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SUMMARY

How does a visual search goal modulate the
activity of neurons encoding different visual
features (e.g., color, direction of motion)? Previ-
ous research suggests that goal-driven atten-
tion enhances the gain of neurons representing
the target’s visual features. Here, we present
mathematical and behavioral evidence that
this strategy is suboptimal and that humans
do not deploy it. We formally derive the optimal
feature gain modulation theory, which com-
bines information from both the target and dis-
tracting clutter to maximize the relative salience
of the target. We qualitatively validate the the-
ory against existing electrophysiological and
psychophysical literature. A surprising predic-
tion is that it is sometimes optimal to enhance
nontarget features. We provide experimental
evidence toward this through psychophysics
experiments on human subjects, thus suggest-
ing that humans deploy the optimal gain modu-
lation strategy.

INTRODUCTION

It is well known that attention is guided to both stimulus-
driven (bottom-up salient [Itti and Koch, 2001a]) and
goal-driven (top-down relevant [Hopfinger et al., 2000])
locations and features (Moran and Desimone, 1985;
Motter, 1994; Treue and Martinez Trujillo, 1999). Yet, the
mechanisms by which top-down relevance of features
are determined and combined with bottom-up salience
are relatively unknown. Below, we address one such out-
standing question in the context of visual search.
Imagine that you are on a safari. The guide cautions you

to beware of tigers hiding in the grasslands. Which visual
features will you enhance or suppress in order to quickly
detect a tiger? Enhancing the typical yellow color of a
tiger’s skin might seem like a good strategy. Indeed, pre-
vious research (Treue and Martinez Trujillo, 1999; Motter,
1994; Chelazzi et al., 1993; Martinez-Trujillo and Treue,
2004; Wolfe et al., 2004; Vickery et al., 2005) in top-
down attention suggests that attention enhances the
neural representation of the target-defining features. For

instance, the feature similarity gain model (Treue and
Martinez Trujillo, 1999) suggests that gains increase as
a function of similarity between the neuron’s preferred fea-
ture and the target feature. While thismay be true in simple
scenes where there is no background clutter or the target
and distractor features are very different, it may not apply
to more complex scenes where the distractor features are
similar to the target. Here, we investigate the optimal gain
modulation strategy and ask whether humans deploy it.
Understanding human feature selection strategies is not
only crucial for further progress in understanding top-
down attention, but may help in designing better robots
and machines for active vision.

Related Work
In this section, we present a brief overview of the relevant
visual search literature. The ‘‘biased competition’’ hypoth-
esis suggests that multiple stimuli compete in a mutually
suppressive manner to gain access to the limited re-
sources (such as representation, analysis, control) and at-
tention biases this competition toward the salient and be-
haviorally relevant locations or features. Although the
details of the amount of top-down feature bias are not for-
mally specified, the general idea is that visual inputs that
match the target description (or ‘‘attentional template’’
[Duncan and Humphreys, 1989]) are favored in the visual
cortex (Bundesen, 1990). In other words, the top-down
competitive bias toward a stimulus depends on its similar-
ity to the ‘‘attentional template,’’ thereby yielding a stron-
ger competitive bias toward the target than distractors
that resemble it or distractors that are dissimilar (Desi-
mone and Duncan, 1995). This theory has received
much support from the neurophysiology of spatial (Luck
et al., 1997; Reynolds et al., 1999; Kastner et al., 1999)
and object-based attention (Chelazzi et al., 1993). Several
neurodynamic implementations of the biased competition
hypothesis have also been proposed (Deco and Rolls,
2002; Hamker, 2004).

In addition to a spatial bias, recent studies have shown
strong feature-based attentional modulation effects that
are spatially global and occur throughout the visual field
(Treue and Martinez Trujillo, 1999; Saenz et al., 2002).
These observations led to an elegant ‘‘feature similarity
gain’’ model, where attention causes a multiplicative
change in the response gain of a neuron that depends
on the similarity between its preferred feature (or location)
and the attended feature (or location). This theory has
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recently received more experimental support (Martinez-
Trujillo and Treue, 2004; Bichot et al., 2005).

Cave (1999) proposed a neural network implementation
of the guided search model (Wolfe, 1994) that combines
both bottom-up and top-down influences. It consists of
a hierarchy of spatial feature maps and the flow of infor-
mation is selectively gated from lower to higher levels of
the visual hierarchy. The top-down bias is applied by
opening (or closing) gates at each level, depending on
the similarity (or dissimilarity) between the target features
and the features at that location. Thus, the top-down com-
ponent of this model enhances locations whose features
are similar to the target.

Tsotsos et al. (1995) suggest that attention to a stimulus
(location or feature) causes selective tuning by trigering
a cascade of top-down winner-take-all selection pro-
cesses along the visual hierarchy. The attended stimulus
(or most salient or task-relevant stimulus) is selected at
the top and at the subsequent WTA selection at the lower
stages, the neural input that contributes most to the at-
tended stimulus is selected, and irrelevant signals that in-
terfere are eliminated. Thus, attention causes selective
tuning to the attended stimulus. The model includes a
task-specific executive controller that selects the task-
relevant feature at the top. While the details of the task-
specific feature bias are not specified, they suggest that
the working memory may store a target template and
the WTA selection may activate stimuli that resemble the
target.

Several other models have been proposed. Hamker
(2004) suggests that prefrontal areas might store a target
template. Feedback connections fromprefrontal to IT (and
from IT to V4) may enhance the activity of neurons whose
visual input matches the target template. As a result of the
re-entry signals, locations whose features are similar to
the target are enhanced, while others are suppressed.
Rao et al. (2002) proposed a saliency model to explain
eye movements during visual search. In their model, sa-
lience was computed as the euclidean distance between
a target template (memorized vector of responses to the
target stimulus) and responses at each location.

Several models of top-down attention have been pro-
posed earlier, and all of them include a top-down biasing
or feature selection process that enhances features that
are similar to the target. In the rest of this paper, we inves-
tigate whether this target-similarity-based feature selec-
tion strategy is optimal. We formally derive the optimal
top-down feature biasing strategy and contrast it to the
above target-similarity-based approaches.

