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Beware of tigers...

How does our visual system select and promote the relevant 
visual features (e.g., color, orientation...) such that search speed 
is maximized?

Better knowledge of the target and distractors yields faster search (Muller et. al 
1995, Braithwaite & Humphreys 2003 , Wolfe et. al 2004, Vickery et. al 2005)

What is the underlying mechanism?

 Guided search theory (Wolfe '94) 
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Behavioral output

NO PRIMING / TOP-DOWN GUIDANCE:  
- No prior knowledge of T and D features, no top-down benefit
- Baseline gains (unity)
- Bottom-up guidance contributes to SNR

MINIMAL PRIMING / TOP-DOWN GUIDANCE: 
- Partial knowledge of T and D features
- Partial top-down priming
- SNR increases by 2.2dB compared to (a), search becomes faster 

MAXIMAL PRIMING: 
- Complete knowledge of T and D features
- Maximal top-down priming
- SNR increases by 5.5dB compared to (a), search is efficient 

TARGET ENHANCEMENT: 
- Knowledge of T features allows target enhancement
- SNR increases by 5.4dB compared to (a)
- Similar gains observed in physiology of feature-based attention 

DISTRACTOR SUPPRESSION: 
- Knowledge of D features allows distractor suppression
- SNR increases by 4.4dB compared to (a) 

EFFECT OF DISTRACTOR HETEROGENEITY: 
- Increasing distractor heterogeneity decreases search speed
- SNR decreases by 9.7dB compared to homogeneous distractors 
condition (c) 

EFFECT OF LINEAR SEPARABILITY: 
-  T is not linearly separable from D (unlike f )
- SNR decreases by 5.9dB compared to (f ) 
- Top-down benefit is smaller (0.5dB) compared to above (3.3dB) 

EFFECT OF TARGET-DISTRACTOR DISCRIMINABILITY: 
- T is less discriminable from D
- SNR decreases by 18.4dB compared to (c)
- A neuron that is sub-optimally tuned to the target's feature is 
boosted maximally compared to a neuron that is optimally tuned
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1.  Our theory can successfully account 
for a large body of existing visual search 
literature

 

2.  These results suggest that humans 
may modulate gains optimally during 
visual search

Relevant objective function is to maximize Signal-to-noise ratio (SNR) defined as the ratio 
of strength of the guiding signal (target salience) over noise (distractor salience). 

High SNR leads to low reaction times and easy search (Wolfe et. al, '03).
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Surprising prediction:  It is sometimes optimal to boost a non-target feature. 
To test this prediction, we design the following psychophysics experiments.

a) Experimental design:

 

b) As predicted by the theory, 
although subjects searched for a 55  
target, they reported 60  
significantly higher number of times 
(paired t-test, p < 0.05)

 
c) Additional controls show a
reversal in the trend of biasing 
when the distractor is reversedThis model applies optimal top-down gains on bottom-up saliency maps such 

that SNR is maximized, thereby increasing search speed.

o

o

Maximizing                 wrt         yields

 θ|T = Target features
θ|D = Distractor features
    C = Spatial configuration of Target and Distractors
    η = Noise in neural response 

= Salience of the target
= Salience of the target in the i   map

th= Top-down gain on the i   map

th

Intuitive interpretation: 

Boost a cue according to its SNR
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Open question:  How to choose these gains for any given target and distractors?

Multiplicative gain modulation
(Treue & Trujillo, '99)

- Set up the gains using T1 trials   
(search for 55 among 50  items)

- Test the gains by randomly 
inserting T2 trials (where the target 
must be reported among probes all 
orientations)

o

- Bottom-up effects:  Target-distractor 
discriminability,  distractor  heterogeneity, 
linear separability, pop-out

- Top-down effects:  Role of priming, 
uncertainty, target enhancement, 
distractor suppression
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