotonic relationship assuming proportionality. Furthiewe impose a restriction that
the gains cannot be increased indiscriminately, but musttstsome constant, say the total
number of saliency maps), we have the following:

SNR;

SNR
. SNR,;

n

let g; (14)



Thus the gain of a saliency map tuned to a band of featureesalepends on the strength
of the signal-to-noise ratio in that band compared to themségnal-to-noise ratio in all
bands in that feature dimension.

3 Predictions of the optimal cue selection strategy

To understand the implications of biasing features acogrtlh the optimal cue selection
strategy, we simulate a simple model of early visual cori®e. assume that each feature
dimension is encoded by a population of neurons with oveifapgaussian tuning curves
that are broadly tuned to different features in that dimemsLet f; (9) represent the tuning
curve of thei'” neuron in a population of broadly tuned neurons with oveaiag tuning
curves. Let the tuning width and amplitude: be equal for all neurons, and represent
the preferred stimulus parameter (or feature) ofiftieneuron.

a (0 — pi)?
fi(0) = pu exp (—T (16)
Let #(O(z,y, A)) = {ri(©(z,y, A))..r,(©(x,y, A))} be the population response to a
stimulus paramete®(z, y, A) at a location(z, y) in search arrayd, wherer; refers to the
response of thé” neuron andh is the total number of neurons in the population. Let the
neural responseg (O(z,y, A)) be a Poisson random variable.

For simplicity, let's assume that the local neural respané®(zx, y, A)) is a measure of

saliences;(x,y, A). Using eqgns. 2, 4, 10, 16, 17, we can derive the mean salidrtbe o
target and distractor, and use it to comp8tER;.

si(a:,y,A) = (@(IayvA)) (18)

Elsir(A)] = Egr[fi(0)] (19)

Elsip(A)] = Egp[fi(9)] (20)
 Byelio)

SNRi = E9|D[fz(9)] )

Finally, the gaingy; on each saliency map can be found using eqn. 15. Thus, forea giv
distribution of stimulus parameters for the targ&®|T") and distractor® (6| D), we sim-
ulate the above model of early visual cortex, compute sediesf target and distractors,
computeSNR; and obtaing;. In the rest of this section, we plot the distribution of epti
mal choice of gaing; for an exhaustive list of conditions where knowledge of thget
and distractors varies from complete certainty to uncetyai

Unknown target and distractors: In the trivial case where there is no knowledge of the
target and distractors, all cues are equally relevant aadgtimal choice of gains is the
same as baseline activation (unity$ 'R is minimum leading to a slow search. This
prediction is consistent with visual search experimends tibserve slow search when the
target and distractors are unknown due to reversal betwids L, 2].

Search for aknown target: During search for a known target, the optimal strategy ptsdi
thatSA'R can be maximised by boosting neurons according to how stydhey respond
to the target feature (as shown in figure 1, predi@&dR is 12.2 dB). Thus, a neuron that
is optimally tuned to the target feature receives maximal.gbhis prediction is consistent
with single unit recordings on feature-based attentionciishow that the gain in neural
response depends on the similarity between the neurorferped feature and the target
feature [3, 4].

Role of uncertainty in target features. When there’s uncertainty in the target’s features,
i.e., when the target’'s parameter assumes multiple valoesréing to some probability



distributionP(#|T'), the optimal strategy predicts th&tV'R decreases, leading to a slower
search (as shown in figure SN'R decreases from 12.2 dB to 9 dB ). This result is con-
sistent with psychophysics experiments which suggestaéier knowledge of the target
leads to faster search [5, 6].

Distractor heterogeneity: While searching for an unknown target among known distrac-
tors, the optimal strategy predicts ti&t/R can be maximised by suppressing the neurons
tuned to the distractors (see figure 1). But as we increasedisr heterogeneity or the
number of distractor types, it predicts a decreas8 MR (from 36 dB to 17 dB, figure 1).
This result is consistent with experimental data [10].

Discriminability between target and distractors. Several experiments and theories have
studied the effect of target-distractor discriminabilit]-[17]. The optimal cue selection
strategy also shows that if the target and distractors ang di€ferent or highly discrim-
inable,SA'R is high and the search is efficied@{/R = 51.4 dB, see figure 1). Otherwise,
if they are similar and not well separated in feature sp&€¢R is low and the search is
hard SN'R = 16.3 dB, see figure 1). Moreover, during search for a lessridinable
target from distractors, the optimal strategy predicts tha neuron optimally tuned to the
target may not be boosted maximally. Instead, a neuron shath-optimally tuned to the
target and farther away from the distractors receives makgain. This new and counter-
intuitive prediction is tested by visual search experirsetgscribed in the next section.

Linear separability effect: The optimal strategy also predicts the linear separalsfiigct
[18, 19] which suggests that when the target and distract@$ess discriminable, search
is easier if the target and distractors can be separatedibg &lfeature space (see figure
1). This effect has been demonstrated in size (e.g., searthd smallest or largest item is
faster than search for a medium-sized item in the displ&§)hromaticity and luminance
[21, 19], and orientation [22, 23].

4 Testing new predictions of the optimal cue selection strategy

In this section, we describe the design and analysis of mgftysics experiments to verify
the counter-intuitive prediction mentioned in the pre\@@ection, i.e., during searching for
a target that is less discriminable from the distractorsaran that is sub-optimally tuned
to the target’s feature will be boosted more than a neurohithaptimally tuned to the
target’s feature.

4.1 Design of psychophysics experiments

Our experiments are designed in two phases: phase 1 to gt tqgpkdown bias and phase
2 to measure the bias.