Model
We formally derive a theory of how prior statistical knowl-
edge of the target and distractor features optimally influ-
ences feature gains. From a theoretical standpoint, gains
must be modulated in order to maximize search speed,
which is a function of at least two critical variables:
ST(A), the mean perceived salience of target instances in
the display A (formed as a result of combined top-down

and bottom-up influences); andSD(A), themean perceived
salience of distractor instances. The relative values of
ST(A) and SD(A) determine visual search efficiency (Itti
and Koch, 2000; Wolfe et al., 2003). Hence, the relevant
goal for optimizing top-down gains is to maximize the
signal-to-noise ratio (SNR), i.e., to maximize the ratio
between signal strength (target salience) and noise
strength (distractor salience). Such optimization renders
the target more salient than distractors in the display,
thereby attracting attention (Koch and Ullman, 1985) and
decreasing the search time (Wolfe et al., 2003).
Later, we compare the results obtained by setting gains

according to different objective functions, such as maxi-
mizing discriminability between salience of the target
and distractor versus maximizing SNR.

A Theory of Optimal Feature Gain Modulation
ST(A) and SD(A) are random variables that depend on the
top-down gains as well as the following bottom-up fac-
tors: (1) values of target and distractor features QjT and
QjD in the display [sampled from probability density
functions p(QjT) and p(QjD) and possibly corrupted by ex-
ternal noise], (2) spatial configuration C of target and dis-
tractor items in the display, and (3) internal noise in neural
response, h. Thus, SNR = EQjT,C,h[ST(A)]/EQjD,C,h[SD(A)].
We formulate the optimal theory within the framework of

a ‘‘consensusmodel’’ based on current evidence in neuro-
biology and psychophysics (Treisman and Gelade, 1980;
Koch and Ullman, 1985; Wolfe, 1994; Treue and Martinez
Trujillo, 1999; Saenz et al., 2002) (Figure 1). The visual in-
put is analyzed in different feature dimensions (e.g., color,
orientation, direction of motion). For clarity, we focus on
one dimension at a time. The results can be generalized
across multiple dimensions. We assume that each dimen-
sion is encoded by a population of n neurons with overlap-
ping tuning curves tuned to different feature values
(Deneve et al., 1999). The ith neuron (i ˛ {1.n}) is tuned
to feature value mi, and its output is used to compute the
bottom-up salience (Itti and Koch, 2001b) si(x, y, A) at lo-
cation (x, y) in search array A. The overall perceived sa-
lience, S for a feature dimension is then computed as
a function of the saliences si for feature values within
that dimension. While many functions are possible, one
of the simplest functions consistent with existing data is
a linear combination of si (Itti and Koch, 2001b), weighted
in a top-down manner by multiplicative gains gi (Hillyard
et al., 1998):

Sðx; y;AÞ=
Xn

i = 1

gisiðx; y;AÞ ð1Þ

Thus, the saliency map for a dimension is computed as
a weighted sum of saliency maps from all feature values
and is used to guide attention. The salience of the target
(ST) can be computed as follows:

E½STðAÞ$=EQjT;C;h

"
Xn

i = 1

gisiT ðAÞ
#

ð2Þ

606 Neuron 53, 605–617, February 15, 2007 ª2007 Elsevier Inc.

Neuron

Search Goal Tunes Visual Features Optimally



=
Xn

i = 1

giEQjT ½EC½Eh½siT ðAÞ$$$ ð3Þ

ðsince h; C; and Q are independent random

variablesÞ ð4Þ

E½SDðAÞ$=
Xn

i =1

giEQjD½EC½Eh½siDðAÞ$$$ ðsimilarlyÞ ð5Þ

Thus, we have,

SNR=

Pn
i = 1 giEQjT ½EC½Eh½siTðAÞ$$$Pn
i = 1 giEQjD½EC½Eh½siDðAÞ$$$

ð6Þ

To maximize SNR, we differentiate it with regard to gi.

v

vgi
SNR=

EQjT ½EC ½Eh ½siT ðAÞ$$$
EQjD ½EC ½Eh ½siDðAÞ$$$

%
Pn

j = 1
gjEQjT ½EC ½Eh ½sjT ðAÞ$$$Pn

j = 1
gjEQjD ½EC ½Eh ½sjDðAÞ$$$Pn

j =1
gjEQjD ½EC ½Eh ½sjDðAÞ$$$

EQjD ½EC ½Eh ½siDðAÞ$$$

ð7Þ

=
SNRi
SNR % 1

ai
ð8Þ

where ai is a normalization term and SNRi =
EQjT[EC[Eh[siT(A)]]]/EQjD[EC[Eh[siD(A)]]]. It is easy to show
that gi/gi0 (where gi0 = 1 is the default baseline gain) in-
creases asSNRi/SNR increases.With an added constraint
that the gains must sum to a constant,

Xn

i = 1

gi = n;

the simplest solution is

gi =
SNRi

1
n

Pn
j = 1 SNRj

ð9Þ

Thus, the top-down gain on a visual feature depends on its
signal-to-noise ratio (SNRi).

The above theory assumes an ideal observer who
knows the true distribution of target and distractor fea-
tures [p(QjT), p(QjD)]. Instead, a real observer may pos-
sess incomplete knowledge or a belief in the likely target
and distractor features [p(QbjT), p(QbjD)]. This belief may
be learned from a preview of picture cues (Wolfe et al.,
2004; Vickery et al., 2005), verbal instructions (e.g., search
for a ‘‘red’’ item) (Wolfe et al., 2004), or from observations
of past trials (Maljkovic and Nakayama, 1994) (see Fig-
ure 2). In such cases, we assume that the observer can
use an internal model to translate his/her belief in features
into a belief in salience of the target and distractors Sb

T ;S
b
D.

In this extended framework, it is easy to show that the
other derivations remain identical, i.e., gains can be
chosen so as to maximize SNRb (SNR derived from
top-down belief). The overall framework that integrates
bottom-up salience with top-down beliefs is shown in
Figure 2.

Figure 1. Overview of Our Model
The incoming visual scene A is analyzed in sev-

eral feature dimensions (e.g., color and orienta-

tion) by populations of neurons with bell-

shaped tuning curves. For clarity, we show

just one dimension here. Within each dimen-

sion, bottom-up saliency maps (s1(A).sn(A))

are computed for different feature values and

combined in a weighted linear manner to form

the overall saliency map (S(A)) for that dimen-

sion. Given this model, how do we choose the

optimal set of top-down gains (g1.gn) such

that the target tiger becomes most salient

among distracting clutter? Our theory shows

that the intuitive choice of looking for the tiger’s

yellow feature would actually be suboptimal,

because this would activate the distracting

grassland more than the tiger. Instead, the op-

timal strategy would be to look for orange,

which is mildly present in the tiger, but hardly

present in the grasslands, and hence best dif-

ferentiates between the target and the distract-

ing background.
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RESULTS

In this section, we report the theory’s predictions on vari-
ous search conditions through numerical simulations on
networks of neurons encoding features of the target and
distractors. Subsequently, we test novel predictions of
the theory through psychophysics experiments on human
participants.

Simulating Visual Search Conditions
To test the optimal feature gain modulation strategy, we
perform detailed numerical simulations. For different
search conditions and displays, we compute the bot-
tom-up salience of the target and distractors SiT, SiD as
a function of the true distribution of the target and distrac-
tor features p(QjT), p(QjD) using the saliency computa-
tions proposed by Itti and Koch (2001b). Next, we apply
the optimal top-down gains gi derived from the observer’s
belief p(QbjT), p(QbjD) on the bottom-up saliency maps
(si). Then we compute the overall salience, ST, SD, and
the overall signal-to-noise ratio,SNR (Figure 2). The result-
ing SNR may be high, and search may be efficient due to
high bottom-up salience of the target relative to the dis-
tractors (e.g., a red target pops out among green distrac-
tors (Treisman and Gelade, 1980) as siT >> SiD in the sa-
liency map tuned to the red feature) or due to efficient
top-down guidance to the target (e.g., a red target among
randomly colored distractors becomes easy to find once
subjects know that the target is red (Duncan, 1989) since
gi >> 1 on the red feature) or both.

Figure 3 shows the results of our simulations for differ-
ent search conditions. Figures 3A–3C together show that

for a given target and distractor stimulus better prior
knowledge of their features (or decreased uncertainty) al-
lows the relevant features to be primed, thus leading to
higher SNR and faster search. These results are in qualita-
tive agreement with existing psychophysics literature on
the role of uncertainty in target features (Wolfe et al.,
2004; Vickery et al., 2005) and the role of feature priming
(Shiffrin and Schneider, 1977; Maljkovic and Nakayama,
1994; Wolfe et al., 2003). Figure 3D shows that knowledge
of the target (only) improves SNR by enhancing target fea-
tures. Evidence for such target-based enhancement has
been observed in single-unit recordings in MT and is con-
sistent with the feature similarity gain model (Treue and
Martinez Trujillo, 1999). In addition, psychophysics
studies provide evidence that knowledge of the target
accelerates search performance (Vickery et al., 2005).
Figure 3E predicts that knowledge of the distractor also
improves search by suppressing the distractor features.
Partial experimental evidence comes from studies that
show decreased responses to the distractor feature
(in MT [Martinez-Trujillo and Treue, 2004), in FEF [Bichot
and Schall, 2002]) and from psychophysics studies
that show a benefit in search performance due to knowl-
edge of distractors (Maljkovic and Nakayama, 1994;
Braithwaite and Humphreys, 2003).
Figures 3C and 3F together demonstrate the effect of

distractor heterogeneity (Duncan and Humphreys, 1989),
i.e., search efficiency decreases as the number of types
of distractors increases (e.g., searching for a red target
among blue, green, yellow, and white distractors is harder
than searching for a red target among green distrators).
Consistent with this effect, our simulations show that

Figure 2. Three Phases of Visual Search
Phase 1: Combined bottom-up and top-down

processing of the visual input. The top-down

gains (phase 3) derived from the observer’s be-

liefs (phase 2) are combined with bottom-up

salience computations to yield the overall sa-

lience of the target and distractors. This deter-

mines search performance, measured by SNR.

Phase 2: Acquiring a belief. The distributions of

target and distractor features may be learned

through estimation from past trials, preview

of picture cues, verbal instructions, or other

means. Phase 3: Generating the optimal top-

down gains. The learned belief in target and

distractor features is translated into a belief in

salience of the target and distractors, thus

yielding SNRb. The top-down gains are chosen

so as to maximize SNRb.
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SNR decreases from 23.0 dB (Figure 3C, homogeneous
distractors) to 13.3 dB (Figure 3F, heterogeneous distrac-
tors), resulting in slower search due to increased distrac-
tor heterogeneity.

A comparison of Figures 3F and 3G reveals the linear
separability effect, i.e., search for a target flanked by
distractor features (as shown in Figure 3G) is harder than
search for a target that is linearly separable from

Figure 3. Simulation Results for a Variety of Search Conditions Shown in Different Rows
The first column shows the true distribution of the target (T) features [p(QjT), solid red] and distractor (D) features [p(QjD), dashed blue], and the sec-

ond column shows the observer’s belief [p(QbjT), p(QbjD)]. The third column shows the optimal distribution of neural response gains superimposed

over p(QjT), p(QjD). The fourth column shows SNR followed by the implications of our results, along with experimental evidence. For example, row (A)

illustrates how lack of prior knowledge prevents any top-down guidance of search. Let the true distributions p(QjT) and p(QjD) peak at different

values, e.g., red target among green distractors. When T and D are unknown, the beliefs p(QbjT), p(QbjD) are a uniform distribution with all features

being equally likely. Hence, the optimal gains are set to baseline (gi = 1, i ˛ {1.n}). Remarks and supporting experimental evidence for the remaining

search conditions (A–H) are shown in the fifth column in this figure. Our theory is able to formally predict several effects in visual search behavior which

have been previously studied empirically. References: 1, Wolfe et al., 2004; 2, Vickery et al., 2005; 3, Wolfe et al., 2003; 4, Maljkovic and Nakayama,

1994; 5, Shiffrin and Schneider, 1977; 6, Bichot and Schall, 2002; 7, Treue andMartinez Trujillo, 1999; 8, Braithwaite and Humphreys, 2003; 9, Duncan

and Humphreys, 1989; 10, D’Zmura, 1991; 11, Bauer et al., 1996; 12, Hodsoll and Humphreys, 2001; 13, Wolfe, 1994; 14, Pashler, 1987; 15, Nagy and

Sanchez, 1990; 16, Treisman, 1991.