Phase 1 - Setup the top-down bias. Subjects perform the primary task T1 which is a
visual search for the target among distractors. This task tbe top-down bias on cues
so that the target becomes the most salient item in the disfilas accelerating target
detection. Subjects are trained on T1 trials until theifgenance stabilises with at least
80% accuracy. They are instructed to find the tar§ét tilt) among several distractors
(50° tilt). The target and distractors are the same for all Tldrido avoid false reports
(which may occur due to boredom or lack of attention) and tafw¢hat subjects indeed
find the target, we introduce a nowsd cheat scheme as follows: After finding the target
among distractors, subjects press any key. Following thepkess, we flash a grid of
fineprint random numbers briefly (120ms) and ask subjectepont the number at the
target’s location. Online feedback on accuracy of repopr®vided. Thus, the top-down
bias is set up by performing T1 trials.



P(e|T)and P(@| D) Mean response toTand D Optimal response gain

| "\ 7 % L ] % L A ]
£ | 1 o 1 ol [ 1
a | | - SN ] @ | L ’r’ \\ i
a) %’ L I i & F 1 S|t /A i
g 1 1§ 1 gt )\ 1
e . S s ) N —— 7 o N
Parameter © Neuron's preferred @
S N I S R N
- I B - B r \ q
b) r I E F 4 s / \\ 4
i I ] i ] i / ]
a ¢ ; 1 O [
[ ] [ i [T Il
- 1 i 1 d h
d | 1 f 11 h
C 1 i i L /-
L | ] F A ] L /N ]
F I g [ ] F f/ \\ g
B Il - L N L | \ |
e | l 1 : ] r [ 1
L | - C ] L / \ -
L I ] F 1 L / ]
L il i N ] T ]
r “H“w b L i L e’\ i
L | ] F b |
LU i S S A
L il B C ] L / ‘ B
L | ] F b L 1 ]
L “\‘ ] r ] L ‘H‘ i
L I ] L ] r /1 1
9 Hl ] B ] r A
L A E L 1 [ l i
; 3t I A
- 1 r ] B A ]
L i r b F [ 1
L i C ] L \ | 1
h) F 4 r B r \ /o [ 3
L - C ] C \‘/ \‘Q ]
L 4 L 4 C \ | ]

Figure 1: a) Search for a known target — left: Prior knowledBé0|T") has a peak at the known
target feature and®(0|D) is flat as the distractor is unknown, middle: The expectegarses of
a population of neurons to the target is highest for neuroned around the targett while the
expected response to the distractors is flat, right: Then@ltresponse gain in this situation is to
boost the gain of the neurons that are tuned around the ‘w®fget) Search for an uncertain target;
¢) Unknown target among a known distractor; d) Presence te#frbgeneous distractors; e) High
discriminability between target and distractors; f) Lovediminability; g) Search for an extreme
feature (linearly separable) among others; h) Search foidgeature (nonlinearly separable) among
others.
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Figure 2: The results of the T2 trials described in section 4.1 (phas&e shown here. For each
of the four subjects, the number of reports on the steepes),(relevant 60°), target 65°) and
distractor 60°) cues are shown in these bar plots. As predicted by the thegrgired t-test reveals
that the number of reports on the relevant cue is signifiganigher (p< 0.05) than the number of
reports on the target, distractor and steepest cues, astediby the blue star.

Phase 2 - Measure the top-down bias. To measure the top-down bias generated by the
above task, we randomly insert T2 trials in between T1 tridlur theory predicts that
during search for the targe§%°) among distractors5()°), the most relevant cue will be
around60° and not55°. To test this, we briefly (200ms) flash four cues - steepest (S,
80°), relevant as predicted by our theory (®)?°), target (T,55°) and distractor (D50°).

A cue that is biased more appears more salient, attractscadacand gets reported. In
other words, the greater the top-down bias on a cue, the htgeenumber of its reports.
According to our theory, there should be higher number obrespon R than T.

Experimental details: We ran 4 naive subjects. All were aged 22-30, had normal or
corrected vision, volunteered or participated for counsalit. As mentioned earlier, each
subject received training on T1 trials for a few days unté fherformance (search speed)
stabilised with atleast 80% accuracy. To become familighwhe secondary task, they
were trained on 50 T2 trials. Finally, each subject perfairh@ blocks of 50 trials each,
with T2 trials randomly inserted in between T1 trials.

4.2 Reaults

For each of the four subjects, we extracted the number reparthe steepesiMs), relevant
(Vg), target (V1) and distractorVp) cues, for each block. We used a paired t test to check
for statistically significant differences betweéf; and Ny, Np, Ng. Results are shown

in figure 2. As predicted by the theory, we found a significahigher number of reports
on the relevant cue than the target cue.

5 Discussion

In this paper, we have investigated whether our visual sydias evolved to use opti-
mal top-down strategies to select relevant cues that quihdl reliably detect the target
among distracting environments. We formally obtained th&neal cue selection strategy
where cues are chosen such that the signal-to-noise @GN of the saliency map is
maximized, thus maximizing the target’s salience relatv¢he distractors. The result-
ing optimal strategy is to boost a cue or feature if it progithigher signal-to-noise ratio
than average. Through simulations, we confirmed the piiedigtof the optimal strategy



with existing experimental data on visual search behainiohuding the effect of distractor
heterogeneity [10], uncertainty in target’s features [ t&rget-distractor discriminability
[10], linear separabilty effect [18, 19]. Our study compkamts the recent work on optimal
eye movement strategies [24]. While we focus on an earlyestdgrisual processing -
optimal cue selection in order to create a saliency map waimumSAN'R, their study
focuses on a later stage of visual processing - optimal si@cganeration such that for a
given saliency map, the probability of subsequent targetadion is maximized. Thus,
both optimal cue selection and saccade generation areszagdsr optimal visual search.
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