Neuron 53, 605–617, February 15, 2007 ª2007 Elsevier Inc. 609

Neuron

Search Goal Tunes Visual Features Optimally



distractors in feature space (as shown in Figure 3F). This
effect has been demonstrated in features such as size,
chromaticity, and luminance (Hodsoll and Humphreys,
2001; D’Zmura, 1991; Bauer et al., 1996). For example,
search for amedium sized target among small and big dis-
tractors is known to be harder than search for a big target
among small and medium sized distractors (Hodsoll and
Humphreys, 2001). Our simulation results are consistent
with this effect and show a decline in SNR from 13.3 dB
(Figure 3F, linearly separable target) to 7.4 dB (Figure 3G,
target that is not linearly separable). Furthermore, in
agreement with psychophysics (Hodsoll and Humphreys,
2001), our simulations reveal a greater top-down benefit of
knowing the target and distractors in the linearly separable
condition (3.3 dB in Figure 3F) than otherwise (0.5 dB in
Figure 3G).

One of the classic effects in visual search behavior is
that search efficiency decreases as target-distractor dis-
criminability decreases (Pashler, 1987; Duncan and Hum-
phreys, 1989; Nagy and Sanchez, 1990; Treisman, 1991;
Wolfe, 1994). Figures 3C and 3H demonstrate this effect.
While SNR is high (23.0 dB) when the target and distractor
features are very different (e.g., 55& oriented target among
25& oriented distractors, as shown in Figure 3C), SNR
drops to as low as 4.6 dB when the target and distractor
features are similar (e.g., 55& oriented target among 50&

oriented distractors, as shown in Figure 3H).

Psychophysics Experiments
Notably, our theory makes a new prediction that, during
search for a less discriminable target among distractors,
an exaggerated target feature is promoted more than
the exact target feature (see Figure 3H). Though seemingly
counterintuitive, this occurs because a neuron that is
tuned to an exaggerated target feature provides higher
SNRi (as it responds much more to the target than the dis-
tractor), whereas a neuron that is tuned to the exact target
feature provides lower SNRi (as it responds similarly to the
target and distractor). This is shown in Figure 4. To vali-
date this claim, we conducted new psychophysics exper-
iments that were designed in two phases: (1) to set up the
top-down bias and (2) to measure the bias.

To set up the top-down gains, we asked subjects to per-
form the primary task T1, which is a hard visual search for
the target (55& tilted line) among several distractors (50&

tilted lines). A typical T1 trial is shown in Figure 5A: it starts
with a fixation, followed by the search array. Upon finding
the target among distractors, subjects press any key. To
ensure that subjects would bias for the target among dis-
tractors in each and every trial, we introduce a No Cheat
scheme (see legend of Figure 5A). Subjects are trained
on T1 trials until their performance stabilizes with at least
80% accuracy. Thus, the top-down bias is set up by per-
forming T1 trials.

Tomeasure the top-down gains generated by the above
task, we randomly insert T2 trials in between T1 trials
(Figure 5A). Our theory predicts that during search for
the target (55&) among distractors (50&), the most relevant

feature will be around 60& and not 55&. To test this, we ask
subjects to ‘‘find the target’’ in a brief display (300 ms) of
five items representing five different features: steepest
(80&), relevant as predicted by our theory (R, 60&), target
(T, 55&), distractor (D, 50&), and shallowest (30&). The dis-
play is brief, and its occurrence is unpredictable in order
to minimize any alteration in the top-down gains set up
by the T1 trials. If the top-down gain on a feature is higher
than other features, then it should appear more salient,
draw attention, and hence be reported. Thus, although
subjects search for the target, our theory predicts a higher
number of reports on the relevant feature R than on the tar-
get feature T (since R has a higher top-down bias than T).
Experimental results across all subjects indicate signif-

icantly (p < 0.05) higher number of reports on R than on T
(Figure 5B). As predicted by our theory, subjects could not
help but be attracted toward R, although the task was to
search for T. In additional controls, when the distractor
feature was reversed (60&) while the target remained the
same (55&), the same subjects showed a reversal in the
trend of biasing (described in Figure 5C). Similar results
were obtained in the color dimension aswell (see Figure 6).
Our results provide experimental evidence that humans
may deploy optimal top-down feature gain modulation
strategies.

Alternative Objective Functions
We have shown that a simple function such as the ratio of
expected salience of the target over the distractors is suf-
ficient to account for most visual search data. For a fixed
ratio of means, when the target and distractor feature dis-
tributions are narrow, as shown in Figures 3B and 3C,SNR
increases compared to when the feature distributions are
wide. Thus, variance in target and distractor features is im-
plicitly encoded in the population code ofSNR. In Figure 7,
we compare our SNR measure against D0, which is the
discriminability between the salience of the target and
distractor, defined as follows:

D0 =
E½ST ðAÞ$ % E½SDðAÞ$ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5ðV ½ST ðAÞ$+V ½SDðAÞ$Þ

p ð10Þ

where V[.] refers to the variance. The gains that maximize
D0 are derived in the section on Experimental Procedures.

Figure 4. Boosting a Neuron Tuned to an Exaggerated Target
Feature Helps in a Difficult Search Task
When the target feature (shown by a solid vertical line) is similar to the

distractor feature (shown by a dotted vertical line), neuron 2, which is

tuned to an exaggerated feature, provides higher SNRi than neuron

1, which is tuned to the exact target feature.
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As shown in Figure 7, given our assumption of normal-
izing gains, our SNR measure effectively captures psyho-
physical behavior in several search conditions, while D0

fails in some cases (see the Supplemental Data available
with this article online). This suggests that SNR is the
relevant objective function to be optimized for improving
visual search behavior.

DISCUSSION

Several theories of visual search have been proposed in
the past—while some attempt to explain the behavior of
the organism (e.g., feature integration theory, guided
search theory), others attempt to account for the single-
unit responses (e.g., feature similarity gain model, feature
matching hypothesis). Here, by modulating the gains such
that behavioral performance (quantified in terms ofSNR) is
optimized, we provide a simultaneous account of the
search behavior of the organism as well as neural gains
at the single-unit level. Specifically, we suggest that gains

are modulated so as to optimize the salience of the target
relative to the distractors (which we refer to as the signal-
to-noise ratio, SNR). Such optimization of SNR increases
both search accuracy and speed. The theory makes
a number of testable predictions at the single-unit and be-
havioral level and bears implications for electrophysiol-
ogy, brain imaging, and psychophysics of visual search.

While several models of attention have been proposed
in the past, most of them include a top-down component
that biases features according to their similarity to the tar-
get (Desimone and Duncan, 1995; Deco and Rolls, 2002;
Hamker, 2004; Treue andMartinez Trujillo, 1999; Boynton,
2005; Cave, 1999; Tsotsos et al., 1995; Rao et al., 2002).
For instance, one of the prominent models, ‘‘the feature
similarity gain model,’’ suggests that the gain on a neuron
encoding a visual feature depends on the similarity
between the neuron’s preferred feature and the target
feature. We show that this is a special case of our general
theory, which occurs whenever the target feature differs
substantially from the distractor feature. Thus, previous

Figure 5. Psychophysics Experiment to
Test Optimal Biasing in the Orientation
Dimension
(A) Experimental design. We test the theory’s

prediction of top-down bias during search for

a low-discriminability target among distractors

(Figure 3H). The top-down bias is set when

subjects perform T1 trials. After a random num-

ber of T1 trials, the top-down bias is measured

in a T2 trial. A T1 trial consists of a fixation fol-

lowed by a search array containing one target

(55&) among several distractors (50&). Subjects

are instructed to report the target as soon as

possible. Subjects’ responses are validated

on a per-trial basis through a novel No Cheat

scheme that is described in the main text. A

T2 trial consists of a fixation, followed by a brief

display of five items representing five features,

and by five fineprint random numbers. Subjects

are asked to report the number at the target

location.

(B) Experimental results. We ran four subjects

(three naive), aged 22–30, normal or corrected

vision, with IRB approval. The T2 trials were

analyzed to find the number of reports (mean ±

SD) on 30&, 50&, 55&, 60&, and 80& features.

The number of reports on the relevant feature

(60&, marked by a golden star) is significantly

higher (paired t test, p < 0.05) than the number

of reports on the target feature (55&).

(C) Controls. In a control experiment, we main-

tained the same target feature, but reversed the

distractor feature. In the T1 trials, the same sub-

jects now searched for the 55& oriented target

among 60& oriented distractors. Everything

else, including the T2 trials, instructions, and

analysis remained the same. Statistical analy-

sis of number of reports showed a reversal in

trend compared to (B), with significantly higher

number of reports on the currently relevant

feature (50&, marked by a golden star) than

the target feature (55&).
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experiments with different target and distractor features or
absence of distractor features (e.g., experiments by
Bichot et al. [2005] in the color dimension in FEF, Treue
and Martinez Trujillo [1999] in direction of motion in MT)
that provide evidence for the feature-similarity gain model
also provide evidence for our theory. In addition, we show
examples of search conditions when the former strategy
of enhancing target features is suboptimal. For instance,
when the target and distractor features are similar (e.g.,
5& difference in orientation), neurons tuned to the target re-
spond to the distractor as well (providing lower SNRi),
hence enhancing such neurons increases the response
to the distractor, which is undesirable for performance.
On the other hand, a neuron that is tuned to an exagger-
ated target feature responds much more to the target rel-
ative to the distractor andprovides higherSNRi than a neu-
ron that is tuned to the exact target feature. Hence, the
optimal strategy is to boost a neuron tuned to the exagger-
ated target feature and not the exact target feature. This
effect has also been reported in discrimination tasks
where a neuron tuned to an exaggerated stimulus feature
contains higher fisher information than a neuron that is
tuned to the exact stimulus feature (Lee et al., 1999). To
the best of our knowledge, this is the first study to demon-
strate a similar effect during visual search.

Here, we summarize the differences between our model
and previous models. (1) Most previous models ignore the
role of the distractor in determining gain modulation. They
enhance features that are similar to the target. On the
other hand, we predict that the distractor plays a critical
role and determines whether the target feature will be en-
hanced or not. (2) In several earlier models (e.g., Feature-
Gate, feature similarity gain, Hamker’s model, Rao’s
model), the top-down bias only works when the target fea-
tures are known. They cannot predict the top-down bias
when distractor features are known but the target is un-
known (e.g., when the distractor feature does not change
across search trials but the target feature changes). Our
model predicts the top-down bias for all combinations of
knowledge of target and distractor features, including
when the target is unknown but the distractor is known
(or trivially, when both the target and distractor are un-
known, in which case the gains remain at default values).
(3) While most previousmodels are either purely top-down
(Rao et al., 2002) or bottom-up driven (Li, 2002), a key dis-
tinguishing aspect of our model is that it integrates both
bottom-up salience and top-down feature bias.
By applying optimal top-down gains on bottom-up sa-

lience responses, our theory integrates both goal-driven,
top-down and stimulus-driven, bottom-up factors to

Figure 6. Psychophysics Experiments
to Test Optimal Biasing in the Color
Dimension
(A) Experimental design. We test the theory’s

prediction of top-down bias in the color dimen-

sion. The experimental design is similar to Fig-

ure 5. The target has medium green hue (CIE

x = 0.24, y = 0.42), while the distractor is either

more green (x = 0.25, y = 0.45, Figure 6B) or

less green (x = 0.23, y = 0.38, Figure 6C), and

the irrelevant controls are yellow (x = 0.42, y =

0.50) and blue (x = 0.21, y = 0.27). The presen-

tation time of the T2 probe trials is brief (66 ms).

(B) Experimental results. We ran three subjects

(naive), aged 22–30, normal or corrected vision,

with IRB approval. The T2 trials were analyzed

to find the number of reports (mean ± SD)

on the yellow, more green, medium green,

less green, and blue features. When subjects

searched for a medium green target among

less green distractors, as predicted by the the-

ory, there were significantly more reports

(paired t test, p < 0.05) on the more green fea-

ture than the target feature.

(C) Controls. In a control experiment, we main-

tained the same target feature, but reversed the

distractor feature. Now, subjects searched for

a medium green target among more green dis-

tractors. Statistical analysis of the number of

reports showed a reversal in trend compared

to (B), with a significantly higher number of re-

ports on the less green feature than the target

feature. These results in the color and orienta-

tion dimensions support optimal feature bias-

ing as suggested by our theory.
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guide visual attention. It successfully accounts for a large
body of available visual search literature. For instance, it
accounts for several reported knowledge-based effects
such as the role of uncertainty in target features (Wolfe
et al., 2004; Vickery et al., 2005), role of feature priming
(Shiffrin and Schneider, 1977; Maljkovic and Nakayama,
1994; Wolfe et al., 2003), target enhancement and distrac-
tor suppression (Bichot and Schall, 2002; Braithwaite and
Humphreys, 2003), and top-down effects on linear sepa-

rability (Hodsoll and Humphreys, 2001). It also demon-
strates other well known bottom-up effects such as the
role of target-distractor discriminability (Pashler, 1987;
Duncan and Humphreys, 1989; Nagy and Sanchez,
1990; Treisman, 1991; Wolfe, 1994), distractor heteroge-
neity (Duncan and Humphreys, 1989), and linear separa-
bility (D’Zmura, 1991; Bauer et al., 1996). Thus, the theory,
despite being simple, yields good predictive power. It is
general and applicable to top-down selection of relevant
information in biological as well as artificial systems, in
visual and other modalities, including auditory, somato-
sensory, and cognitive.

Could the observed behavioral response of subjects (in
Figures 5 and 6) reflect higher decision processes rather
than attentional biasing? Indeed, subjects’ responses in
psychophysics studies such as ours is the outcome of
several visuo-motor transformations from the early and
intermediate visual areas to higher decision areas. How-
ever, it is unlikely that our results reflect decision-making
processes for the following reasons. The presentation
time of our probe trials is brief (66 ms in the experiments
on color, 300 ms for orientation) and prevents scanning
of all five items before reporting the target. The briefness
of probe trials minimizes the contribution of covert serial
recognition or decision processes, so that the subjects’
responses may reflect fast attentional biasing processes
rather than slow recognition or decision processes.
Further validation of attentional biasing and the theory’s
predictions on gain modulation calls for more studies in
electrophysiology.

So far, gain modulation has been studied systematically
only for oneconfiguration:when the target feature is known
(Treue and Martinez Trujillo, 1999; Martinez-Trujillo and
Treue, 2004). A feature similarity gainmodel was proposed
to account for the observations. Here, we show that the
feature similarity gain model can be explained as a special
case of our general theory. Our theory agrees with the pre-
dictions of the feature similarity gain model under the con-
dition that the target and distractor features are very differ-
ent. In addition, we predict that the distribution of gainswill
be skewed away from the target and distractor feature
when they are very similar. Indeed, natural scenes are full
of clutter, and it is common for targets of interest (e.g.,
prey, predators, suspects, etc.) to be camouflaged or em-
bedded in distracting backgrounds. We predict that in
such cases the distractor feature (and not just the target
feature) will play a critical role in gain modulation. We
have empirically verified this on natural scenes (Navalpak-
kam and Itti, 2006), where the optimal gain modulation
strategy based on the target and distractor features per-
forms better than one which considers target features
only. This prediction remains to be tested neurally.

To summarize, we have proposed a theory of neural
function that suggests that the ‘‘end result’’ of feature-
based attention, possibly mediated through complex neu-
ral interactions and feature processing, is to modulate
neural response gains according to their signal-to-noise
ratio. The details of the neural mechanisms in the

Figure 7. Comparison of Different Objective Functions
These simulations compare the search performance when gains are

modulated to maximize SNR (ratio of expected target salience relative

toexpecteddistractorsalience)versusD0 (discriminabilitybetweentarget

and distractor salience). The first two columns illustrate different search

conditions [each denoted by a particular distribution of target feature

P(QjT) shown in solid red, and distractor feature P(QjD) shown in dotted

blue].According topreviouspsychophysicsstudies, thesearchcondition

illustrated in thefirst column isknown tobemoredifficult than its counter-

part in the secondcolumn.WhilemaximizingSNR successfully accounts

for this difference (as shown in the third column, ratio of SNR values in

easier versus difficult conditions >1), maximizing D0 fails in some cases

[as shown in the fourth column, in (E)–(G), ratio of D0 < 1]. This validates

our choice of SNR as the relevant objective function.
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intermediate steps are not yet addressed by the theory.
The functional role of attention suggested by the theory
is general and applicable to any population of neurons
that encode a continuous feature dimension in a distrib-
uted manner, e.g., neurons in MT that are tuned to direc-
tion of motion, V4 neurons that are tuned to orientation.
For simple feature dimensions such as orientation that
we have currently tested in our psychophysics experi-
ments, we suggest that the attentional modulation may
occur as early as in a V1 hypercolumn (Motter, 1993;
Roelfsema et al., 1998; McAdams and Maunsell, 1999;
Watanabe et al., 1998; Somers et al., 1999; Gandhi
et al., 1999; Martinez et al., 1999; W.A. Press and
D.C. van Essen, 1997, Soc. Neurosci, abstract).

The current report primarily focuses on gain modulation
within a single feature dimension. This provides a theoret-
ical foundation for further research on integrating multiple
feature dimensions. As shown elsewhere (Navalpakkam
and Itti, 2006), this theory can be easily extended to mul-
tiple dimensions if they are combined linearly as sug-
gested by the guided search theory (Wolfe, 1994).

By focusing on visual features as opposed to locations
in space, our study on optimal feature gain modulation
complements recent studies on optimal eye position strat-
egies (Najemnik and Geisler, 2005). While the latter sug-
gests that humans can select relevant locations optimally,
here, we show that humans select visual features opti-
mally as well. Together, these studies suggest that human
visual search behavior is optimal.

EXPERIMENTAL PROCEDURES

Special Cases

Here, we derive analytical expressions for gains in some common

visual search conditions. To simplify the expressions, we assume

that the feature dimension is encoded by neuronswith Gaussian tuning

curves (fi) whose preferred features (mi) vary continuously along the

dimension. In the following equation, s is the tuning width and a is

the amplitude of firing rate, and b is the background firing rate.

fiðqÞ=
a

s
ffiffiffiffiffiffi
2p

p exp

(

% ðq% miÞ
2

2s2

)

+b ð11Þ

We further approximate salience (si) by the raw neural response (ri),

which is a poisson random variable with mean response fi.

EQjT ½EC½Eh½siT ðAÞ$$$=EQjT ½EC½Eh½riT ðAÞ$$$ ð12Þ

=EQjT ½EC½fiT ðAÞ$$ ð13Þ

=EQjT ½fiT ðAÞ$ ð14Þ

EQjD½EC½Eh½siDðAÞ$$$=EQjD½fiDðAÞ$ ðsimilarlyÞ ð15Þ

SNRi =
EQjT ½fiT ðAÞ$
EQjD½fiDðAÞ$

ð16Þ

gi =
SNRi

1
n

P
j SNRj

ð17Þ

We derive the optimal gains when the target is known and consists

of a single feature [P(QjT) is a Dirac Delta function], while the distractor

is unknown andmay assume any feature with equal probability [P(QjD)
is a uniform distribution].

PðQjTÞ= dðqtÞ ð18Þ

PðQjDÞ= 1

p
ð19Þ

EQjT ½fiT ðAÞ$=
ð

QjT
fiðqÞpðqÞdq ð20Þ

=
a

s
ffiffiffiffiffiffi
2p

p exp

(

% ðqt % miÞ
2

2s2

)

+b ð21Þ

EQjD½fiDðAÞ$=
a

p
+b ð22Þ

SNRi =

 
a

s
ffiffiffiffiffiffi
2p

p exp

(
% ðqt % miÞ

2

2s2

)
+b

!,#
a

p
+b

$
ð23Þ

Let C1 =
a
p
+b

n

X

j

SNRj ð24Þ

gi =C1

 
a

s
ffiffiffiffiffiffi
2p

p exp

(
% ðqt % miÞ

2

2s2

)
+b

!
ðfrom Equation 9Þ ð25Þ

where C1 is a normalization constant. Equation 25 shows that the gain

on a neuron depends on the similarity between its preferred feature

and the target feature. Thus, the expression for optimal gains reduces

the ‘‘feature similarity gain model’’ (Treue and Martinez Trujillo, 1999).

In the opposite case where the distractor feature is known and the

target is unknown, we have the following expression for gains:

PðQjTÞ= 1

p
ð26Þ

PðQjDÞ= dðqdÞ ð27Þ

SNRi =

#
a

p
+b

$  
a

s
ffiffiffiffiffiffi
2p

p exp

(
% ðqd % miÞ

2

2s2

)
+b

!,
ð28Þ

Let C2 =
1

ða
p
+bÞn

X

j

SNRj ð29Þ

gi =
C2

a
s
ffiffiffiffi
2p

p exp
n
% ðqd%mi Þ

2

2s2

o
+b

ðfrom Equation 9Þ ð30Þ

where C2 is a normalization constant. Thus, the gain of a neuron de-

creases as similarity between its preferred feature and the distractor

feature increases.

How do target enhancement and distractor suppression combine

when both the target and distractor features are known? Below, we

consider the simplest case where both the target and distractor con-

sist of a single feature.

PðQjTÞ= dðqtÞ ðdðÞ is the Dirac Delta functionÞ ð31Þ

PðQjDÞ= dðqdÞ ð32Þ

SNRi =

 
a

s
ffiffiffiffiffiffi
2p

p exp

(
% ðqt % miÞ

2

2s2

)
+b

!,

 
a

s
ffiffiffiffiffiffi
2p

p exp

(
% ðqd % miÞ

2

2s2

)
+b

! ð33Þ
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Let Di =
qt % mi

s
ð34Þ

Let d0 =
qd % qt

s
ð35Þ

Let C3 =
bs

ffiffiffiffiffiffi
2p

p

a
ð36Þ

Let C4 =
1

n

X

j

SNRj ð37Þ

gi =C4ðexpf%D2
i =2g+C3Þ=

%
exp

n
% ðDi +d0Þ2=2

o
+C3

&
ð38Þ

Thus, we obtain an expression for optimal gains as a function of

d0 (discriminability between the target and distractor features) and Di

(distance between target feature and neuron’s preferred feature in

units of tuning width) (Figure 8). For a given neuron, as d0 increases,

SNRi increases and gi increases. When d0 is very high, we have:

d0[Di0Di +d0xd0 ð39Þ

0gixC4ðexpf%D2
i =2g+C3Þ=

%
exp

n
%d02=2

o
+C3

&
ð40Þ

fexpf%D2
i =2g+C3 ð41Þ

Thus, when d0 is very high, the gain of a neuron decreases as Di

(distance between target feature and neuron’s preferred feature)

increases. In other words, the gains vary according to the feature sim-

ilarity gain model. The neuron that is best tuned to the target (Di = 0)

contributes maximum SNRi and consequently has maximum gain.

To summarize, when the distractor is unknown or when the distrac-

tor is very different from the target (d0 is high), then gains follow the fea-

ture similarity gain model, which is to our knowledge the situation in

which this model has been tested to date. However, when the distrac-

tor is similar to the target (d0 is low), gains do not follow the feature sim-

ilarity gain model. Instead, a neuron whose preferred feature is shifted

away from the target and distractor feature has higher gain than a neu-

ron that is most similar to the target.

Model Simulations

Additional details of the simulations are given below. We simulate

a simple model of early visual cortex as follows: Let fi represent the

bell-shaped tuning curve of the ith neuron (with preferred feature value

mi) in a population of n neurons with broad, overlapping tuning curves.

Let the tuning width s and amplitude a be the same for all neurons. Let

ri(q) be the neural response to stimulus feature q. ri(q) may be consid-

ered a Poisson random variable with mean fi(q) (Softky and Koch,

1993). For simulation purposes, we compute bottom-up salience si us-

ing the ‘‘classic’’ approach of weighting the local neural response ri
with the square of the difference between the maximum MAXi and

mean responses MEANi in that map (for details, see section 2.3 in Itti

and Koch, 2001b). Thus, bottom-up salience is low if a feature map

has several active locations [i.e., (MAXi % MEANi)
2 z 0] and is high if

a feature map has few active locations [i.e., (MAXi % MEANi)
2 > 0].

We chose the following values for our simulation parameters: n =

100 (number of neurons in the population), s = 5 (width of Gaussian

tuning curves), gap = 0.6s (interneural spacing in units of s), a =

100 Hz (amplitude of tuning curve), mi ˛ {0.300} (preferred feature

of the ith neuron), N = 3 (i.e., 1 target and N2 % 1 = 8 distractors in

the display).

Psychophysics Experiments

Additional details of the psychophysics experiments are given below.

Subjects were naive to the purpose of the experiment (except one) and

were USC students (2 females, 2males, mixed ethnicities, ages 22–30,

normal corrected or uncorrected vision). Informed written consent was

obtained from all the subjects, and they either volunteered or partici-

pated for course credit. All experiments received IRB approval. Stimuli

were presented on a 22 inch computer monitor (LaCie Corp; 640 3

480, 60.27 Hz double-scan, mean screen luminance 30 cd/m2, room

4 cd/m2). Subjects were seated at a viewing distance of 80 cm

(52.5& 3 40.5& usable field of view) and rested on a chin-rest. Stimuli

were presented on a Linux computer under SCHED_FIFO scheduling,

which ensured microsecond-accurate timing.

In the experiment shown in Figure 5, the top-down bias is set when

subjects perform T1 trials. After a random number of T1 trials, the top-

down bias is measured in a T2 trial. A T1 trial consists of a fixation for

500 ms followed by a search array containing one target (55&) among

25 distractors (50&). Subjects are instructed to find the target as

soon as possible and press any key. The time until keypress varied

anywhere between 500 and 7000 ms. To verify that subjects indeed

find the target on every trial, we introduce a novel No Cheat scheme:

Following the key press when the subject finds the target, we flash

a grid of fineprint random numbers briefly (120 ms) and ask subjects

to report the number at the target’s location. The briefness of the dis-

play ensures that subjects find the target and fixate it in order to report

the number correctly. Online feedback on accuracy of report is pro-

vided. Unlike conventional use of target absent trials, which cannot

isolate individual trials with invalid responses, ourNoCheat scheme al-

lows validation of the subject’s response on a trial-by-trial basis. Sub-

jects receive training on this experiment until they achieve at least 80%

accuracy. During testing, a block is rejected if the accuracy falls below

80%. A T2 trial consists of a fixation for 500 ms, followed by a brief dis-

play of five items representing five features (300 ms), and by five fine-

print random numbers. The task is the same as in the T1 trials. Subjects

are asked to report the number at the target location. Each subject per-

formed ten blocks of 50 trials each, with 160 T2 trials randomly inserted

in between 340 T1 trials. For each of the four subjects, the reports on

the 160 T2 trials were analyzed using a paired t test (p < 0.05) to com-

pare the number of reports on 30&, 50&, 55&, 60&, and 80& features.

Alternative Objective Functions

Here, we explore another objective function, D0, discriminability be-

tween the salience of the target and distractor (as defined in

Figure 8. Optimal Gains as a Function of d0 and Di, Computed
According to Equation 38
When d0 is high (e.g., d0 R 3), the maximum gain occurs at Di = 0, i.e.,

when the target-distractor discriminability is high, a neuron that is

tuned to the target feature is promoted maximally. However, when

d0 is low (e.g., d0 = 0.5), the maximum gain occurs at Di > 0, i.e.,

when the target-distractor discriminability is low, a neuron that is tuned

to a nontarget feature is promoted more than a neuron tuned to the

target feature.
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Equation 10). Using the additive hypothesis in Equation 1 (i.e., assum-

ing that salience adds across the different saliency maps), we get the

following:

D0 =
E½
P

i gisiT ðAÞ$ % E½
P

i gisiDðAÞ$ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5ðV½

P
i gisiT ðAÞ$+V½

P
i gisiDðAÞ$Þ

p ð42Þ

=

P
i giðE½siT ðAÞ$ % E½siDðAÞ$Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5ð
P

i g
2
i ðV½siT ðAÞ$+V ½siDðAÞ$ÞÞ

p ð43Þ

ðassuming siT ; sjT ; siD; sjD are independent r:v:Þ ð44Þ

Differentiating D0 with regard to gi yields the following:

'
vD0

vgi

(

gi = 1

=
ti
T % 1

ai
ð45Þ

where ti =
ðE½siT ðAÞ$ % E½siDðAÞ$Þ
ðV ½siT ðAÞ$+V½siDðAÞ$Þ

ð46Þ

where T =

P
j E½sjT ðAÞ$ % E½sjDðAÞ$P
j V ½sjT ðAÞ$+V½sjDðAÞ$

ð47Þ

where ai =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

P
j V ½sjT ðAÞ$+V ½sjDðAÞ$

q

T 3 ðV ½siT ðAÞ$+V ½siDðAÞ$Þ
ð48Þ

From Equation 45, it is easy to show that gi/gi0 (where gi0 = 1 is the

default baseline gain) increases as ti/T increases. Assuming the mono-

tonic relationship to be linear, and with an added constraint that the

gains must sum to a constant,

Xn

i =1

gi = n;

the simplest solution is:

gi =
ti

1
n

Pn
j =1 tj

ð49Þ

To compare SNR and D0, we ran simulations and compared the pre-

dictions on search performance for different target and distractor fea-

ture distributions (see Figure 7). For computing the top-down gains in

these simulations, we assumed that salience si could be approximated

by the raw neural response ri. While computing D0, we further assumed

that the neural firing rate followed a poisson distribution, hence vari-

ance V[.] equals the expectation E[.]. The top-down gains were com-

bined with bottom-up salience (as computed in section 2.8 in Itti and

Koch, 2001b) to compute the overall salience.

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.neuron.org/cgi/content/full/53/4/605/DC1/.
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